| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693 | 
							- /* dgges.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c__0 = 0;
 
- static integer c_n1 = -1;
 
- static doublereal c_b38 = 0.;
 
- static doublereal c_b39 = 1.;
 
- /* Subroutine */ int dgges_(char *jobvsl, char *jobvsr, char *sort, L_fp 
 
- 	selctg, integer *n, doublereal *a, integer *lda, doublereal *b, 
 
- 	integer *ldb, integer *sdim, doublereal *alphar, doublereal *alphai, 
 
- 	doublereal *beta, doublereal *vsl, integer *ldvsl, doublereal *vsr, 
 
- 	integer *ldvsr, doublereal *work, integer *lwork, logical *bwork, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, 
 
- 	    vsr_dim1, vsr_offset, i__1, i__2;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, ip;
 
-     doublereal dif[2];
 
-     integer ihi, ilo;
 
-     doublereal eps, anrm, bnrm;
 
-     integer idum[1], ierr, itau, iwrk;
 
-     doublereal pvsl, pvsr;
 
-     extern logical lsame_(char *, char *);
 
-     integer ileft, icols;
 
-     logical cursl, ilvsl, ilvsr;
 
-     integer irows;
 
-     extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dggbak_(
 
- 	    char *, char *, integer *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *), dggbal_(char *, integer *, doublereal *, integer 
 
- 	    *, doublereal *, integer *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *);
 
-     logical lst2sl;
 
-     extern doublereal dlamch_(char *), dlange_(char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *);
 
-     extern /* Subroutine */ int dgghrd_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal 
 
- 	    *, doublereal *, integer *, integer *, doublereal *, integer *, 
 
- 	    integer *);
 
-     logical ilascl, ilbscl;
 
-     extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, integer *), 
 
- 	    dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     doublereal safmin;
 
-     extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *);
 
-     doublereal safmax;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     doublereal bignum;
 
-     extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *, 
 
- 	    integer *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    integer *), dtgsen_(integer *, logical *, 
 
- 	    logical *, logical *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	     doublereal *, integer *, doublereal *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
 
- 	     integer *, integer *, integer *);
 
-     integer ijobvl, iright;
 
-     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer ijobvr;
 
-     extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    integer *);
 
-     doublereal anrmto, bnrmto;
 
-     logical lastsl;
 
-     extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *);
 
-     integer minwrk, maxwrk;
 
-     doublereal smlnum;
 
-     logical wantst, lquery;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*     .. Function Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B), */
 
- /*  the generalized eigenvalues, the generalized real Schur form (S,T), */
 
- /*  optionally, the left and/or right matrices of Schur vectors (VSL and */
 
- /*  VSR). This gives the generalized Schur factorization */
 
- /*           (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T ) */
 
- /*  Optionally, it also orders the eigenvalues so that a selected cluster */
 
- /*  of eigenvalues appears in the leading diagonal blocks of the upper */
 
- /*  quasi-triangular matrix S and the upper triangular matrix T.The */
 
- /*  leading columns of VSL and VSR then form an orthonormal basis for the */
 
- /*  corresponding left and right eigenspaces (deflating subspaces). */
 
- /*  (If only the generalized eigenvalues are needed, use the driver */
 
- /*  DGGEV instead, which is faster.) */
 
- /*  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
 
- /*  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is */
 
- /*  usually represented as the pair (alpha,beta), as there is a */
 
- /*  reasonable interpretation for beta=0 or both being zero. */
 
- /*  A pair of matrices (S,T) is in generalized real Schur form if T is */
 
- /*  upper triangular with non-negative diagonal and S is block upper */
 
- /*  triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond */
 
- /*  to real generalized eigenvalues, while 2-by-2 blocks of S will be */
 
- /*  "standardized" by making the corresponding elements of T have the */
 
- /*  form: */
 
- /*          [  a  0  ] */
 
- /*          [  0  b  ] */
 
- /*  and the pair of corresponding 2-by-2 blocks in S and T will have a */
 
- /*  complex conjugate pair of generalized eigenvalues. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOBVSL  (input) CHARACTER*1 */
 
- /*          = 'N':  do not compute the left Schur vectors; */
 
- /*          = 'V':  compute the left Schur vectors. */
 
- /*  JOBVSR  (input) CHARACTER*1 */
 
- /*          = 'N':  do not compute the right Schur vectors; */
 
- /*          = 'V':  compute the right Schur vectors. */
 
- /*  SORT    (input) CHARACTER*1 */
 
- /*          Specifies whether or not to order the eigenvalues on the */
 
- /*          diagonal of the generalized Schur form. */
 
- /*          = 'N':  Eigenvalues are not ordered; */
 
- /*          = 'S':  Eigenvalues are ordered (see SELCTG); */
 
- /*  SELCTG  (external procedure) LOGICAL FUNCTION of three DOUBLE PRECISION arguments */
 
- /*          SELCTG must be declared EXTERNAL in the calling subroutine. */
 
- /*          If SORT = 'N', SELCTG is not referenced. */
 
- /*          If SORT = 'S', SELCTG is used to select eigenvalues to sort */
 
- /*          to the top left of the Schur form. */
 
- /*          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */
 
- /*          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */
 
- /*          one of a complex conjugate pair of eigenvalues is selected, */
 
- /*          then both complex eigenvalues are selected. */
 
- /*          Note that in the ill-conditioned case, a selected complex */
 
- /*          eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j), */
 
- /*          BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2 */
 
- /*          in this case. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrices A, B, VSL, and VSR.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
 
- /*          On entry, the first of the pair of matrices. */
 
- /*          On exit, A has been overwritten by its generalized Schur */
 
- /*          form S. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of A.  LDA >= max(1,N). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
 
- /*          On entry, the second of the pair of matrices. */
 
- /*          On exit, B has been overwritten by its generalized Schur */
 
- /*          form T. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of B.  LDB >= max(1,N). */
 
- /*  SDIM    (output) INTEGER */
 
- /*          If SORT = 'N', SDIM = 0. */
 
- /*          If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
 
- /*          for which SELCTG is true.  (Complex conjugate pairs for which */
 
- /*          SELCTG is true for either eigenvalue count as 2.) */
 
- /*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*  BETA    (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
 
- /*          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i, */
 
- /*          and  BETA(j),j=1,...,N are the diagonals of the complex Schur */
 
- /*          form (S,T) that would result if the 2-by-2 diagonal blocks of */
 
- /*          the real Schur form of (A,B) were further reduced to */
 
- /*          triangular form using 2-by-2 complex unitary transformations. */
 
- /*          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
 
- /*          positive, then the j-th and (j+1)-st eigenvalues are a */
 
- /*          complex conjugate pair, with ALPHAI(j+1) negative. */
 
- /*          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
 
- /*          may easily over- or underflow, and BETA(j) may even be zero. */
 
- /*          Thus, the user should avoid naively computing the ratio. */
 
- /*          However, ALPHAR and ALPHAI will be always less than and */
 
- /*          usually comparable with norm(A) in magnitude, and BETA always */
 
- /*          less than and usually comparable with norm(B). */
 
- /*  VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N) */
 
- /*          If JOBVSL = 'V', VSL will contain the left Schur vectors. */
 
- /*          Not referenced if JOBVSL = 'N'. */
 
- /*  LDVSL   (input) INTEGER */
 
- /*          The leading dimension of the matrix VSL. LDVSL >=1, and */
 
- /*          if JOBVSL = 'V', LDVSL >= N. */
 
- /*  VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N) */
 
- /*          If JOBVSR = 'V', VSR will contain the right Schur vectors. */
 
- /*          Not referenced if JOBVSR = 'N'. */
 
- /*  LDVSR   (input) INTEGER */
 
- /*          The leading dimension of the matrix VSR. LDVSR >= 1, and */
 
- /*          if JOBVSR = 'V', LDVSR >= N. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. */
 
- /*          If N = 0, LWORK >= 1, else LWORK >= 8*N+16. */
 
- /*          For good performance , LWORK must generally be larger. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  BWORK   (workspace) LOGICAL array, dimension (N) */
 
- /*          Not referenced if SORT = 'N'. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          = 1,...,N: */
 
- /*                The QZ iteration failed.  (A,B) are not in Schur */
 
- /*                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
 
- /*                be correct for j=INFO+1,...,N. */
 
- /*          > N:  =N+1: other than QZ iteration failed in DHGEQZ. */
 
- /*                =N+2: after reordering, roundoff changed values of */
 
- /*                      some complex eigenvalues so that leading */
 
- /*                      eigenvalues in the Generalized Schur form no */
 
- /*                      longer satisfy SELCTG=.TRUE.  This could also */
 
- /*                      be caused due to scaling. */
 
- /*                =N+3: reordering failed in DTGSEN. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Decode the input arguments */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --alphar;
 
-     --alphai;
 
-     --beta;
 
-     vsl_dim1 = *ldvsl;
 
-     vsl_offset = 1 + vsl_dim1;
 
-     vsl -= vsl_offset;
 
-     vsr_dim1 = *ldvsr;
 
-     vsr_offset = 1 + vsr_dim1;
 
-     vsr -= vsr_offset;
 
-     --work;
 
-     --bwork;
 
-     /* Function Body */
 
-     if (lsame_(jobvsl, "N")) {
 
- 	ijobvl = 1;
 
- 	ilvsl = FALSE_;
 
-     } else if (lsame_(jobvsl, "V")) {
 
- 	ijobvl = 2;
 
- 	ilvsl = TRUE_;
 
-     } else {
 
- 	ijobvl = -1;
 
- 	ilvsl = FALSE_;
 
-     }
 
-     if (lsame_(jobvsr, "N")) {
 
- 	ijobvr = 1;
 
- 	ilvsr = FALSE_;
 
-     } else if (lsame_(jobvsr, "V")) {
 
- 	ijobvr = 2;
 
- 	ilvsr = TRUE_;
 
-     } else {
 
- 	ijobvr = -1;
 
- 	ilvsr = FALSE_;
 
-     }
 
-     wantst = lsame_(sort, "S");
 
- /*     Test the input arguments */
 
-     *info = 0;
 
-     lquery = *lwork == -1;
 
-     if (ijobvl <= 0) {
 
- 	*info = -1;
 
-     } else if (ijobvr <= 0) {
 
- 	*info = -2;
 
-     } else if (! wantst && ! lsame_(sort, "N")) {
 
- 	*info = -3;
 
-     } else if (*n < 0) {
 
- 	*info = -5;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -7;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -9;
 
-     } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
 
- 	*info = -15;
 
-     } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
 
- 	*info = -17;
 
-     }
 
- /*     Compute workspace */
 
- /*      (Note: Comments in the code beginning "Workspace:" describe the */
 
- /*       minimal amount of workspace needed at that point in the code, */
 
- /*       as well as the preferred amount for good performance. */
 
- /*       NB refers to the optimal block size for the immediately */
 
- /*       following subroutine, as returned by ILAENV.) */
 
-     if (*info == 0) {
 
- 	if (*n > 0) {
 
- /* Computing MAX */
 
- 	    i__1 = *n << 3, i__2 = *n * 6 + 16;
 
- 	    minwrk = max(i__1,i__2);
 
- 	    maxwrk = minwrk - *n + *n * ilaenv_(&c__1, "DGEQRF", " ", n, &
 
- 		    c__1, n, &c__0);
 
- /* Computing MAX */
 
- 	    i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "DORMQR", 
 
- 		    " ", n, &c__1, n, &c_n1);
 
- 	    maxwrk = max(i__1,i__2);
 
- 	    if (ilvsl) {
 
- /* Computing MAX */
 
- 		i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "DOR"
 
- 			"GQR", " ", n, &c__1, n, &c_n1);
 
- 		maxwrk = max(i__1,i__2);
 
- 	    }
 
- 	} else {
 
- 	    minwrk = 1;
 
- 	    maxwrk = 1;
 
- 	}
 
- 	work[1] = (doublereal) maxwrk;
 
- 	if (*lwork < minwrk && ! lquery) {
 
- 	    *info = -19;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGGES ", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	*sdim = 0;
 
- 	return 0;
 
-     }
 
- /*     Get machine constants */
 
-     eps = dlamch_("P");
 
-     safmin = dlamch_("S");
 
-     safmax = 1. / safmin;
 
-     dlabad_(&safmin, &safmax);
 
-     smlnum = sqrt(safmin) / eps;
 
-     bignum = 1. / smlnum;
 
- /*     Scale A if max element outside range [SMLNUM,BIGNUM] */
 
-     anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
 
-     ilascl = FALSE_;
 
-     if (anrm > 0. && anrm < smlnum) {
 
- 	anrmto = smlnum;
 
- 	ilascl = TRUE_;
 
-     } else if (anrm > bignum) {
 
- 	anrmto = bignum;
 
- 	ilascl = TRUE_;
 
-     }
 
-     if (ilascl) {
 
- 	dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
 
- 		ierr);
 
-     }
 
- /*     Scale B if max element outside range [SMLNUM,BIGNUM] */
 
-     bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
 
-     ilbscl = FALSE_;
 
-     if (bnrm > 0. && bnrm < smlnum) {
 
- 	bnrmto = smlnum;
 
- 	ilbscl = TRUE_;
 
-     } else if (bnrm > bignum) {
 
- 	bnrmto = bignum;
 
- 	ilbscl = TRUE_;
 
-     }
 
-     if (ilbscl) {
 
- 	dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
 
- 		ierr);
 
-     }
 
- /*     Permute the matrix to make it more nearly triangular */
 
- /*     (Workspace: need 6*N + 2*N space for storing balancing factors) */
 
-     ileft = 1;
 
-     iright = *n + 1;
 
-     iwrk = iright + *n;
 
-     dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
 
- 	    ileft], &work[iright], &work[iwrk], &ierr);
 
- /*     Reduce B to triangular form (QR decomposition of B) */
 
- /*     (Workspace: need N, prefer N*NB) */
 
-     irows = ihi + 1 - ilo;
 
-     icols = *n + 1 - ilo;
 
-     itau = iwrk;
 
-     iwrk = itau + irows;
 
-     i__1 = *lwork + 1 - iwrk;
 
-     dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
 
- 	    iwrk], &i__1, &ierr);
 
- /*     Apply the orthogonal transformation to matrix A */
 
- /*     (Workspace: need N, prefer N*NB) */
 
-     i__1 = *lwork + 1 - iwrk;
 
-     dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
 
- 	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
 
- 	    ierr);
 
- /*     Initialize VSL */
 
- /*     (Workspace: need N, prefer N*NB) */
 
-     if (ilvsl) {
 
- 	dlaset_("Full", n, n, &c_b38, &c_b39, &vsl[vsl_offset], ldvsl);
 
- 	if (irows > 1) {
 
- 	    i__1 = irows - 1;
 
- 	    i__2 = irows - 1;
 
- 	    dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
 
- 		    ilo + 1 + ilo * vsl_dim1], ldvsl);
 
- 	}
 
- 	i__1 = *lwork + 1 - iwrk;
 
- 	dorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
 
- 		work[itau], &work[iwrk], &i__1, &ierr);
 
-     }
 
- /*     Initialize VSR */
 
-     if (ilvsr) {
 
- 	dlaset_("Full", n, n, &c_b38, &c_b39, &vsr[vsr_offset], ldvsr);
 
-     }
 
- /*     Reduce to generalized Hessenberg form */
 
- /*     (Workspace: none needed) */
 
-     dgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 
 
- 	    ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr);
 
- /*     Perform QZ algorithm, computing Schur vectors if desired */
 
- /*     (Workspace: need N) */
 
-     iwrk = itau;
 
-     i__1 = *lwork + 1 - iwrk;
 
-     dhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
 
- 	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
 
- , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr);
 
-     if (ierr != 0) {
 
- 	if (ierr > 0 && ierr <= *n) {
 
- 	    *info = ierr;
 
- 	} else if (ierr > *n && ierr <= *n << 1) {
 
- 	    *info = ierr - *n;
 
- 	} else {
 
- 	    *info = *n + 1;
 
- 	}
 
- 	goto L50;
 
-     }
 
- /*     Sort eigenvalues ALPHA/BETA if desired */
 
- /*     (Workspace: need 4*N+16 ) */
 
-     *sdim = 0;
 
-     if (wantst) {
 
- /*        Undo scaling on eigenvalues before SELCTGing */
 
- 	if (ilascl) {
 
- 	    dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], 
 
- 		    n, &ierr);
 
- 	    dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], 
 
- 		    n, &ierr);
 
- 	}
 
- 	if (ilbscl) {
 
- 	    dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, 
 
- 		    &ierr);
 
- 	}
 
- /*        Select eigenvalues */
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
 
- /* L10: */
 
- 	}
 
- 	i__1 = *lwork - iwrk + 1;
 
- 	dtgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
 
- 		b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
 
- 		vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl, &
 
- 		pvsr, dif, &work[iwrk], &i__1, idum, &c__1, &ierr);
 
- 	if (ierr == 1) {
 
- 	    *info = *n + 3;
 
- 	}
 
-     }
 
- /*     Apply back-permutation to VSL and VSR */
 
- /*     (Workspace: none needed) */
 
-     if (ilvsl) {
 
- 	dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
 
- 		vsl_offset], ldvsl, &ierr);
 
-     }
 
-     if (ilvsr) {
 
- 	dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
 
- 		vsr_offset], ldvsr, &ierr);
 
-     }
 
- /*     Check if unscaling would cause over/underflow, if so, rescale */
 
- /*     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */
 
- /*     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */
 
-     if (ilascl) {
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    if (alphai[i__] != 0.) {
 
- 		if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[
 
- 			i__] > anrm / anrmto) {
 
- 		    work[1] = (d__1 = a[i__ + i__ * a_dim1] / alphar[i__], 
 
- 			    abs(d__1));
 
- 		    beta[i__] *= work[1];
 
- 		    alphar[i__] *= work[1];
 
- 		    alphai[i__] *= work[1];
 
- 		} else if (alphai[i__] / safmax > anrmto / anrm || safmin / 
 
- 			alphai[i__] > anrm / anrmto) {
 
- 		    work[1] = (d__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[
 
- 			    i__], abs(d__1));
 
- 		    beta[i__] *= work[1];
 
- 		    alphar[i__] *= work[1];
 
- 		    alphai[i__] *= work[1];
 
- 		}
 
- 	    }
 
- /* L20: */
 
- 	}
 
-     }
 
-     if (ilbscl) {
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    if (alphai[i__] != 0.) {
 
- 		if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__] 
 
- 			> bnrm / bnrmto) {
 
- 		    work[1] = (d__1 = b[i__ + i__ * b_dim1] / beta[i__], abs(
 
- 			    d__1));
 
- 		    beta[i__] *= work[1];
 
- 		    alphar[i__] *= work[1];
 
- 		    alphai[i__] *= work[1];
 
- 		}
 
- 	    }
 
- /* L30: */
 
- 	}
 
-     }
 
- /*     Undo scaling */
 
-     if (ilascl) {
 
- 	dlascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
 
- 		ierr);
 
- 	dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
 
- 		ierr);
 
- 	dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
 
- 		ierr);
 
-     }
 
-     if (ilbscl) {
 
- 	dlascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
 
- 		ierr);
 
- 	dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
 
- 		ierr);
 
-     }
 
-     if (wantst) {
 
- /*        Check if reordering is correct */
 
- 	lastsl = TRUE_;
 
- 	lst2sl = TRUE_;
 
- 	*sdim = 0;
 
- 	ip = 0;
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
 
- 	    if (alphai[i__] == 0.) {
 
- 		if (cursl) {
 
- 		    ++(*sdim);
 
- 		}
 
- 		ip = 0;
 
- 		if (cursl && ! lastsl) {
 
- 		    *info = *n + 2;
 
- 		}
 
- 	    } else {
 
- 		if (ip == 1) {
 
- /*                 Last eigenvalue of conjugate pair */
 
- 		    cursl = cursl || lastsl;
 
- 		    lastsl = cursl;
 
- 		    if (cursl) {
 
- 			*sdim += 2;
 
- 		    }
 
- 		    ip = -1;
 
- 		    if (cursl && ! lst2sl) {
 
- 			*info = *n + 2;
 
- 		    }
 
- 		} else {
 
- /*                 First eigenvalue of conjugate pair */
 
- 		    ip = 1;
 
- 		}
 
- 	    }
 
- 	    lst2sl = lastsl;
 
- 	    lastsl = cursl;
 
- /* L40: */
 
- 	}
 
-     }
 
- L50:
 
-     work[1] = (doublereal) maxwrk;
 
-     return 0;
 
- /*     End of DGGES */
 
- } /* dgges_ */
 
 
  |