| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642 | 
							- /* dggev.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c__0 = 0;
 
- static integer c_n1 = -1;
 
- static doublereal c_b36 = 0.;
 
- static doublereal c_b37 = 1.;
 
- /* Subroutine */ int dggev_(char *jobvl, char *jobvr, integer *n, doublereal *
 
- 	a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar, 
 
- 	doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl, 
 
- 	doublereal *vr, integer *ldvr, doublereal *work, integer *lwork, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
 
- 	    vr_offset, i__1, i__2;
 
-     doublereal d__1, d__2, d__3, d__4;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer jc, in, jr, ihi, ilo;
 
-     doublereal eps;
 
-     logical ilv;
 
-     doublereal anrm, bnrm;
 
-     integer ierr, itau;
 
-     doublereal temp;
 
-     logical ilvl, ilvr;
 
-     integer iwrk;
 
-     extern logical lsame_(char *, char *);
 
-     integer ileft, icols, irows;
 
-     extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dggbak_(
 
- 	    char *, char *, integer *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *), dggbal_(char *, integer *, doublereal *, integer 
 
- 	    *, doublereal *, integer *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *);
 
-     extern doublereal dlamch_(char *), dlange_(char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *);
 
-     extern /* Subroutine */ int dgghrd_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal 
 
- 	    *, doublereal *, integer *, integer *, doublereal *, integer *, 
 
- 	    integer *);
 
-     logical ilascl, ilbscl;
 
-     extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, integer *), 
 
- 	    dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), dlaset_(char *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, integer *), dtgevc_(char *, char *, logical *, integer *, doublereal 
 
- 	    *, integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, integer *, integer *, doublereal *, 
 
- 	    integer *);
 
-     logical ldumma[1];
 
-     char chtemp[1];
 
-     doublereal bignum;
 
-     extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *, 
 
- 	    integer *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    integer *), xerbla_(char *, integer *);
 
-     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer ijobvl, iright, ijobvr;
 
-     extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    integer *);
 
-     doublereal anrmto, bnrmto;
 
-     extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *);
 
-     integer minwrk, maxwrk;
 
-     doublereal smlnum;
 
-     logical lquery;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
 
- /*  the generalized eigenvalues, and optionally, the left and/or right */
 
- /*  generalized eigenvectors. */
 
- /*  A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
 
- /*  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
 
- /*  singular. It is usually represented as the pair (alpha,beta), as */
 
- /*  there is a reasonable interpretation for beta=0, and even for both */
 
- /*  being zero. */
 
- /*  The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
 
- /*  of (A,B) satisfies */
 
- /*                   A * v(j) = lambda(j) * B * v(j). */
 
- /*  The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
 
- /*  of (A,B) satisfies */
 
- /*                   u(j)**H * A  = lambda(j) * u(j)**H * B . */
 
- /*  where u(j)**H is the conjugate-transpose of u(j). */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOBVL   (input) CHARACTER*1 */
 
- /*          = 'N':  do not compute the left generalized eigenvectors; */
 
- /*          = 'V':  compute the left generalized eigenvectors. */
 
- /*  JOBVR   (input) CHARACTER*1 */
 
- /*          = 'N':  do not compute the right generalized eigenvectors; */
 
- /*          = 'V':  compute the right generalized eigenvectors. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrices A, B, VL, and VR.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
 
- /*          On entry, the matrix A in the pair (A,B). */
 
- /*          On exit, A has been overwritten. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of A.  LDA >= max(1,N). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
 
- /*          On entry, the matrix B in the pair (A,B). */
 
- /*          On exit, B has been overwritten. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of B.  LDB >= max(1,N). */
 
- /*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*  BETA    (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
 
- /*          be the generalized eigenvalues.  If ALPHAI(j) is zero, then */
 
- /*          the j-th eigenvalue is real; if positive, then the j-th and */
 
- /*          (j+1)-st eigenvalues are a complex conjugate pair, with */
 
- /*          ALPHAI(j+1) negative. */
 
- /*          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
 
- /*          may easily over- or underflow, and BETA(j) may even be zero. */
 
- /*          Thus, the user should avoid naively computing the ratio */
 
- /*          alpha/beta.  However, ALPHAR and ALPHAI will be always less */
 
- /*          than and usually comparable with norm(A) in magnitude, and */
 
- /*          BETA always less than and usually comparable with norm(B). */
 
- /*  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N) */
 
- /*          If JOBVL = 'V', the left eigenvectors u(j) are stored one */
 
- /*          after another in the columns of VL, in the same order as */
 
- /*          their eigenvalues. If the j-th eigenvalue is real, then */
 
- /*          u(j) = VL(:,j), the j-th column of VL. If the j-th and */
 
- /*          (j+1)-th eigenvalues form a complex conjugate pair, then */
 
- /*          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
 
- /*          Each eigenvector is scaled so the largest component has */
 
- /*          abs(real part)+abs(imag. part)=1. */
 
- /*          Not referenced if JOBVL = 'N'. */
 
- /*  LDVL    (input) INTEGER */
 
- /*          The leading dimension of the matrix VL. LDVL >= 1, and */
 
- /*          if JOBVL = 'V', LDVL >= N. */
 
- /*  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N) */
 
- /*          If JOBVR = 'V', the right eigenvectors v(j) are stored one */
 
- /*          after another in the columns of VR, in the same order as */
 
- /*          their eigenvalues. If the j-th eigenvalue is real, then */
 
- /*          v(j) = VR(:,j), the j-th column of VR. If the j-th and */
 
- /*          (j+1)-th eigenvalues form a complex conjugate pair, then */
 
- /*          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
 
- /*          Each eigenvector is scaled so the largest component has */
 
- /*          abs(real part)+abs(imag. part)=1. */
 
- /*          Not referenced if JOBVR = 'N'. */
 
- /*  LDVR    (input) INTEGER */
 
- /*          The leading dimension of the matrix VR. LDVR >= 1, and */
 
- /*          if JOBVR = 'V', LDVR >= N. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK.  LWORK >= max(1,8*N). */
 
- /*          For good performance, LWORK must generally be larger. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          = 1,...,N: */
 
- /*                The QZ iteration failed.  No eigenvectors have been */
 
- /*                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
 
- /*                should be correct for j=INFO+1,...,N. */
 
- /*          > N:  =N+1: other than QZ iteration failed in DHGEQZ. */
 
- /*                =N+2: error return from DTGEVC. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Decode the input arguments */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --alphar;
 
-     --alphai;
 
-     --beta;
 
-     vl_dim1 = *ldvl;
 
-     vl_offset = 1 + vl_dim1;
 
-     vl -= vl_offset;
 
-     vr_dim1 = *ldvr;
 
-     vr_offset = 1 + vr_dim1;
 
-     vr -= vr_offset;
 
-     --work;
 
-     /* Function Body */
 
-     if (lsame_(jobvl, "N")) {
 
- 	ijobvl = 1;
 
- 	ilvl = FALSE_;
 
-     } else if (lsame_(jobvl, "V")) {
 
- 	ijobvl = 2;
 
- 	ilvl = TRUE_;
 
-     } else {
 
- 	ijobvl = -1;
 
- 	ilvl = FALSE_;
 
-     }
 
-     if (lsame_(jobvr, "N")) {
 
- 	ijobvr = 1;
 
- 	ilvr = FALSE_;
 
-     } else if (lsame_(jobvr, "V")) {
 
- 	ijobvr = 2;
 
- 	ilvr = TRUE_;
 
-     } else {
 
- 	ijobvr = -1;
 
- 	ilvr = FALSE_;
 
-     }
 
-     ilv = ilvl || ilvr;
 
- /*     Test the input arguments */
 
-     *info = 0;
 
-     lquery = *lwork == -1;
 
-     if (ijobvl <= 0) {
 
- 	*info = -1;
 
-     } else if (ijobvr <= 0) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -5;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -7;
 
-     } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
 
- 	*info = -12;
 
-     } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
 
- 	*info = -14;
 
-     }
 
- /*     Compute workspace */
 
- /*      (Note: Comments in the code beginning "Workspace:" describe the */
 
- /*       minimal amount of workspace needed at that point in the code, */
 
- /*       as well as the preferred amount for good performance. */
 
- /*       NB refers to the optimal block size for the immediately */
 
- /*       following subroutine, as returned by ILAENV. The workspace is */
 
- /*       computed assuming ILO = 1 and IHI = N, the worst case.) */
 
-     if (*info == 0) {
 
- /* Computing MAX */
 
- 	i__1 = 1, i__2 = *n << 3;
 
- 	minwrk = max(i__1,i__2);
 
- /* Computing MAX */
 
- 	i__1 = 1, i__2 = *n * (ilaenv_(&c__1, "DGEQRF", " ", n, &c__1, n, &
 
- 		c__0) + 7);
 
- 	maxwrk = max(i__1,i__2);
 
- /* Computing MAX */
 
- 	i__1 = maxwrk, i__2 = *n * (ilaenv_(&c__1, "DORMQR", " ", n, &c__1, n, 
 
- 		 &c__0) + 7);
 
- 	maxwrk = max(i__1,i__2);
 
- 	if (ilvl) {
 
- /* Computing MAX */
 
- 	    i__1 = maxwrk, i__2 = *n * (ilaenv_(&c__1, "DORGQR", " ", n, &
 
- 		    c__1, n, &c_n1) + 7);
 
- 	    maxwrk = max(i__1,i__2);
 
- 	}
 
- 	work[1] = (doublereal) maxwrk;
 
- 	if (*lwork < minwrk && ! lquery) {
 
- 	    *info = -16;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGGEV ", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Get machine constants */
 
-     eps = dlamch_("P");
 
-     smlnum = dlamch_("S");
 
-     bignum = 1. / smlnum;
 
-     dlabad_(&smlnum, &bignum);
 
-     smlnum = sqrt(smlnum) / eps;
 
-     bignum = 1. / smlnum;
 
- /*     Scale A if max element outside range [SMLNUM,BIGNUM] */
 
-     anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
 
-     ilascl = FALSE_;
 
-     if (anrm > 0. && anrm < smlnum) {
 
- 	anrmto = smlnum;
 
- 	ilascl = TRUE_;
 
-     } else if (anrm > bignum) {
 
- 	anrmto = bignum;
 
- 	ilascl = TRUE_;
 
-     }
 
-     if (ilascl) {
 
- 	dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
 
- 		ierr);
 
-     }
 
- /*     Scale B if max element outside range [SMLNUM,BIGNUM] */
 
-     bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
 
-     ilbscl = FALSE_;
 
-     if (bnrm > 0. && bnrm < smlnum) {
 
- 	bnrmto = smlnum;
 
- 	ilbscl = TRUE_;
 
-     } else if (bnrm > bignum) {
 
- 	bnrmto = bignum;
 
- 	ilbscl = TRUE_;
 
-     }
 
-     if (ilbscl) {
 
- 	dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
 
- 		ierr);
 
-     }
 
- /*     Permute the matrices A, B to isolate eigenvalues if possible */
 
- /*     (Workspace: need 6*N) */
 
-     ileft = 1;
 
-     iright = *n + 1;
 
-     iwrk = iright + *n;
 
-     dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
 
- 	    ileft], &work[iright], &work[iwrk], &ierr);
 
- /*     Reduce B to triangular form (QR decomposition of B) */
 
- /*     (Workspace: need N, prefer N*NB) */
 
-     irows = ihi + 1 - ilo;
 
-     if (ilv) {
 
- 	icols = *n + 1 - ilo;
 
-     } else {
 
- 	icols = irows;
 
-     }
 
-     itau = iwrk;
 
-     iwrk = itau + irows;
 
-     i__1 = *lwork + 1 - iwrk;
 
-     dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
 
- 	    iwrk], &i__1, &ierr);
 
- /*     Apply the orthogonal transformation to matrix A */
 
- /*     (Workspace: need N, prefer N*NB) */
 
-     i__1 = *lwork + 1 - iwrk;
 
-     dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
 
- 	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
 
- 	    ierr);
 
- /*     Initialize VL */
 
- /*     (Workspace: need N, prefer N*NB) */
 
-     if (ilvl) {
 
- 	dlaset_("Full", n, n, &c_b36, &c_b37, &vl[vl_offset], ldvl)
 
- 		;
 
- 	if (irows > 1) {
 
- 	    i__1 = irows - 1;
 
- 	    i__2 = irows - 1;
 
- 	    dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[
 
- 		    ilo + 1 + ilo * vl_dim1], ldvl);
 
- 	}
 
- 	i__1 = *lwork + 1 - iwrk;
 
- 	dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
 
- 		itau], &work[iwrk], &i__1, &ierr);
 
-     }
 
- /*     Initialize VR */
 
-     if (ilvr) {
 
- 	dlaset_("Full", n, n, &c_b36, &c_b37, &vr[vr_offset], ldvr)
 
- 		;
 
-     }
 
- /*     Reduce to generalized Hessenberg form */
 
- /*     (Workspace: none needed) */
 
-     if (ilv) {
 
- /*        Eigenvectors requested -- work on whole matrix. */
 
- 	dgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 
 
- 		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
 
-     } else {
 
- 	dgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda, 
 
- 		&b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
 
- 		vr_offset], ldvr, &ierr);
 
-     }
 
- /*     Perform QZ algorithm (Compute eigenvalues, and optionally, the */
 
- /*     Schur forms and Schur vectors) */
 
- /*     (Workspace: need N) */
 
-     iwrk = itau;
 
-     if (ilv) {
 
- 	*(unsigned char *)chtemp = 'S';
 
-     } else {
 
- 	*(unsigned char *)chtemp = 'E';
 
-     }
 
-     i__1 = *lwork + 1 - iwrk;
 
-     dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
 
- 	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], 
 
- 	    ldvl, &vr[vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
 
-     if (ierr != 0) {
 
- 	if (ierr > 0 && ierr <= *n) {
 
- 	    *info = ierr;
 
- 	} else if (ierr > *n && ierr <= *n << 1) {
 
- 	    *info = ierr - *n;
 
- 	} else {
 
- 	    *info = *n + 1;
 
- 	}
 
- 	goto L110;
 
-     }
 
- /*     Compute Eigenvectors */
 
- /*     (Workspace: need 6*N) */
 
-     if (ilv) {
 
- 	if (ilvl) {
 
- 	    if (ilvr) {
 
- 		*(unsigned char *)chtemp = 'B';
 
- 	    } else {
 
- 		*(unsigned char *)chtemp = 'L';
 
- 	    }
 
- 	} else {
 
- 	    *(unsigned char *)chtemp = 'R';
 
- 	}
 
- 	dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, 
 
- 		&vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
 
- 		iwrk], &ierr);
 
- 	if (ierr != 0) {
 
- 	    *info = *n + 2;
 
- 	    goto L110;
 
- 	}
 
- /*        Undo balancing on VL and VR and normalization */
 
- /*        (Workspace: none needed) */
 
- 	if (ilvl) {
 
- 	    dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
 
- 		    vl[vl_offset], ldvl, &ierr);
 
- 	    i__1 = *n;
 
- 	    for (jc = 1; jc <= i__1; ++jc) {
 
- 		if (alphai[jc] < 0.) {
 
- 		    goto L50;
 
- 		}
 
- 		temp = 0.;
 
- 		if (alphai[jc] == 0.) {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- /* Computing MAX */
 
- 			d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1], 
 
- 				abs(d__1));
 
- 			temp = max(d__2,d__3);
 
- /* L10: */
 
- 		    }
 
- 		} else {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- /* Computing MAX */
 
- 			d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1], 
 
- 				abs(d__1)) + (d__2 = vl[jr + (jc + 1) * 
 
- 				vl_dim1], abs(d__2));
 
- 			temp = max(d__3,d__4);
 
- /* L20: */
 
- 		    }
 
- 		}
 
- 		if (temp < smlnum) {
 
- 		    goto L50;
 
- 		}
 
- 		temp = 1. / temp;
 
- 		if (alphai[jc] == 0.) {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- 			vl[jr + jc * vl_dim1] *= temp;
 
- /* L30: */
 
- 		    }
 
- 		} else {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- 			vl[jr + jc * vl_dim1] *= temp;
 
- 			vl[jr + (jc + 1) * vl_dim1] *= temp;
 
- /* L40: */
 
- 		    }
 
- 		}
 
- L50:
 
- 		;
 
- 	    }
 
- 	}
 
- 	if (ilvr) {
 
- 	    dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
 
- 		    vr[vr_offset], ldvr, &ierr);
 
- 	    i__1 = *n;
 
- 	    for (jc = 1; jc <= i__1; ++jc) {
 
- 		if (alphai[jc] < 0.) {
 
- 		    goto L100;
 
- 		}
 
- 		temp = 0.;
 
- 		if (alphai[jc] == 0.) {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- /* Computing MAX */
 
- 			d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1], 
 
- 				abs(d__1));
 
- 			temp = max(d__2,d__3);
 
- /* L60: */
 
- 		    }
 
- 		} else {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- /* Computing MAX */
 
- 			d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1], 
 
- 				abs(d__1)) + (d__2 = vr[jr + (jc + 1) * 
 
- 				vr_dim1], abs(d__2));
 
- 			temp = max(d__3,d__4);
 
- /* L70: */
 
- 		    }
 
- 		}
 
- 		if (temp < smlnum) {
 
- 		    goto L100;
 
- 		}
 
- 		temp = 1. / temp;
 
- 		if (alphai[jc] == 0.) {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- 			vr[jr + jc * vr_dim1] *= temp;
 
- /* L80: */
 
- 		    }
 
- 		} else {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- 			vr[jr + jc * vr_dim1] *= temp;
 
- 			vr[jr + (jc + 1) * vr_dim1] *= temp;
 
- /* L90: */
 
- 		    }
 
- 		}
 
- L100:
 
- 		;
 
- 	    }
 
- 	}
 
- /*        End of eigenvector calculation */
 
-     }
 
- /*     Undo scaling if necessary */
 
-     if (ilascl) {
 
- 	dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
 
- 		ierr);
 
- 	dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
 
- 		ierr);
 
-     }
 
-     if (ilbscl) {
 
- 	dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
 
- 		ierr);
 
-     }
 
- L110:
 
-     work[1] = (doublereal) maxwrk;
 
-     return 0;
 
- /*     End of DGGEV */
 
- } /* dggev_ */
 
 
  |