| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 | 
							- /* dpttrf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dpttrf_(integer *n, doublereal *d__, doublereal *e, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1;
 
-     /* Local variables */
 
-     integer i__, i4;
 
-     doublereal ei;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPTTRF computes the L*D*L' factorization of a real symmetric */
 
- /*  positive definite tridiagonal matrix A.  The factorization may also */
 
- /*  be regarded as having the form A = U'*D*U. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, the n diagonal elements of the tridiagonal matrix */
 
- /*          A.  On exit, the n diagonal elements of the diagonal matrix */
 
- /*          D from the L*D*L' factorization of A. */
 
- /*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
 
- /*          matrix A.  On exit, the (n-1) subdiagonal elements of the */
 
- /*          unit bidiagonal factor L from the L*D*L' factorization of A. */
 
- /*          E can also be regarded as the superdiagonal of the unit */
 
- /*          bidiagonal factor U from the U'*D*U factorization of A. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -k, the k-th argument had an illegal value */
 
- /*          > 0: if INFO = k, the leading minor of order k is not */
 
- /*               positive definite; if k < N, the factorization could not */
 
- /*               be completed, while if k = N, the factorization was */
 
- /*               completed, but D(N) <= 0. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --e;
 
-     --d__;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
- 	i__1 = -(*info);
 
- 	xerbla_("DPTTRF", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Compute the L*D*L' (or U'*D*U) factorization of A. */
 
-     i4 = (*n - 1) % 4;
 
-     i__1 = i4;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if (d__[i__] <= 0.) {
 
- 	    *info = i__;
 
- 	    goto L30;
 
- 	}
 
- 	ei = e[i__];
 
- 	e[i__] = ei / d__[i__];
 
- 	d__[i__ + 1] -= e[i__] * ei;
 
- /* L10: */
 
-     }
 
-     i__1 = *n - 4;
 
-     for (i__ = i4 + 1; i__ <= i__1; i__ += 4) {
 
- /*        Drop out of the loop if d(i) <= 0: the matrix is not positive */
 
- /*        definite. */
 
- 	if (d__[i__] <= 0.) {
 
- 	    *info = i__;
 
- 	    goto L30;
 
- 	}
 
- /*        Solve for e(i) and d(i+1). */
 
- 	ei = e[i__];
 
- 	e[i__] = ei / d__[i__];
 
- 	d__[i__ + 1] -= e[i__] * ei;
 
- 	if (d__[i__ + 1] <= 0.) {
 
- 	    *info = i__ + 1;
 
- 	    goto L30;
 
- 	}
 
- /*        Solve for e(i+1) and d(i+2). */
 
- 	ei = e[i__ + 1];
 
- 	e[i__ + 1] = ei / d__[i__ + 1];
 
- 	d__[i__ + 2] -= e[i__ + 1] * ei;
 
- 	if (d__[i__ + 2] <= 0.) {
 
- 	    *info = i__ + 2;
 
- 	    goto L30;
 
- 	}
 
- /*        Solve for e(i+2) and d(i+3). */
 
- 	ei = e[i__ + 2];
 
- 	e[i__ + 2] = ei / d__[i__ + 2];
 
- 	d__[i__ + 3] -= e[i__ + 2] * ei;
 
- 	if (d__[i__ + 3] <= 0.) {
 
- 	    *info = i__ + 3;
 
- 	    goto L30;
 
- 	}
 
- /*        Solve for e(i+3) and d(i+4). */
 
- 	ei = e[i__ + 3];
 
- 	e[i__ + 3] = ei / d__[i__ + 3];
 
- 	d__[i__ + 4] -= e[i__ + 3] * ei;
 
- /* L20: */
 
-     }
 
- /*     Check d(n) for positive definiteness. */
 
-     if (d__[*n] <= 0.) {
 
- 	*info = *n;
 
-     }
 
- L30:
 
-     return 0;
 
- /*     End of DPTTRF */
 
- } /* dpttrf_ */
 
 
  |