| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 | 
							- /* dlaqgb.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dlaqgb_(integer *m, integer *n, integer *kl, integer *ku, 
 
- 	 doublereal *ab, integer *ldab, doublereal *r__, doublereal *c__, 
 
- 	doublereal *rowcnd, doublereal *colcnd, doublereal *amax, char *equed)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
 
-     /* Local variables */
 
-     integer i__, j;
 
-     doublereal cj, large, small;
 
-     extern doublereal dlamch_(char *);
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAQGB equilibrates a general M by N band matrix A with KL */
 
- /*  subdiagonals and KU superdiagonals using the row and scaling factors */
 
- /*  in the vectors R and C. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  N >= 0. */
 
- /*  KL      (input) INTEGER */
 
- /*          The number of subdiagonals within the band of A.  KL >= 0. */
 
- /*  KU      (input) INTEGER */
 
- /*          The number of superdiagonals within the band of A.  KU >= 0. */
 
- /*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*          On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
 
- /*          The j-th column of A is stored in the j-th column of the */
 
- /*          array AB as follows: */
 
- /*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) */
 
- /*          On exit, the equilibrated matrix, in the same storage format */
 
- /*          as A.  See EQUED for the form of the equilibrated matrix. */
 
- /*  LDAB    (input) INTEGER */
 
- /*          The leading dimension of the array AB.  LDA >= KL+KU+1. */
 
- /*  R       (input) DOUBLE PRECISION array, dimension (M) */
 
- /*          The row scale factors for A. */
 
- /*  C       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The column scale factors for A. */
 
- /*  ROWCND  (input) DOUBLE PRECISION */
 
- /*          Ratio of the smallest R(i) to the largest R(i). */
 
- /*  COLCND  (input) DOUBLE PRECISION */
 
- /*          Ratio of the smallest C(i) to the largest C(i). */
 
- /*  AMAX    (input) DOUBLE PRECISION */
 
- /*          Absolute value of largest matrix entry. */
 
- /*  EQUED   (output) CHARACTER*1 */
 
- /*          Specifies the form of equilibration that was done. */
 
- /*          = 'N':  No equilibration */
 
- /*          = 'R':  Row equilibration, i.e., A has been premultiplied by */
 
- /*                  diag(R). */
 
- /*          = 'C':  Column equilibration, i.e., A has been postmultiplied */
 
- /*                  by diag(C). */
 
- /*          = 'B':  Both row and column equilibration, i.e., A has been */
 
- /*                  replaced by diag(R) * A * diag(C). */
 
- /*  Internal Parameters */
 
- /*  =================== */
 
- /*  THRESH is a threshold value used to decide if row or column scaling */
 
- /*  should be done based on the ratio of the row or column scaling */
 
- /*  factors.  If ROWCND < THRESH, row scaling is done, and if */
 
- /*  COLCND < THRESH, column scaling is done. */
 
- /*  LARGE and SMALL are threshold values used to decide if row scaling */
 
- /*  should be done based on the absolute size of the largest matrix */
 
- /*  element.  If AMAX > LARGE or AMAX < SMALL, row scaling is done. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Quick return if possible */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     --r__;
 
-     --c__;
 
-     /* Function Body */
 
-     if (*m <= 0 || *n <= 0) {
 
- 	*(unsigned char *)equed = 'N';
 
- 	return 0;
 
-     }
 
- /*     Initialize LARGE and SMALL. */
 
-     small = dlamch_("Safe minimum") / dlamch_("Precision");
 
-     large = 1. / small;
 
-     if (*rowcnd >= .1 && *amax >= small && *amax <= large) {
 
- /*        No row scaling */
 
- 	if (*colcnd >= .1) {
 
- /*           No column scaling */
 
- 	    *(unsigned char *)equed = 'N';
 
- 	} else {
 
- /*           Column scaling */
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		cj = c__[j];
 
- /* Computing MAX */
 
- 		i__2 = 1, i__3 = j - *ku;
 
- /* Computing MIN */
 
- 		i__5 = *m, i__6 = j + *kl;
 
- 		i__4 = min(i__5,i__6);
 
- 		for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
 
- 		    ab[*ku + 1 + i__ - j + j * ab_dim1] = cj * ab[*ku + 1 + 
 
- 			    i__ - j + j * ab_dim1];
 
- /* L10: */
 
- 		}
 
- /* L20: */
 
- 	    }
 
- 	    *(unsigned char *)equed = 'C';
 
- 	}
 
-     } else if (*colcnd >= .1) {
 
- /*        Row scaling, no column scaling */
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- /* Computing MAX */
 
- 	    i__4 = 1, i__2 = j - *ku;
 
- /* Computing MIN */
 
- 	    i__5 = *m, i__6 = j + *kl;
 
- 	    i__3 = min(i__5,i__6);
 
- 	    for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
 
- 		ab[*ku + 1 + i__ - j + j * ab_dim1] = r__[i__] * ab[*ku + 1 + 
 
- 			i__ - j + j * ab_dim1];
 
- /* L30: */
 
- 	    }
 
- /* L40: */
 
- 	}
 
- 	*(unsigned char *)equed = 'R';
 
-     } else {
 
- /*        Row and column scaling */
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    cj = c__[j];
 
- /* Computing MAX */
 
- 	    i__3 = 1, i__4 = j - *ku;
 
- /* Computing MIN */
 
- 	    i__5 = *m, i__6 = j + *kl;
 
- 	    i__2 = min(i__5,i__6);
 
- 	    for (i__ = max(i__3,i__4); i__ <= i__2; ++i__) {
 
- 		ab[*ku + 1 + i__ - j + j * ab_dim1] = cj * r__[i__] * ab[*ku 
 
- 			+ 1 + i__ - j + j * ab_dim1];
 
- /* L50: */
 
- 	    }
 
- /* L60: */
 
- 	}
 
- 	*(unsigned char *)equed = 'B';
 
-     }
 
-     return 0;
 
- /*     End of DLAQGB */
 
- } /* dlaqgb_ */
 
 
  |