| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 | 
							- /* dpbstf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b9 = -1.;
 
- /* Subroutine */ int dpbstf_(char *uplo, integer *n, integer *kd, doublereal *
 
- 	ab, integer *ldab, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, i__1, i__2, i__3;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer j, m, km;
 
-     doublereal ajj;
 
-     integer kld;
 
-     extern /* Subroutine */ int dsyr_(char *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), dscal_(
 
- 	    integer *, doublereal *, doublereal *, integer *);
 
-     extern logical lsame_(char *, char *);
 
-     logical upper;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPBSTF computes a split Cholesky factorization of a real */
 
- /*  symmetric positive definite band matrix A. */
 
- /*  This routine is designed to be used in conjunction with DSBGST. */
 
- /*  The factorization has the form  A = S**T*S  where S is a band matrix */
 
- /*  of the same bandwidth as A and the following structure: */
 
- /*    S = ( U    ) */
 
- /*        ( M  L ) */
 
- /*  where U is upper triangular of order m = (n+kd)/2, and L is lower */
 
- /*  triangular of order n-m. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  KD      (input) INTEGER */
 
- /*          The number of superdiagonals of the matrix A if UPLO = 'U', */
 
- /*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
 
- /*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*          On entry, the upper or lower triangle of the symmetric band */
 
- /*          matrix A, stored in the first kd+1 rows of the array.  The */
 
- /*          j-th column of A is stored in the j-th column of the array AB */
 
- /*          as follows: */
 
- /*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
 
- /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */
 
- /*          On exit, if INFO = 0, the factor S from the split Cholesky */
 
- /*          factorization A = S**T*S. See Further Details. */
 
- /*  LDAB    (input) INTEGER */
 
- /*          The leading dimension of the array AB.  LDAB >= KD+1. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0: if INFO = i, the factorization could not be completed, */
 
- /*               because the updated element a(i,i) was negative; the */
 
- /*               matrix A is not positive definite. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The band storage scheme is illustrated by the following example, when */
 
- /*  N = 7, KD = 2: */
 
- /*  S = ( s11  s12  s13                     ) */
 
- /*      (      s22  s23  s24                ) */
 
- /*      (           s33  s34                ) */
 
- /*      (                s44                ) */
 
- /*      (           s53  s54  s55           ) */
 
- /*      (                s64  s65  s66      ) */
 
- /*      (                     s75  s76  s77 ) */
 
- /*  If UPLO = 'U', the array AB holds: */
 
- /*  on entry:                          on exit: */
 
- /*   *    *   a13  a24  a35  a46  a57   *    *   s13  s24  s53  s64  s75 */
 
- /*   *   a12  a23  a34  a45  a56  a67   *   s12  s23  s34  s54  s65  s76 */
 
- /*  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55  s66  s77 */
 
- /*  If UPLO = 'L', the array AB holds: */
 
- /*  on entry:                          on exit: */
 
- /*  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55  s66  s77 */
 
- /*  a21  a32  a43  a54  a65  a76   *   s12  s23  s34  s54  s65  s76   * */
 
- /*  a31  a42  a53  a64  a64   *    *   s13  s24  s53  s64  s75   *    * */
 
- /*  Array elements marked * are not used by the routine. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = lsame_(uplo, "U");
 
-     if (! upper && ! lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*kd < 0) {
 
- 	*info = -3;
 
-     } else if (*ldab < *kd + 1) {
 
- 	*info = -5;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DPBSTF", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /* Computing MAX */
 
-     i__1 = 1, i__2 = *ldab - 1;
 
-     kld = max(i__1,i__2);
 
- /*     Set the splitting point m. */
 
-     m = (*n + *kd) / 2;
 
-     if (upper) {
 
- /*        Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m). */
 
- 	i__1 = m + 1;
 
- 	for (j = *n; j >= i__1; --j) {
 
- /*           Compute s(j,j) and test for non-positive-definiteness. */
 
- 	    ajj = ab[*kd + 1 + j * ab_dim1];
 
- 	    if (ajj <= 0.) {
 
- 		goto L50;
 
- 	    }
 
- 	    ajj = sqrt(ajj);
 
- 	    ab[*kd + 1 + j * ab_dim1] = ajj;
 
- /* Computing MIN */
 
- 	    i__2 = j - 1;
 
- 	    km = min(i__2,*kd);
 
- /*           Compute elements j-km:j-1 of the j-th column and update the */
 
- /*           the leading submatrix within the band. */
 
- 	    d__1 = 1. / ajj;
 
- 	    dscal_(&km, &d__1, &ab[*kd + 1 - km + j * ab_dim1], &c__1);
 
- 	    dsyr_("Upper", &km, &c_b9, &ab[*kd + 1 - km + j * ab_dim1], &c__1, 
 
- 		     &ab[*kd + 1 + (j - km) * ab_dim1], &kld);
 
- /* L10: */
 
- 	}
 
- /*        Factorize the updated submatrix A(1:m,1:m) as U**T*U. */
 
- 	i__1 = m;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- /*           Compute s(j,j) and test for non-positive-definiteness. */
 
- 	    ajj = ab[*kd + 1 + j * ab_dim1];
 
- 	    if (ajj <= 0.) {
 
- 		goto L50;
 
- 	    }
 
- 	    ajj = sqrt(ajj);
 
- 	    ab[*kd + 1 + j * ab_dim1] = ajj;
 
- /* Computing MIN */
 
- 	    i__2 = *kd, i__3 = m - j;
 
- 	    km = min(i__2,i__3);
 
- /*           Compute elements j+1:j+km of the j-th row and update the */
 
- /*           trailing submatrix within the band. */
 
- 	    if (km > 0) {
 
- 		d__1 = 1. / ajj;
 
- 		dscal_(&km, &d__1, &ab[*kd + (j + 1) * ab_dim1], &kld);
 
- 		dsyr_("Upper", &km, &c_b9, &ab[*kd + (j + 1) * ab_dim1], &kld, 
 
- 			 &ab[*kd + 1 + (j + 1) * ab_dim1], &kld);
 
- 	    }
 
- /* L20: */
 
- 	}
 
-     } else {
 
- /*        Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m). */
 
- 	i__1 = m + 1;
 
- 	for (j = *n; j >= i__1; --j) {
 
- /*           Compute s(j,j) and test for non-positive-definiteness. */
 
- 	    ajj = ab[j * ab_dim1 + 1];
 
- 	    if (ajj <= 0.) {
 
- 		goto L50;
 
- 	    }
 
- 	    ajj = sqrt(ajj);
 
- 	    ab[j * ab_dim1 + 1] = ajj;
 
- /* Computing MIN */
 
- 	    i__2 = j - 1;
 
- 	    km = min(i__2,*kd);
 
- /*           Compute elements j-km:j-1 of the j-th row and update the */
 
- /*           trailing submatrix within the band. */
 
- 	    d__1 = 1. / ajj;
 
- 	    dscal_(&km, &d__1, &ab[km + 1 + (j - km) * ab_dim1], &kld);
 
- 	    dsyr_("Lower", &km, &c_b9, &ab[km + 1 + (j - km) * ab_dim1], &kld, 
 
- 		     &ab[(j - km) * ab_dim1 + 1], &kld);
 
- /* L30: */
 
- 	}
 
- /*        Factorize the updated submatrix A(1:m,1:m) as U**T*U. */
 
- 	i__1 = m;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- /*           Compute s(j,j) and test for non-positive-definiteness. */
 
- 	    ajj = ab[j * ab_dim1 + 1];
 
- 	    if (ajj <= 0.) {
 
- 		goto L50;
 
- 	    }
 
- 	    ajj = sqrt(ajj);
 
- 	    ab[j * ab_dim1 + 1] = ajj;
 
- /* Computing MIN */
 
- 	    i__2 = *kd, i__3 = m - j;
 
- 	    km = min(i__2,i__3);
 
- /*           Compute elements j+1:j+km of the j-th column and update the */
 
- /*           trailing submatrix within the band. */
 
- 	    if (km > 0) {
 
- 		d__1 = 1. / ajj;
 
- 		dscal_(&km, &d__1, &ab[j * ab_dim1 + 2], &c__1);
 
- 		dsyr_("Lower", &km, &c_b9, &ab[j * ab_dim1 + 2], &c__1, &ab[(
 
- 			j + 1) * ab_dim1 + 1], &kld);
 
- 	    }
 
- /* L40: */
 
- 	}
 
-     }
 
-     return 0;
 
- L50:
 
-     *info = j;
 
-     return 0;
 
- /*     End of DPBSTF */
 
- } /* dpbstf_ */
 
 
  |