| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 | 
							- /* dlagtf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dlagtf_(integer *n, doublereal *a, doublereal *lambda, 
 
- 	doublereal *b, doublereal *c__, doublereal *tol, doublereal *d__, 
 
- 	integer *in, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1;
 
-     doublereal d__1, d__2;
 
-     /* Local variables */
 
-     integer k;
 
-     doublereal tl, eps, piv1, piv2, temp, mult, scale1, scale2;
 
-     extern doublereal dlamch_(char *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n */
 
- /*  tridiagonal matrix and lambda is a scalar, as */
 
- /*     T - lambda*I = PLU, */
 
- /*  where P is a permutation matrix, L is a unit lower tridiagonal matrix */
 
- /*  with at most one non-zero sub-diagonal elements per column and U is */
 
- /*  an upper triangular matrix with at most two non-zero super-diagonal */
 
- /*  elements per column. */
 
- /*  The factorization is obtained by Gaussian elimination with partial */
 
- /*  pivoting and implicit row scaling. */
 
- /*  The parameter LAMBDA is included in the routine so that DLAGTF may */
 
- /*  be used, in conjunction with DLAGTS, to obtain eigenvectors of T by */
 
- /*  inverse iteration. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix T. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, A must contain the diagonal elements of T. */
 
- /*          On exit, A is overwritten by the n diagonal elements of the */
 
- /*          upper triangular matrix U of the factorization of T. */
 
- /*  LAMBDA  (input) DOUBLE PRECISION */
 
- /*          On entry, the scalar lambda. */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, B must contain the (n-1) super-diagonal elements of */
 
- /*          T. */
 
- /*          On exit, B is overwritten by the (n-1) super-diagonal */
 
- /*          elements of the matrix U of the factorization of T. */
 
- /*  C       (input/output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, C must contain the (n-1) sub-diagonal elements of */
 
- /*          T. */
 
- /*          On exit, C is overwritten by the (n-1) sub-diagonal elements */
 
- /*          of the matrix L of the factorization of T. */
 
- /*  TOL     (input) DOUBLE PRECISION */
 
- /*          On entry, a relative tolerance used to indicate whether or */
 
- /*          not the matrix (T - lambda*I) is nearly singular. TOL should */
 
- /*          normally be chose as approximately the largest relative error */
 
- /*          in the elements of T. For example, if the elements of T are */
 
- /*          correct to about 4 significant figures, then TOL should be */
 
- /*          set to about 5*10**(-4). If TOL is supplied as less than eps, */
 
- /*          where eps is the relative machine precision, then the value */
 
- /*          eps is used in place of TOL. */
 
- /*  D       (output) DOUBLE PRECISION array, dimension (N-2) */
 
- /*          On exit, D is overwritten by the (n-2) second super-diagonal */
 
- /*          elements of the matrix U of the factorization of T. */
 
- /*  IN      (output) INTEGER array, dimension (N) */
 
- /*          On exit, IN contains details of the permutation matrix P. If */
 
- /*          an interchange occurred at the kth step of the elimination, */
 
- /*          then IN(k) = 1, otherwise IN(k) = 0. The element IN(n) */
 
- /*          returns the smallest positive integer j such that */
 
- /*             abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL, */
 
- /*          where norm( A(j) ) denotes the sum of the absolute values of */
 
- /*          the jth row of the matrix A. If no such j exists then IN(n) */
 
- /*          is returned as zero. If IN(n) is returned as positive, then a */
 
- /*          diagonal element of U is small, indicating that */
 
- /*          (T - lambda*I) is singular or nearly singular, */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0   : successful exit */
 
- /*          .lt. 0: if INFO = -k, the kth argument had an illegal value */
 
- /* ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     --in;
 
-     --d__;
 
-     --c__;
 
-     --b;
 
-     --a;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
- 	i__1 = -(*info);
 
- 	xerbla_("DLAGTF", &i__1);
 
- 	return 0;
 
-     }
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     a[1] -= *lambda;
 
-     in[*n] = 0;
 
-     if (*n == 1) {
 
- 	if (a[1] == 0.) {
 
- 	    in[1] = 1;
 
- 	}
 
- 	return 0;
 
-     }
 
-     eps = dlamch_("Epsilon");
 
-     tl = max(*tol,eps);
 
-     scale1 = abs(a[1]) + abs(b[1]);
 
-     i__1 = *n - 1;
 
-     for (k = 1; k <= i__1; ++k) {
 
- 	a[k + 1] -= *lambda;
 
- 	scale2 = (d__1 = c__[k], abs(d__1)) + (d__2 = a[k + 1], abs(d__2));
 
- 	if (k < *n - 1) {
 
- 	    scale2 += (d__1 = b[k + 1], abs(d__1));
 
- 	}
 
- 	if (a[k] == 0.) {
 
- 	    piv1 = 0.;
 
- 	} else {
 
- 	    piv1 = (d__1 = a[k], abs(d__1)) / scale1;
 
- 	}
 
- 	if (c__[k] == 0.) {
 
- 	    in[k] = 0;
 
- 	    piv2 = 0.;
 
- 	    scale1 = scale2;
 
- 	    if (k < *n - 1) {
 
- 		d__[k] = 0.;
 
- 	    }
 
- 	} else {
 
- 	    piv2 = (d__1 = c__[k], abs(d__1)) / scale2;
 
- 	    if (piv2 <= piv1) {
 
- 		in[k] = 0;
 
- 		scale1 = scale2;
 
- 		c__[k] /= a[k];
 
- 		a[k + 1] -= c__[k] * b[k];
 
- 		if (k < *n - 1) {
 
- 		    d__[k] = 0.;
 
- 		}
 
- 	    } else {
 
- 		in[k] = 1;
 
- 		mult = a[k] / c__[k];
 
- 		a[k] = c__[k];
 
- 		temp = a[k + 1];
 
- 		a[k + 1] = b[k] - mult * temp;
 
- 		if (k < *n - 1) {
 
- 		    d__[k] = b[k + 1];
 
- 		    b[k + 1] = -mult * d__[k];
 
- 		}
 
- 		b[k] = temp;
 
- 		c__[k] = mult;
 
- 	    }
 
- 	}
 
- 	if (max(piv1,piv2) <= tl && in[*n] == 0) {
 
- 	    in[*n] = k;
 
- 	}
 
- /* L10: */
 
-     }
 
-     if ((d__1 = a[*n], abs(d__1)) <= scale1 * tl && in[*n] == 0) {
 
- 	in[*n] = *n;
 
-     }
 
-     return 0;
 
- /*     End of DLAGTF */
 
- } /* dlagtf_ */
 
 
  |