| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 | 
							- /* dptsv.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dptsv_(integer *n, integer *nrhs, doublereal *d__, 
 
- 	doublereal *e, doublereal *b, integer *ldb, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer b_dim1, b_offset, i__1;
 
-     /* Local variables */
 
-     extern /* Subroutine */ int xerbla_(char *, integer *), dpttrf_(
 
- 	    integer *, doublereal *, doublereal *, integer *), dpttrs_(
 
- 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	    integer *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPTSV computes the solution to a real system of linear equations */
 
- /*  A*X = B, where A is an N-by-N symmetric positive definite tridiagonal */
 
- /*  matrix, and X and B are N-by-NRHS matrices. */
 
- /*  A is factored as A = L*D*L**T, and the factored form of A is then */
 
- /*  used to solve the system of equations. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrix B.  NRHS >= 0. */
 
- /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, the n diagonal elements of the tridiagonal matrix */
 
- /*          A.  On exit, the n diagonal elements of the diagonal matrix */
 
- /*          D from the factorization A = L*D*L**T. */
 
- /*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
 
- /*          matrix A.  On exit, the (n-1) subdiagonal elements of the */
 
- /*          unit bidiagonal factor L from the L*D*L**T factorization of */
 
- /*          A.  (E can also be regarded as the superdiagonal of the unit */
 
- /*          bidiagonal factor U from the U**T*D*U factorization of A.) */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the N-by-NRHS right hand side matrix B. */
 
- /*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, the leading minor of order i is not */
 
- /*                positive definite, and the solution has not been */
 
- /*                computed.  The factorization has not been completed */
 
- /*                unless i = N. */
 
- /*  ===================================================================== */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --e;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -2;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -6;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DPTSV ", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Compute the L*D*L' (or U'*D*U) factorization of A. */
 
-     dpttrf_(n, &d__[1], &e[1], info);
 
-     if (*info == 0) {
 
- /*        Solve the system A*X = B, overwriting B with X. */
 
- 	dpttrs_(n, nrhs, &d__[1], &e[1], &b[b_offset], ldb, info);
 
-     }
 
-     return 0;
 
- /*     End of DPTSV */
 
- } /* dptsv_ */
 
 
  |