| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 | 
							- /* dgtsv.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dgtsv_(integer *n, integer *nrhs, doublereal *dl, 
 
- 	doublereal *d__, doublereal *du, doublereal *b, integer *ldb, integer 
 
- 	*info)
 
- {
 
-     /* System generated locals */
 
-     integer b_dim1, b_offset, i__1, i__2;
 
-     doublereal d__1, d__2;
 
-     /* Local variables */
 
-     integer i__, j;
 
-     doublereal fact, temp;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGTSV  solves the equation */
 
- /*     A*X = B, */
 
- /*  where A is an n by n tridiagonal matrix, by Gaussian elimination with */
 
- /*  partial pivoting. */
 
- /*  Note that the equation  A'*X = B  may be solved by interchanging the */
 
- /*  order of the arguments DU and DL. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrix B.  NRHS >= 0. */
 
- /*  DL      (input/output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, DL must contain the (n-1) sub-diagonal elements of */
 
- /*          A. */
 
- /*          On exit, DL is overwritten by the (n-2) elements of the */
 
- /*          second super-diagonal of the upper triangular matrix U from */
 
- /*          the LU factorization of A, in DL(1), ..., DL(n-2). */
 
- /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, D must contain the diagonal elements of A. */
 
- /*          On exit, D is overwritten by the n diagonal elements of U. */
 
- /*  DU      (input/output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, DU must contain the (n-1) super-diagonal elements */
 
- /*          of A. */
 
- /*          On exit, DU is overwritten by the (n-1) elements of the first */
 
- /*          super-diagonal of U. */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the N by NRHS matrix of right hand side matrix B. */
 
- /*          On exit, if INFO = 0, the N by NRHS solution matrix X. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0: if INFO = i, U(i,i) is exactly zero, and the solution */
 
- /*               has not been computed.  The factorization has not been */
 
- /*               completed unless i = N. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     --dl;
 
-     --d__;
 
-     --du;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -2;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -7;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGTSV ", &i__1);
 
- 	return 0;
 
-     }
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     if (*nrhs == 1) {
 
- 	i__1 = *n - 2;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {
 
- /*              No row interchange required */
 
- 		if (d__[i__] != 0.) {
 
- 		    fact = dl[i__] / d__[i__];
 
- 		    d__[i__ + 1] -= fact * du[i__];
 
- 		    b[i__ + 1 + b_dim1] -= fact * b[i__ + b_dim1];
 
- 		} else {
 
- 		    *info = i__;
 
- 		    return 0;
 
- 		}
 
- 		dl[i__] = 0.;
 
- 	    } else {
 
- /*              Interchange rows I and I+1 */
 
- 		fact = d__[i__] / dl[i__];
 
- 		d__[i__] = dl[i__];
 
- 		temp = d__[i__ + 1];
 
- 		d__[i__ + 1] = du[i__] - fact * temp;
 
- 		dl[i__] = du[i__ + 1];
 
- 		du[i__ + 1] = -fact * dl[i__];
 
- 		du[i__] = temp;
 
- 		temp = b[i__ + b_dim1];
 
- 		b[i__ + b_dim1] = b[i__ + 1 + b_dim1];
 
- 		b[i__ + 1 + b_dim1] = temp - fact * b[i__ + 1 + b_dim1];
 
- 	    }
 
- /* L10: */
 
- 	}
 
- 	if (*n > 1) {
 
- 	    i__ = *n - 1;
 
- 	    if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {
 
- 		if (d__[i__] != 0.) {
 
- 		    fact = dl[i__] / d__[i__];
 
- 		    d__[i__ + 1] -= fact * du[i__];
 
- 		    b[i__ + 1 + b_dim1] -= fact * b[i__ + b_dim1];
 
- 		} else {
 
- 		    *info = i__;
 
- 		    return 0;
 
- 		}
 
- 	    } else {
 
- 		fact = d__[i__] / dl[i__];
 
- 		d__[i__] = dl[i__];
 
- 		temp = d__[i__ + 1];
 
- 		d__[i__ + 1] = du[i__] - fact * temp;
 
- 		du[i__] = temp;
 
- 		temp = b[i__ + b_dim1];
 
- 		b[i__ + b_dim1] = b[i__ + 1 + b_dim1];
 
- 		b[i__ + 1 + b_dim1] = temp - fact * b[i__ + 1 + b_dim1];
 
- 	    }
 
- 	}
 
- 	if (d__[*n] == 0.) {
 
- 	    *info = *n;
 
- 	    return 0;
 
- 	}
 
-     } else {
 
- 	i__1 = *n - 2;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {
 
- /*              No row interchange required */
 
- 		if (d__[i__] != 0.) {
 
- 		    fact = dl[i__] / d__[i__];
 
- 		    d__[i__ + 1] -= fact * du[i__];
 
- 		    i__2 = *nrhs;
 
- 		    for (j = 1; j <= i__2; ++j) {
 
- 			b[i__ + 1 + j * b_dim1] -= fact * b[i__ + j * b_dim1];
 
- /* L20: */
 
- 		    }
 
- 		} else {
 
- 		    *info = i__;
 
- 		    return 0;
 
- 		}
 
- 		dl[i__] = 0.;
 
- 	    } else {
 
- /*              Interchange rows I and I+1 */
 
- 		fact = d__[i__] / dl[i__];
 
- 		d__[i__] = dl[i__];
 
- 		temp = d__[i__ + 1];
 
- 		d__[i__ + 1] = du[i__] - fact * temp;
 
- 		dl[i__] = du[i__ + 1];
 
- 		du[i__ + 1] = -fact * dl[i__];
 
- 		du[i__] = temp;
 
- 		i__2 = *nrhs;
 
- 		for (j = 1; j <= i__2; ++j) {
 
- 		    temp = b[i__ + j * b_dim1];
 
- 		    b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1];
 
- 		    b[i__ + 1 + j * b_dim1] = temp - fact * b[i__ + 1 + j * 
 
- 			    b_dim1];
 
- /* L30: */
 
- 		}
 
- 	    }
 
- /* L40: */
 
- 	}
 
- 	if (*n > 1) {
 
- 	    i__ = *n - 1;
 
- 	    if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {
 
- 		if (d__[i__] != 0.) {
 
- 		    fact = dl[i__] / d__[i__];
 
- 		    d__[i__ + 1] -= fact * du[i__];
 
- 		    i__1 = *nrhs;
 
- 		    for (j = 1; j <= i__1; ++j) {
 
- 			b[i__ + 1 + j * b_dim1] -= fact * b[i__ + j * b_dim1];
 
- /* L50: */
 
- 		    }
 
- 		} else {
 
- 		    *info = i__;
 
- 		    return 0;
 
- 		}
 
- 	    } else {
 
- 		fact = d__[i__] / dl[i__];
 
- 		d__[i__] = dl[i__];
 
- 		temp = d__[i__ + 1];
 
- 		d__[i__ + 1] = du[i__] - fact * temp;
 
- 		du[i__] = temp;
 
- 		i__1 = *nrhs;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- 		    temp = b[i__ + j * b_dim1];
 
- 		    b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1];
 
- 		    b[i__ + 1 + j * b_dim1] = temp - fact * b[i__ + 1 + j * 
 
- 			    b_dim1];
 
- /* L60: */
 
- 		}
 
- 	    }
 
- 	}
 
- 	if (d__[*n] == 0.) {
 
- 	    *info = *n;
 
- 	    return 0;
 
- 	}
 
-     }
 
- /*     Back solve with the matrix U from the factorization. */
 
-     if (*nrhs <= 2) {
 
- 	j = 1;
 
- L70:
 
- 	b[*n + j * b_dim1] /= d__[*n];
 
- 	if (*n > 1) {
 
- 	    b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1] * b[
 
- 		    *n + j * b_dim1]) / d__[*n - 1];
 
- 	}
 
- 	for (i__ = *n - 2; i__ >= 1; --i__) {
 
- 	    b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__ + 1 
 
- 		    + j * b_dim1] - dl[i__] * b[i__ + 2 + j * b_dim1]) / d__[
 
- 		    i__];
 
- /* L80: */
 
- 	}
 
- 	if (j < *nrhs) {
 
- 	    ++j;
 
- 	    goto L70;
 
- 	}
 
-     } else {
 
- 	i__1 = *nrhs;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    b[*n + j * b_dim1] /= d__[*n];
 
- 	    if (*n > 1) {
 
- 		b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1] 
 
- 			* b[*n + j * b_dim1]) / d__[*n - 1];
 
- 	    }
 
- 	    for (i__ = *n - 2; i__ >= 1; --i__) {
 
- 		b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__ 
 
- 			+ 1 + j * b_dim1] - dl[i__] * b[i__ + 2 + j * b_dim1])
 
- 			 / d__[i__];
 
- /* L90: */
 
- 	    }
 
- /* L100: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DGTSV */
 
- } /* dgtsv_ */
 
 
  |