| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 | /* dlatzm.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b5 = 1.;/* Subroutine */ int dlatzm_(char *side, integer *m, integer *n, doublereal *	v, integer *incv, doublereal *tau, doublereal *c1, doublereal *c2, 	integer *ldc, doublereal *work){    /* System generated locals */    integer c1_dim1, c1_offset, c2_dim1, c2_offset, i__1;    doublereal d__1;    /* Local variables */    extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *), dcopy_(integer *, 	    doublereal *, integer *, doublereal *, integer *), daxpy_(integer 	    *, doublereal *, doublereal *, integer *, doublereal *, integer *)	    ;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  This routine is deprecated and has been replaced by routine DORMRZ. *//*  DLATZM applies a Householder matrix generated by DTZRQF to a matrix. *//*  Let P = I - tau*u*u',   u = ( 1 ), *//*                              ( v ) *//*  where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if *//*  SIDE = 'R'. *//*  If SIDE equals 'L', let *//*         C = [ C1 ] 1 *//*             [ C2 ] m-1 *//*               n *//*  Then C is overwritten by P*C. *//*  If SIDE equals 'R', let *//*         C = [ C1, C2 ] m *//*                1  n-1 *//*  Then C is overwritten by C*P. *//*  Arguments *//*  ========= *//*  SIDE    (input) CHARACTER*1 *//*          = 'L': form P * C *//*          = 'R': form C * P *//*  M       (input) INTEGER *//*          The number of rows of the matrix C. *//*  N       (input) INTEGER *//*          The number of columns of the matrix C. *//*  V       (input) DOUBLE PRECISION array, dimension *//*                  (1 + (M-1)*abs(INCV)) if SIDE = 'L' *//*                  (1 + (N-1)*abs(INCV)) if SIDE = 'R' *//*          The vector v in the representation of P. V is not used *//*          if TAU = 0. *//*  INCV    (input) INTEGER *//*          The increment between elements of v. INCV <> 0 *//*  TAU     (input) DOUBLE PRECISION *//*          The value tau in the representation of P. *//*  C1      (input/output) DOUBLE PRECISION array, dimension *//*                         (LDC,N) if SIDE = 'L' *//*                         (M,1)   if SIDE = 'R' *//*          On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1 *//*          if SIDE = 'R'. *//*          On exit, the first row of P*C if SIDE = 'L', or the first *//*          column of C*P if SIDE = 'R'. *//*  C2      (input/output) DOUBLE PRECISION array, dimension *//*                         (LDC, N)   if SIDE = 'L' *//*                         (LDC, N-1) if SIDE = 'R' *//*          On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the *//*          m x (n - 1) matrix C2 if SIDE = 'R'. *//*          On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P *//*          if SIDE = 'R'. *//*  LDC     (input) INTEGER *//*          The leading dimension of the arrays C1 and C2. LDC >= (1,M). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension *//*                      (N) if SIDE = 'L' *//*                      (M) if SIDE = 'R' *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --v;    c2_dim1 = *ldc;    c2_offset = 1 + c2_dim1;    c2 -= c2_offset;    c1_dim1 = *ldc;    c1_offset = 1 + c1_dim1;    c1 -= c1_offset;    --work;    /* Function Body */    if (min(*m,*n) == 0 || *tau == 0.) {	return 0;    }    if (lsame_(side, "L")) {/*        w := C1 + v' * C2 */	dcopy_(n, &c1[c1_offset], ldc, &work[1], &c__1);	i__1 = *m - 1;	dgemv_("Transpose", &i__1, n, &c_b5, &c2[c2_offset], ldc, &v[1], incv, 		 &c_b5, &work[1], &c__1);/*        [ C1 ] := [ C1 ] - tau* [ 1 ] * w' *//*        [ C2 ]    [ C2 ]        [ v ] */	d__1 = -(*tau);	daxpy_(n, &d__1, &work[1], &c__1, &c1[c1_offset], ldc);	i__1 = *m - 1;	d__1 = -(*tau);	dger_(&i__1, n, &d__1, &v[1], incv, &work[1], &c__1, &c2[c2_offset], 		ldc);    } else if (lsame_(side, "R")) {/*        w := C1 + C2 * v */	dcopy_(m, &c1[c1_offset], &c__1, &work[1], &c__1);	i__1 = *n - 1;	dgemv_("No transpose", m, &i__1, &c_b5, &c2[c2_offset], ldc, &v[1], 		incv, &c_b5, &work[1], &c__1);/*        [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v'] */	d__1 = -(*tau);	daxpy_(m, &d__1, &work[1], &c__1, &c1[c1_offset], &c__1);	i__1 = *n - 1;	d__1 = -(*tau);	dger_(m, &i__1, &d__1, &work[1], &c__1, &v[1], incv, &c2[c2_offset], 		ldc);    }    return 0;/*     End of DLATZM */} /* dlatzm_ */
 |