| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 | 
							- /* dgtcon.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int dgtcon_(char *norm, integer *n, doublereal *dl, 
 
- 	doublereal *d__, doublereal *du, doublereal *du2, integer *ipiv, 
 
- 	doublereal *anorm, doublereal *rcond, doublereal *work, integer *
 
- 	iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1;
 
-     /* Local variables */
 
-     integer i__, kase, kase1;
 
-     extern logical lsame_(char *, char *);
 
-     integer isave[3];
 
-     extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, integer *), xerbla_(char *, 
 
- 	    integer *);
 
-     doublereal ainvnm;
 
-     logical onenrm;
 
-     extern /* Subroutine */ int dgttrs_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
 
- 	     doublereal *, integer *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGTCON estimates the reciprocal of the condition number of a real */
 
- /*  tridiagonal matrix A using the LU factorization as computed by */
 
- /*  DGTTRF. */
 
- /*  An estimate is obtained for norm(inv(A)), and the reciprocal of the */
 
- /*  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  NORM    (input) CHARACTER*1 */
 
- /*          Specifies whether the 1-norm condition number or the */
 
- /*          infinity-norm condition number is required: */
 
- /*          = '1' or 'O':  1-norm; */
 
- /*          = 'I':         Infinity-norm. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  DL      (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The (n-1) multipliers that define the matrix L from the */
 
- /*          LU factorization of A as computed by DGTTRF. */
 
- /*  D       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The n diagonal elements of the upper triangular matrix U from */
 
- /*          the LU factorization of A. */
 
- /*  DU      (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The (n-1) elements of the first superdiagonal of U. */
 
- /*  DU2     (input) DOUBLE PRECISION array, dimension (N-2) */
 
- /*          The (n-2) elements of the second superdiagonal of U. */
 
- /*  IPIV    (input) INTEGER array, dimension (N) */
 
- /*          The pivot indices; for 1 <= i <= n, row i of the matrix was */
 
- /*          interchanged with row IPIV(i).  IPIV(i) will always be either */
 
- /*          i or i+1; IPIV(i) = i indicates a row interchange was not */
 
- /*          required. */
 
- /*  ANORM   (input) DOUBLE PRECISION */
 
- /*          If NORM = '1' or 'O', the 1-norm of the original matrix A. */
 
- /*          If NORM = 'I', the infinity-norm of the original matrix A. */
 
- /*  RCOND   (output) DOUBLE PRECISION */
 
- /*          The reciprocal of the condition number of the matrix A, */
 
- /*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */
 
- /*          estimate of the 1-norm of inv(A) computed in this routine. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N) */
 
- /*  IWORK   (workspace) INTEGER array, dimension (N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input arguments. */
 
-     /* Parameter adjustments */
 
-     --iwork;
 
-     --work;
 
-     --ipiv;
 
-     --du2;
 
-     --du;
 
-     --d__;
 
-     --dl;
 
-     /* Function Body */
 
-     *info = 0;
 
-     onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
 
-     if (! onenrm && ! lsame_(norm, "I")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*anorm < 0.) {
 
- 	*info = -8;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGTCON", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     *rcond = 0.;
 
-     if (*n == 0) {
 
- 	*rcond = 1.;
 
- 	return 0;
 
-     } else if (*anorm == 0.) {
 
- 	return 0;
 
-     }
 
- /*     Check that D(1:N) is non-zero. */
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if (d__[i__] == 0.) {
 
- 	    return 0;
 
- 	}
 
- /* L10: */
 
-     }
 
-     ainvnm = 0.;
 
-     if (onenrm) {
 
- 	kase1 = 1;
 
-     } else {
 
- 	kase1 = 2;
 
-     }
 
-     kase = 0;
 
- L20:
 
-     dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);
 
-     if (kase != 0) {
 
- 	if (kase == kase1) {
 
- /*           Multiply by inv(U)*inv(L). */
 
- 	    dgttrs_("No transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1]
 
- , &ipiv[1], &work[1], n, info);
 
- 	} else {
 
- /*           Multiply by inv(L')*inv(U'). */
 
- 	    dgttrs_("Transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1], &
 
- 		    ipiv[1], &work[1], n, info);
 
- 	}
 
- 	goto L20;
 
-     }
 
- /*     Compute the estimate of the reciprocal condition number. */
 
-     if (ainvnm != 0.) {
 
- 	*rcond = 1. / ainvnm / *anorm;
 
-     }
 
-     return 0;
 
- /*     End of DGTCON */
 
- } /* dgtcon_ */
 
 
  |