| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 | 
							- /* dppequ.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dppequ_(char *uplo, integer *n, doublereal *ap, 
 
- 	doublereal *s, doublereal *scond, doublereal *amax, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, jj;
 
-     doublereal smin;
 
-     extern logical lsame_(char *, char *);
 
-     logical upper;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPPEQU computes row and column scalings intended to equilibrate a */
 
- /*  symmetric positive definite matrix A in packed storage and reduce */
 
- /*  its condition number (with respect to the two-norm).  S contains the */
 
- /*  scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix */
 
- /*  B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal. */
 
- /*  This choice of S puts the condition number of B within a factor N of */
 
- /*  the smallest possible condition number over all possible diagonal */
 
- /*  scalings. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          The upper or lower triangle of the symmetric matrix A, packed */
 
- /*          columnwise in a linear array.  The j-th column of A is stored */
 
- /*          in the array AP as follows: */
 
- /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
 
- /*  S       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          If INFO = 0, S contains the scale factors for A. */
 
- /*  SCOND   (output) DOUBLE PRECISION */
 
- /*          If INFO = 0, S contains the ratio of the smallest S(i) to */
 
- /*          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too */
 
- /*          large nor too small, it is not worth scaling by S. */
 
- /*  AMAX    (output) DOUBLE PRECISION */
 
- /*          Absolute value of largest matrix element.  If AMAX is very */
 
- /*          close to overflow or very close to underflow, the matrix */
 
- /*          should be scaled. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, the i-th diagonal element is nonpositive. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --s;
 
-     --ap;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = lsame_(uplo, "U");
 
-     if (! upper && ! lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DPPEQU", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	*scond = 1.;
 
- 	*amax = 0.;
 
- 	return 0;
 
-     }
 
- /*     Initialize SMIN and AMAX. */
 
-     s[1] = ap[1];
 
-     smin = s[1];
 
-     *amax = s[1];
 
-     if (upper) {
 
- /*        UPLO = 'U':  Upper triangle of A is stored. */
 
- /*        Find the minimum and maximum diagonal elements. */
 
- 	jj = 1;
 
- 	i__1 = *n;
 
- 	for (i__ = 2; i__ <= i__1; ++i__) {
 
- 	    jj += i__;
 
- 	    s[i__] = ap[jj];
 
- /* Computing MIN */
 
- 	    d__1 = smin, d__2 = s[i__];
 
- 	    smin = min(d__1,d__2);
 
- /* Computing MAX */
 
- 	    d__1 = *amax, d__2 = s[i__];
 
- 	    *amax = max(d__1,d__2);
 
- /* L10: */
 
- 	}
 
-     } else {
 
- /*        UPLO = 'L':  Lower triangle of A is stored. */
 
- /*        Find the minimum and maximum diagonal elements. */
 
- 	jj = 1;
 
- 	i__1 = *n;
 
- 	for (i__ = 2; i__ <= i__1; ++i__) {
 
- 	    jj = jj + *n - i__ + 2;
 
- 	    s[i__] = ap[jj];
 
- /* Computing MIN */
 
- 	    d__1 = smin, d__2 = s[i__];
 
- 	    smin = min(d__1,d__2);
 
- /* Computing MAX */
 
- 	    d__1 = *amax, d__2 = s[i__];
 
- 	    *amax = max(d__1,d__2);
 
- /* L20: */
 
- 	}
 
-     }
 
-     if (smin <= 0.) {
 
- /*        Find the first non-positive diagonal element and return. */
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    if (s[i__] <= 0.) {
 
- 		*info = i__;
 
- 		return 0;
 
- 	    }
 
- /* L30: */
 
- 	}
 
-     } else {
 
- /*        Set the scale factors to the reciprocals */
 
- /*        of the diagonal elements. */
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    s[i__] = 1. / sqrt(s[i__]);
 
- /* L40: */
 
- 	}
 
- /*        Compute SCOND = min(S(I)) / max(S(I)) */
 
- 	*scond = sqrt(smin) / sqrt(*amax);
 
-     }
 
-     return 0;
 
- /*     End of DPPEQU */
 
- } /* dppequ_ */
 
 
  |