| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 | 
							- /* dpbequ.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dpbequ_(char *uplo, integer *n, integer *kd, doublereal *
 
- 	ab, integer *ldab, doublereal *s, doublereal *scond, doublereal *amax, 
 
- 	 integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, i__1;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, j;
 
-     doublereal smin;
 
-     extern logical lsame_(char *, char *);
 
-     logical upper;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPBEQU computes row and column scalings intended to equilibrate a */
 
- /*  symmetric positive definite band matrix A and reduce its condition */
 
- /*  number (with respect to the two-norm).  S contains the scale factors, */
 
- /*  S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with */
 
- /*  elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This */
 
- /*  choice of S puts the condition number of B within a factor N of the */
 
- /*  smallest possible condition number over all possible diagonal */
 
- /*  scalings. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangular of A is stored; */
 
- /*          = 'L':  Lower triangular of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  KD      (input) INTEGER */
 
- /*          The number of superdiagonals of the matrix A if UPLO = 'U', */
 
- /*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
 
- /*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*          The upper or lower triangle of the symmetric band matrix A, */
 
- /*          stored in the first KD+1 rows of the array.  The j-th column */
 
- /*          of A is stored in the j-th column of the array AB as follows: */
 
- /*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
 
- /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */
 
- /*  LDAB     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDAB >= KD+1. */
 
- /*  S       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          If INFO = 0, S contains the scale factors for A. */
 
- /*  SCOND   (output) DOUBLE PRECISION */
 
- /*          If INFO = 0, S contains the ratio of the smallest S(i) to */
 
- /*          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too */
 
- /*          large nor too small, it is not worth scaling by S. */
 
- /*  AMAX    (output) DOUBLE PRECISION */
 
- /*          Absolute value of largest matrix element.  If AMAX is very */
 
- /*          close to overflow or very close to underflow, the matrix */
 
- /*          should be scaled. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  if INFO = i, the i-th diagonal element is nonpositive. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     --s;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = lsame_(uplo, "U");
 
-     if (! upper && ! lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*kd < 0) {
 
- 	*info = -3;
 
-     } else if (*ldab < *kd + 1) {
 
- 	*info = -5;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DPBEQU", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	*scond = 1.;
 
- 	*amax = 0.;
 
- 	return 0;
 
-     }
 
-     if (upper) {
 
- 	j = *kd + 1;
 
-     } else {
 
- 	j = 1;
 
-     }
 
- /*     Initialize SMIN and AMAX. */
 
-     s[1] = ab[j + ab_dim1];
 
-     smin = s[1];
 
-     *amax = s[1];
 
- /*     Find the minimum and maximum diagonal elements. */
 
-     i__1 = *n;
 
-     for (i__ = 2; i__ <= i__1; ++i__) {
 
- 	s[i__] = ab[j + i__ * ab_dim1];
 
- /* Computing MIN */
 
- 	d__1 = smin, d__2 = s[i__];
 
- 	smin = min(d__1,d__2);
 
- /* Computing MAX */
 
- 	d__1 = *amax, d__2 = s[i__];
 
- 	*amax = max(d__1,d__2);
 
- /* L10: */
 
-     }
 
-     if (smin <= 0.) {
 
- /*        Find the first non-positive diagonal element and return. */
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    if (s[i__] <= 0.) {
 
- 		*info = i__;
 
- 		return 0;
 
- 	    }
 
- /* L20: */
 
- 	}
 
-     } else {
 
- /*        Set the scale factors to the reciprocals */
 
- /*        of the diagonal elements. */
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    s[i__] = 1. / sqrt(s[i__]);
 
- /* L30: */
 
- 	}
 
- /*        Compute SCOND = min(S(I)) / max(S(I)) */
 
- 	*scond = sqrt(smin) / sqrt(*amax);
 
-     }
 
-     return 0;
 
- /*     End of DPBEQU */
 
- } /* dpbequ_ */
 
 
  |