| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396 | 
							- /* dpstf2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b16 = -1.;
 
- static doublereal c_b18 = 1.;
 
- /* Subroutine */ int dpstf2_(char *uplo, integer *n, doublereal *a, integer *
 
- 	lda, integer *piv, integer *rank, doublereal *tol, doublereal *work, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, j, maxlocval;
 
-     doublereal ajj;
 
-     integer pvt;
 
-     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *);
 
-     doublereal dtemp;
 
-     integer itemp;
 
-     extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     doublereal dstop;
 
-     logical upper;
 
-     extern doublereal dlamch_(char *);
 
-     extern logical disnan_(doublereal *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     extern integer dmaxloc_(doublereal *, integer *);
 
- /*  -- LAPACK PROTOTYPE routine (version 3.2) -- */
 
- /*     Craig Lucas, University of Manchester / NAG Ltd. */
 
- /*     October, 2008 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPSTF2 computes the Cholesky factorization with complete */
 
- /*  pivoting of a real symmetric positive semidefinite matrix A. */
 
- /*  The factorization has the form */
 
- /*     P' * A * P = U' * U ,  if UPLO = 'U', */
 
- /*     P' * A * P = L  * L',  if UPLO = 'L', */
 
- /*  where U is an upper triangular matrix and L is lower triangular, and */
 
- /*  P is stored as vector PIV. */
 
- /*  This algorithm does not attempt to check that A is positive */
 
- /*  semidefinite. This version of the algorithm calls level 2 BLAS. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          Specifies whether the upper or lower triangular part of the */
 
- /*          symmetric matrix A is stored. */
 
- /*          = 'U':  Upper triangular */
 
- /*          = 'L':  Lower triangular */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 
- /*          n by n upper triangular part of A contains the upper */
 
- /*          triangular part of the matrix A, and the strictly lower */
 
- /*          triangular part of A is not referenced.  If UPLO = 'L', the */
 
- /*          leading n by n lower triangular part of A contains the lower */
 
- /*          triangular part of the matrix A, and the strictly upper */
 
- /*          triangular part of A is not referenced. */
 
- /*          On exit, if INFO = 0, the factor U or L from the Cholesky */
 
- /*          factorization as above. */
 
- /*  PIV     (output) INTEGER array, dimension (N) */
 
- /*          PIV is such that the nonzero entries are P( PIV(K), K ) = 1. */
 
- /*  RANK    (output) INTEGER */
 
- /*          The rank of A given by the number of steps the algorithm */
 
- /*          completed. */
 
- /*  TOL     (input) DOUBLE PRECISION */
 
- /*          User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) ) */
 
- /*          will be used. The algorithm terminates at the (K-1)st step */
 
- /*          if the pivot <= TOL. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  WORK    DOUBLE PRECISION array, dimension (2*N) */
 
- /*          Work space. */
 
- /*  INFO    (output) INTEGER */
 
- /*          < 0: If INFO = -K, the K-th argument had an illegal value, */
 
- /*          = 0: algorithm completed successfully, and */
 
- /*          > 0: the matrix A is either rank deficient with computed rank */
 
- /*               as returned in RANK, or is indefinite.  See Section 7 of */
 
- /*               LAPACK Working Note #161 for further information. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     --work;
 
-     --piv;
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = lsame_(uplo, "U");
 
-     if (! upper && ! lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -4;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DPSTF2", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Initialize PIV */
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	piv[i__] = i__;
 
- /* L100: */
 
-     }
 
- /*     Compute stopping value */
 
-     pvt = 1;
 
-     ajj = a[pvt + pvt * a_dim1];
 
-     i__1 = *n;
 
-     for (i__ = 2; i__ <= i__1; ++i__) {
 
- 	if (a[i__ + i__ * a_dim1] > ajj) {
 
- 	    pvt = i__;
 
- 	    ajj = a[pvt + pvt * a_dim1];
 
- 	}
 
-     }
 
-     if (ajj == 0. || disnan_(&ajj)) {
 
- 	*rank = 0;
 
- 	*info = 1;
 
- 	goto L170;
 
-     }
 
- /*     Compute stopping value if not supplied */
 
-     if (*tol < 0.) {
 
- 	dstop = *n * dlamch_("Epsilon") * ajj;
 
-     } else {
 
- 	dstop = *tol;
 
-     }
 
- /*     Set first half of WORK to zero, holds dot products */
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	work[i__] = 0.;
 
- /* L110: */
 
-     }
 
-     if (upper) {
 
- /*        Compute the Cholesky factorization P' * A * P = U' * U */
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- /*        Find pivot, test for exit, else swap rows and columns */
 
- /*        Update dot products, compute possible pivots which are */
 
- /*        stored in the second half of WORK */
 
- 	    i__2 = *n;
 
- 	    for (i__ = j; i__ <= i__2; ++i__) {
 
- 		if (j > 1) {
 
- /* Computing 2nd power */
 
- 		    d__1 = a[j - 1 + i__ * a_dim1];
 
- 		    work[i__] += d__1 * d__1;
 
- 		}
 
- 		work[*n + i__] = a[i__ + i__ * a_dim1] - work[i__];
 
- /* L120: */
 
- 	    }
 
- 	    if (j > 1) {
 
- 		maxlocval = (*n << 1) - (*n + j) + 1;
 
- 		itemp = dmaxloc_(&work[*n + j], &maxlocval);
 
- 		pvt = itemp + j - 1;
 
- 		ajj = work[*n + pvt];
 
- 		if (ajj <= dstop || disnan_(&ajj)) {
 
- 		    a[j + j * a_dim1] = ajj;
 
- 		    goto L160;
 
- 		}
 
- 	    }
 
- 	    if (j != pvt) {
 
- /*              Pivot OK, so can now swap pivot rows and columns */
 
- 		a[pvt + pvt * a_dim1] = a[j + j * a_dim1];
 
- 		i__2 = j - 1;
 
- 		dswap_(&i__2, &a[j * a_dim1 + 1], &c__1, &a[pvt * a_dim1 + 1], 
 
- 			 &c__1);
 
- 		if (pvt < *n) {
 
- 		    i__2 = *n - pvt;
 
- 		    dswap_(&i__2, &a[j + (pvt + 1) * a_dim1], lda, &a[pvt + (
 
- 			    pvt + 1) * a_dim1], lda);
 
- 		}
 
- 		i__2 = pvt - j - 1;
 
- 		dswap_(&i__2, &a[j + (j + 1) * a_dim1], lda, &a[j + 1 + pvt * 
 
- 			a_dim1], &c__1);
 
- /*              Swap dot products and PIV */
 
- 		dtemp = work[j];
 
- 		work[j] = work[pvt];
 
- 		work[pvt] = dtemp;
 
- 		itemp = piv[pvt];
 
- 		piv[pvt] = piv[j];
 
- 		piv[j] = itemp;
 
- 	    }
 
- 	    ajj = sqrt(ajj);
 
- 	    a[j + j * a_dim1] = ajj;
 
- /*           Compute elements J+1:N of row J */
 
- 	    if (j < *n) {
 
- 		i__2 = j - 1;
 
- 		i__3 = *n - j;
 
- 		dgemv_("Trans", &i__2, &i__3, &c_b16, &a[(j + 1) * a_dim1 + 1]
 
- , lda, &a[j * a_dim1 + 1], &c__1, &c_b18, &a[j + (j + 
 
- 			1) * a_dim1], lda);
 
- 		i__2 = *n - j;
 
- 		d__1 = 1. / ajj;
 
- 		dscal_(&i__2, &d__1, &a[j + (j + 1) * a_dim1], lda);
 
- 	    }
 
- /* L130: */
 
- 	}
 
-     } else {
 
- /*        Compute the Cholesky factorization P' * A * P = L * L' */
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- /*        Find pivot, test for exit, else swap rows and columns */
 
- /*        Update dot products, compute possible pivots which are */
 
- /*        stored in the second half of WORK */
 
- 	    i__2 = *n;
 
- 	    for (i__ = j; i__ <= i__2; ++i__) {
 
- 		if (j > 1) {
 
- /* Computing 2nd power */
 
- 		    d__1 = a[i__ + (j - 1) * a_dim1];
 
- 		    work[i__] += d__1 * d__1;
 
- 		}
 
- 		work[*n + i__] = a[i__ + i__ * a_dim1] - work[i__];
 
- /* L140: */
 
- 	    }
 
- 	    if (j > 1) {
 
- 		maxlocval = (*n << 1) - (*n + j) + 1;
 
- 		itemp = dmaxloc_(&work[*n + j], &maxlocval);
 
- 		pvt = itemp + j - 1;
 
- 		ajj = work[*n + pvt];
 
- 		if (ajj <= dstop || disnan_(&ajj)) {
 
- 		    a[j + j * a_dim1] = ajj;
 
- 		    goto L160;
 
- 		}
 
- 	    }
 
- 	    if (j != pvt) {
 
- /*              Pivot OK, so can now swap pivot rows and columns */
 
- 		a[pvt + pvt * a_dim1] = a[j + j * a_dim1];
 
- 		i__2 = j - 1;
 
- 		dswap_(&i__2, &a[j + a_dim1], lda, &a[pvt + a_dim1], lda);
 
- 		if (pvt < *n) {
 
- 		    i__2 = *n - pvt;
 
- 		    dswap_(&i__2, &a[pvt + 1 + j * a_dim1], &c__1, &a[pvt + 1 
 
- 			    + pvt * a_dim1], &c__1);
 
- 		}
 
- 		i__2 = pvt - j - 1;
 
- 		dswap_(&i__2, &a[j + 1 + j * a_dim1], &c__1, &a[pvt + (j + 1) 
 
- 			* a_dim1], lda);
 
- /*              Swap dot products and PIV */
 
- 		dtemp = work[j];
 
- 		work[j] = work[pvt];
 
- 		work[pvt] = dtemp;
 
- 		itemp = piv[pvt];
 
- 		piv[pvt] = piv[j];
 
- 		piv[j] = itemp;
 
- 	    }
 
- 	    ajj = sqrt(ajj);
 
- 	    a[j + j * a_dim1] = ajj;
 
- /*           Compute elements J+1:N of column J */
 
- 	    if (j < *n) {
 
- 		i__2 = *n - j;
 
- 		i__3 = j - 1;
 
- 		dgemv_("No Trans", &i__2, &i__3, &c_b16, &a[j + 1 + a_dim1], 
 
- 			lda, &a[j + a_dim1], lda, &c_b18, &a[j + 1 + j * 
 
- 			a_dim1], &c__1);
 
- 		i__2 = *n - j;
 
- 		d__1 = 1. / ajj;
 
- 		dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
 
- 	    }
 
- /* L150: */
 
- 	}
 
-     }
 
- /*     Ran to completion, A has full rank */
 
-     *rank = *n;
 
-     goto L170;
 
- L160:
 
- /*     Rank is number of steps completed.  Set INFO = 1 to signal */
 
- /*     that the factorization cannot be used to solve a system. */
 
-     *rank = j - 1;
 
-     *info = 1;
 
- L170:
 
-     return 0;
 
- /*     End of DPSTF2 */
 
- } /* dpstf2_ */
 
 
  |