101_building.doxy 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009-2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. /*! \page BuildingAndInstallingStarPU Building and Installing StarPU
  17. \section InstallingABinaryPackage Installing a Binary Package
  18. One of the StarPU developers being a Debian Developer, the packages
  19. are well integrated and very uptodate. To see which packages are
  20. available, simply type:
  21. \verbatim
  22. $ apt-cache search starpu
  23. \endverbatim
  24. To install what you need, type for example:
  25. \verbatim
  26. $ sudo apt-get install libstarpu-1.3 libstarpu-dev
  27. \endverbatim
  28. \section InstallingFromSource Installing from Source
  29. StarPU can be built and installed by the standard means of the GNU
  30. autotools. The following chapter is intended to briefly remind how these tools
  31. can be used to install StarPU.
  32. \subsection OptionalDependencies Optional Dependencies
  33. The <c>hwloc</c> (http://www.open-mpi.org/software/hwloc) topology
  34. discovery library is not mandatory to use StarPU but strongly
  35. recommended. It allows for topology aware scheduling, which improves
  36. performance. <c>libhwloc</c> is available in major free operating system
  37. distributions, and for most operating systems.
  38. If <c>libhwloc</c> is installed in a standard
  39. location, no option is required, it will be detected automatically,
  40. otherwise \ref with-hwloc "--with-hwloc=<directory>" should be used to specify its
  41. location.
  42. If <c>libhwloc</c> is not available on your system, the option
  43. \ref without-hwloc "--without-hwloc" should be explicitely given when calling the
  44. script <c>configure</c>.
  45. \subsection GettingSources Getting Sources
  46. StarPU's sources can be obtained from the download page of
  47. the StarPU website (http://starpu.gforge.inria.fr/files/).
  48. All releases and the development tree of StarPU are freely available
  49. on Inria's gforge under the LGPL license. Some releases are available
  50. under the BSD license.
  51. The latest release can be downloaded from the Inria's gforge (http://gforge.inria.fr/frs/?group_id=1570) or
  52. directly from the StarPU download page (http://starpu.gforge.inria.fr/files/).
  53. The latest nightly snapshot can be downloaded from the StarPU gforge website (http://starpu.gforge.inria.fr/testing/).
  54. \verbatim
  55. $ wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  56. \endverbatim
  57. And finally, current development version is also accessible via git.
  58. It should only be used if you need the very latest changes (i.e. less
  59. than a day old!).
  60. \verbatim
  61. $ git clone https://scm.gforge.inria.fr/anonscm/git/starpu/starpu.git
  62. \endverbatim
  63. \subsection ConfiguringStarPU Configuring StarPU
  64. Running <c>autogen.sh</c> is not necessary when using the tarball
  65. releases of StarPU. However when using the source code from the git
  66. repository, you first need to generate the script <c>configure</c> and the
  67. different Makefiles. This requires the availability of <c>autoconf</c> and
  68. <c>automake</c> >= 2.60.
  69. \verbatim
  70. $ ./autogen.sh
  71. \endverbatim
  72. You then need to configure StarPU. Details about options that are
  73. useful to give to <c>configure</c> are given in \ref CompilationConfiguration.
  74. \verbatim
  75. $ ./configure
  76. \endverbatim
  77. If <c>configure</c> does not detect some software or produces errors, please
  78. make sure to post the contents of the file <c>config.log</c> when
  79. reporting the issue.
  80. By default, the files produced during the compilation are placed in
  81. the source directory. As the compilation generates a lot of files, it
  82. is advised to put them all in a separate directory. It is then
  83. easier to cleanup, and this allows to compile several configurations
  84. out of the same source tree. To do so, simply enter the directory
  85. where you want the compilation to produce its files, and invoke the
  86. script <c>configure</c> located in the StarPU source directory.
  87. \verbatim
  88. $ mkdir build
  89. $ cd build
  90. $ ../configure
  91. \endverbatim
  92. By default, StarPU will be installed in <c>/usr/local/bin</c>,
  93. <c>/usr/local/lib</c>, etc. You can specify an installation prefix
  94. other than <c>/usr/local</c> using the option <c>--prefix</c>, for
  95. instance:
  96. \verbatim
  97. $ ../configure --prefix=$HOME/starpu
  98. \endverbatim
  99. \subsection BuildingStarPU Building StarPU
  100. \verbatim
  101. $ make
  102. \endverbatim
  103. Once everything is built, you may want to test the result. An
  104. extensive set of regression tests is provided with StarPU. Running the
  105. tests is done by calling <c>make check</c>. These tests are run every night
  106. and the result from the main profile is publicly available (http://starpu.gforge.inria.fr/testing/master/).
  107. \verbatim
  108. $ make check
  109. \endverbatim
  110. \subsection InstallingStarPU Installing StarPU
  111. In order to install StarPU at the location which was specified during
  112. configuration:
  113. \verbatim
  114. $ make install
  115. \endverbatim
  116. Libtool interface versioning information are included in
  117. libraries names (<c>libstarpu-1.3.so</c>, <c>libstarpumpi-1.3.so</c> and
  118. <c>libstarpufft-1.3.so</c>).
  119. \section SettingUpYourOwnCode Setting up Your Own Code
  120. \subsection SettingFlagsForCompilingLinkingAndRunningApplications Setting Flags for Compiling, Linking and Running Applications
  121. StarPU provides a <c>pkg-config</c> executable to obtain relevant compiler
  122. and linker flags. As compiling and linking an application against
  123. StarPU may require to use specific flags or libraries (for instance
  124. <c>CUDA</c> or <c>libspe2</c>).
  125. If StarPU was not installed at some standard location, the path of StarPU's
  126. library must be specified in the environment variable
  127. <c>PKG_CONFIG_PATH</c> to allow <c>pkg-config</c> to find it. For
  128. example if StarPU was installed in
  129. <c>$STARPU_PATH</c>:
  130. \verbatim
  131. $ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$STARPU_PATH/lib/pkgconfig
  132. \endverbatim
  133. The flags required to compile or link against StarPU are then
  134. accessible with the following commands:
  135. \verbatim
  136. $ pkg-config --cflags starpu-1.3 # options for the compiler
  137. $ pkg-config --libs starpu-1.3 # options for the linker
  138. \endverbatim
  139. Note that it is still possible to use the API provided in the version
  140. 1.0 of StarPU by calling <c>pkg-config</c> with the <c>starpu-1.0</c> package.
  141. Similar packages are provided for <c>starpumpi-1.0</c> and <c>starpufft-1.0</c>.
  142. It is also possible to use the API provided in the version
  143. 0.9 of StarPU by calling <c>pkg-config</c> with the <c>libstarpu</c> package.
  144. Similar packages are provided for <c>libstarpumpi</c> and <c>libstarpufft</c>.
  145. Make sure that <c>pkg-config --libs starpu-1.3</c> actually produces some output
  146. before going further: <c>PKG_CONFIG_PATH</c> has to point to the place where
  147. <c>starpu-1.3.pc</c> was installed during <c>make install</c>.
  148. Also pass the option <c>--static</c> if the application is to be
  149. linked statically.
  150. It is also necessary to set the environment variable <c>LD_LIBRARY_PATH</c> to
  151. locate dynamic libraries at runtime.
  152. \verbatim
  153. $ export LD_LIBRARY_PATH=$STARPU_PATH/lib:$LD_LIBRARY_PATH
  154. \endverbatim
  155. And it is useful to get access to the StarPU tools:
  156. \verbatim
  157. $ export PATH=$PATH:$STARPU_PATH/bin
  158. \endverbatim
  159. It is then useful to check that StarPU executes correctly and finds your hardware:
  160. \verbatim
  161. $ starpu_machine_display
  162. \endverbatim
  163. If it does not, please check the output of \c lstopo from \c hwloc and report
  164. the issue to the \c hwloc project, since this is what StarPU uses to detect the hardware.
  165. \subsection IntegratingStarPUInABuildSystem Integrating StarPU in a Build System
  166. \subsubsection StarPUInMake Integrating StarPU in a Make Build System
  167. When using a Makefile, the following lines can be added to set the
  168. options for the compiler and the linker:
  169. \verbatim
  170. CFLAGS += $$(pkg-config --cflags starpu-1.3)
  171. LDLIBS += $$(pkg-config --libs starpu-1.3)
  172. \endverbatim
  173. If you have a \c test-starpu.c file containing for instance:
  174. \code{.c}
  175. #include <starpu.h>
  176. #include <stdio.h>
  177. int main(void)
  178. {
  179. int ret;
  180. ret = starpu_init(NULL);
  181. if (ret != 0)
  182. {
  183. return 1;
  184. }
  185. printf("%d CPU cores\n", starpu_worker_get_count_by_type(STARPU_CPU_WORKER));
  186. printf("%d CUDA GPUs\n", starpu_worker_get_count_by_type(STARPU_CUDA_WORKER));
  187. printf("%d OpenCL GPUs\n", starpu_worker_get_count_by_type(STARPU_OPENCL_WORKER));
  188. starpu_shutdown();
  189. return 0;
  190. }
  191. \endcode
  192. You can build it with <code>make test-starpu</code> and run it with <code>./test-starpu</code>
  193. \subsubsection StarPUInCMake Integrating StarPU in a CMake Build System
  194. This section shows a minimal example integrating StarPU in an existing application's CMake build system.
  195. Let's assume we want to build an executable from the following source code using CMake:
  196. \code{.c}
  197. #include <starpu.h>
  198. #include <stdio.h>
  199. int main(void)
  200. {
  201. int ret;
  202. ret = starpu_init(NULL);
  203. if (ret != 0)
  204. {
  205. return 1;
  206. }
  207. printf("%d CPU cores\n", starpu_worker_get_count_by_type(STARPU_CPU_WORKER));
  208. printf("%d CUDA GPUs\n", starpu_worker_get_count_by_type(STARPU_CUDA_WORKER));
  209. printf("%d OpenCL GPUs\n", starpu_worker_get_count_by_type(STARPU_OPENCL_WORKER));
  210. starpu_shutdown();
  211. return 0;
  212. }
  213. \endcode
  214. The \c CMakeLists.txt file below uses the Pkg-Config support from CMake to
  215. autodetect the StarPU installation and library dependences (such as
  216. <c>libhwloc</c>) provided that the <c>PKG_CONFIG_PATH</c> variable is set, and
  217. is sufficient to build a statically-linked executable. This example has been
  218. successfully tested with CMake 3.2, though it may work with earlier CMake 3.x
  219. versions.
  220. \code{File CMakeLists.txt}
  221. cmake_minimum_required (VERSION 3.2)
  222. project (hello_starpu)
  223. find_package(PkgConfig)
  224. pkg_check_modules(STARPU REQUIRED starpu-1.3)
  225. if (STARPU_FOUND)
  226. include_directories (${STARPU_INCLUDE_DIRS})
  227. link_directories (${STARPU_STATIC_LIBRARY_DIRS})
  228. link_libraries (${STARPU_STATIC_LIBRARIES})
  229. else (STARPU_FOUND)
  230. message(FATAL_ERROR "StarPU not found")
  231. endif()
  232. add_executable(hello_starpu hello_starpu.c)
  233. \endcode
  234. The following \c CMakeLists.txt implements an alternative, more complex
  235. strategy, still relying on Pkg-Config, but also taking into account additional
  236. flags. While more complete, this approach makes CMake's build types (Debug,
  237. Release, ...) unavailable because of the direct affectation to variable
  238. <c>CMAKE_C_FLAGS</c>. If both the full flags support and the build types
  239. support are needed, the \c CMakeLists.txt below may be altered to work with
  240. <c>CMAKE_C_FLAGS_RELEASE</c>, <c>CMAKE_C_FLAGS_DEBUG</c>, and others as needed.
  241. This example has been successfully tested with CMake 3.2, though it may work
  242. with earlier CMake 3.x versions.
  243. \code{File CMakeLists.txt}
  244. cmake_minimum_required (VERSION 3.2)
  245. project (hello_starpu)
  246. find_package(PkgConfig)
  247. pkg_check_modules(STARPU REQUIRED starpu-1.3)
  248. # This section must appear before 'add_executable'
  249. if (STARPU_FOUND)
  250. # CFLAGS other than -I
  251. foreach(CFLAG ${STARPU_CFLAGS_OTHER})
  252. set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${CFLAG}")
  253. endforeach()
  254. # Static LDFLAGS other than -L
  255. foreach(LDFLAG ${STARPU_STATIC_LDFLAGS_OTHER})
  256. set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${LDFLAG}")
  257. endforeach()
  258. # -L directories
  259. link_directories(${STARPU_STATIC_LIBRARY_DIRS})
  260. else (STARPU_FOUND)
  261. message(FATAL_ERROR "StarPU not found")
  262. endif()
  263. add_executable(hello_starpu hello_starpu.c)
  264. # This section must appear after 'add_executable'
  265. if (STARPU_FOUND)
  266. # -I directories
  267. target_include_directories(hello_starpu PRIVATE ${STARPU_INCLUDE_DIRS})
  268. # Static -l libs
  269. target_link_libraries(hello_starpu PRIVATE ${STARPU_STATIC_LIBRARIES})
  270. endif()
  271. \endcode
  272. \subsection RunningABasicStarPUApplication Running a Basic StarPU Application
  273. Basic examples using StarPU are built in the directory
  274. <c>examples/basic_examples/</c> (and installed in
  275. <c>$STARPU_PATH/lib/starpu/examples/</c>). You can for example run the example
  276. <c>vector_scal</c>.
  277. \verbatim
  278. $ ./examples/basic_examples/vector_scal
  279. BEFORE: First element was 1.000000
  280. AFTER: First element is 3.140000
  281. \endverbatim
  282. When StarPU is used for the first time, the directory
  283. <c>$STARPU_HOME/.starpu/</c> is created, performance models will be stored in
  284. this directory (\ref STARPU_HOME).
  285. Please note that buses are benchmarked when StarPU is launched for the
  286. first time. This may take a few minutes, or less if <c>libhwloc</c> is
  287. installed. This step is done only once per user and per machine.
  288. \subsection RunningABasicStarPUApplicationOnMicrosoft Running a Basic StarPU Application on Microsoft Visual C
  289. Batch files are provided to run StarPU applications under Microsoft
  290. Visual C. They are installed in <c>$STARPU_PATH/bin/msvc</c>.
  291. To execute a StarPU application, you first need to set the environment
  292. variable \ref STARPU_PATH.
  293. \verbatim
  294. c:\....> cd c:\cygwin\home\ci\starpu\
  295. c:\....> set STARPU_PATH=c:\cygwin\home\ci\starpu\
  296. c:\....> cd bin\msvc
  297. c:\....> starpu_open.bat starpu_simple.c
  298. \endverbatim
  299. The batch script will run Microsoft Visual C with a basic project file
  300. to run the given application.
  301. The batch script <c>starpu_clean.bat</c> can be used to delete all
  302. compilation generated files.
  303. The batch script <c>starpu_exec.bat</c> can be used to compile and execute a
  304. StarPU application from the command prompt.
  305. \verbatim
  306. c:\....> cd c:\cygwin\home\ci\starpu\
  307. c:\....> set STARPU_PATH=c:\cygwin\home\ci\starpu\
  308. c:\....> cd bin\msvc
  309. c:\....> starpu_exec.bat ..\..\..\..\examples\basic_examples\hello_world.c
  310. \endverbatim
  311. \verbatim
  312. MSVC StarPU Execution
  313. ...
  314. /out:hello_world.exe
  315. ...
  316. Hello world (params = {1, 2.00000})
  317. Callback function got argument 0000042
  318. c:\....>
  319. \endverbatim
  320. \subsection KernelThreadsStartedByStarPU Kernel Threads Started by StarPU
  321. StarPU automatically binds one thread per CPU core. It does not use
  322. SMT/hyperthreading because kernels are usually already optimized for using a
  323. full core, and using hyperthreading would make kernel calibration rather random.
  324. Since driving GPUs is a CPU-consuming task, StarPU dedicates one core
  325. per GPU.
  326. While StarPU tasks are executing, the application is not supposed to do
  327. computations in the threads it starts itself, tasks should be used instead.
  328. If the application needs to reserve some cores for its own computations, it
  329. can do so with the field starpu_conf::reserve_ncpus, get the core IDs with
  330. starpu_get_next_bindid(), and bind to them with starpu_bind_thread_on().
  331. Another option is for the application to pause StarPU by calling
  332. starpu_pause(), then to perform its own computations, and then to
  333. resume StarPU by calling starpu_resume() so that StarPU can execute
  334. tasks.
  335. \subsection EnablingOpenCL Enabling OpenCL
  336. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  337. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  338. This design choice was necessary as OpenCL and CUDA can not run at the
  339. same time on the same NVIDIA GPU, as there is currently no interoperability
  340. between them.
  341. To enable OpenCL, you need either to disable CUDA when configuring StarPU:
  342. \verbatim
  343. $ ./configure --disable-cuda
  344. \endverbatim
  345. or when running applications:
  346. \verbatim
  347. $ STARPU_NCUDA=0 ./application
  348. \endverbatim
  349. OpenCL will automatically be started on any device not yet used by
  350. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  351. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  352. so:
  353. \verbatim
  354. $ STARPU_NCUDA=2 ./application
  355. \endverbatim
  356. \section BenchmarkingStarPU Benchmarking StarPU
  357. Some interesting benchmarks are installed among examples in
  358. <c>$STARPU_PATH/lib/starpu/examples/</c>. Make sure to try various
  359. schedulers, for instance <c>STARPU_SCHED=dmda</c>.
  360. \subsection TaskSizeOverhead Task Size Overhead
  361. This benchmark gives a glimpse into how long a task should be (in µs) for StarPU overhead
  362. to be low enough to keep efficiency. Running
  363. <c>tasks_size_overhead.sh</c> generates a plot
  364. of the speedup of tasks of various sizes, depending on the number of CPUs being
  365. used.
  366. \image html tasks_size_overhead.png
  367. \image latex tasks_size_overhead.eps "" width=\textwidth
  368. \subsection DataTransferLatency Data Transfer Latency
  369. <c>local_pingpong</c> performs a ping-pong between the first two CUDA nodes, and
  370. prints the measured latency.
  371. \subsection MatrixMatrixMultiplication Matrix-Matrix Multiplication
  372. <c>sgemm</c> and <c>dgemm</c> perform a blocked matrix-matrix
  373. multiplication using BLAS and cuBLAS. They output the obtained GFlops.
  374. \subsection CholeskyFactorization Cholesky Factorization
  375. <c>cholesky_*</c> perform a Cholesky factorization (single precision). They use different dependency primitives.
  376. \subsection LUFactorization LU Factorization
  377. <c>lu_*</c> perform an LU factorization. They use different dependency primitives.
  378. \subsection SimulatedBenchmarks Simulated Benchmarks
  379. It can also be convenient to try simulated benchmarks, if you want to give a try
  380. at CPU-GPU scheduling without actually having a GPU at hand. This can be done by
  381. using the SimGrid version of StarPU: first install the SimGrid simulator from
  382. http://simgrid.gforge.inria.fr/ (we tested with SimGrid from 3.11 to 3.16, and
  383. 3.18 to 3.22, other versions may have compatibility issues, 3.17 notably does
  384. not build at all. MPI simulation does not work with version 3.22),
  385. then configure StarPU with \ref enable-simgrid
  386. "--enable-simgrid" and rebuild and install it, and then you can simulate the performance for a
  387. few virtualized systems shipped along StarPU: attila, mirage, idgraf, and sirocco.
  388. For instance:
  389. \verbatim
  390. $ export STARPU_PERF_MODEL_DIR=$STARPU_PATH/share/starpu/perfmodels/sampling
  391. $ export STARPU_HOSTNAME=attila
  392. $ $STARPU_PATH/lib/starpu/examples/cholesky_implicit -size $((960*20)) -nblocks 20
  393. \endverbatim
  394. Will show the performance of the cholesky factorization with the attila
  395. system. It will be interesting to try with different matrix sizes and
  396. schedulers.
  397. Performance models are available for <c>cholesky_*</c>, <c>lu_*</c>, <c>*gemm</c>, with block sizes
  398. 320, 640, or 960 (plus 1440 for sirocco), and for <c>stencil</c> with block size 128x128x128, 192x192x192, and
  399. 256x256x256.
  400. Read the chapter \ref SimGridSupport for more information on the SimGrid support.
  401. */