basic-api.texi 91 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Initialization and Termination:: Initialization and Termination methods
  9. * Workers' Properties:: Methods to enumerate workers' properties
  10. * Data Library:: Methods to manipulate data
  11. * Data Interfaces::
  12. * Data Partition::
  13. * Codelets and Tasks:: Methods to construct tasks
  14. * Explicit Dependencies:: Explicit Dependencies
  15. * Implicit Data Dependencies:: Implicit Data Dependencies
  16. * Performance Model API::
  17. * Profiling API:: Profiling API
  18. * CUDA extensions:: CUDA extensions
  19. * OpenCL extensions:: OpenCL extensions
  20. * Cell extensions:: Cell extensions
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Initialization and Termination
  24. @section Initialization and Termination
  25. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  26. This is StarPU initialization method, which must be called prior to any other
  27. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  28. policy, number of cores, ...) by passing a non-null argument. Default
  29. configuration is used if the passed argument is @code{NULL}.
  30. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  31. indicates that no worker was available (so that StarPU was not initialized).
  32. @end deftypefun
  33. @deftp {Data Type} {struct starpu_conf}
  34. This structure is passed to the @code{starpu_init} function in order
  35. to configure StarPU.
  36. When the default value is used, StarPU automatically selects the number
  37. of processing units and takes the default scheduling policy. This parameter
  38. overwrites the equivalent environment variables.
  39. @table @asis
  40. @item @code{sched_policy_name} (default = NULL)
  41. This is the name of the scheduling policy. This can also be specified
  42. with the @code{STARPU_SCHED} environment variable.
  43. @item @code{sched_policy} (default = NULL)
  44. This is the definition of the scheduling policy. This field is ignored
  45. if @code{sched_policy_name} is set.
  46. @item @code{ncpus} (default = -1)
  47. This is the number of CPU cores that StarPU can use. This can also be
  48. specified with the @code{STARPU_NCPUS} environment variable.
  49. @item @code{ncuda} (default = -1)
  50. This is the number of CUDA devices that StarPU can use. This can also
  51. be specified with the @code{STARPU_NCUDA} environment variable.
  52. @item @code{nopencl} (default = -1)
  53. This is the number of OpenCL devices that StarPU can use. This can
  54. also be specified with the @code{STARPU_NOPENCL} environment variable.
  55. @item @code{nspus} (default = -1)
  56. This is the number of Cell SPUs that StarPU can use. This can also be
  57. specified with the @code{STARPU_NGORDON} environment variable.
  58. @item @code{use_explicit_workers_bindid} (default = 0)
  59. If this flag is set, the @code{workers_bindid} array indicates where
  60. the different workers are bound, otherwise StarPU automatically
  61. selects where to bind the different workers unless the
  62. @code{STARPU_WORKERS_CPUID} environment variable is set. The
  63. @code{STARPU_WORKERS_CPUID} environment variable is ignored if the
  64. @code{use_explicit_workers_bindid} flag is set.
  65. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  66. If the @code{use_explicit_workers_bindid} flag is set, this array
  67. indicates where to bind the different workers. The i-th entry of the
  68. @code{workers_bindid} indicates the logical identifier of the
  69. processor which should execute the i-th worker. Note that the logical
  70. ordering of the CPUs is either determined by the OS, or provided by
  71. the @code{hwloc} library in case it is available. When this flag is
  72. set, the @ref{STARPU_WORKERS_CPUID} environment variable is ignored.
  73. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  74. If this flag is set, the CUDA workers will be attached to the CUDA
  75. devices specified in the @code{workers_cuda_gpuid} array. Otherwise,
  76. StarPU affects the CUDA devices in a round-robin fashion. When this
  77. flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  78. ignored.
  79. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  80. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  81. contains the logical identifiers of the CUDA devices (as used by
  82. @code{cudaGetDevice}).
  83. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  84. If this flag is set, the OpenCL workers will be attached to the OpenCL
  85. devices specified in the @code{workers_opencl_gpuid} array. Otherwise,
  86. StarPU affects the OpenCL devices in a round-robin fashion.
  87. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  88. todo
  89. @item @code{calibrate} (default = 0)
  90. If this flag is set, StarPU will calibrate the performance models when
  91. executing tasks. If this value is equal to -1, the default value is
  92. used. The default value is overwritten by the @code{STARPU_CALIBRATE}
  93. environment variable when it is set.
  94. @item @code{single_combined_worker} (default = 0)
  95. By default, StarPU creates various combined workers according to the machine
  96. structure. Some parallel libraries (e.g. most OpenMP implementations) however do
  97. not support concurrent calls to parallel code. In such case, setting this flag
  98. makes StarPU only create one combined worker, containing all
  99. the CPU workers. The default value is overwritten by the
  100. @code{STARPU_SINGLE_COMBINED_WORKER} environment variable when it is set.
  101. @end table
  102. @end deftp
  103. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  104. This function initializes the @var{conf} structure passed as argument
  105. with the default values. In case some configuration parameters are already
  106. specified through environment variables, @code{starpu_conf_init} initializes
  107. the fields of the structure according to the environment variables. For
  108. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  109. @code{.ncuda} field of the structure passed as argument.
  110. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  111. indicates that the argument was NULL.
  112. @end deftypefun
  113. @deftypefun void starpu_shutdown (void)
  114. This is StarPU termination method. It must be called at the end of the
  115. application: statistics and other post-mortem debugging information are not
  116. guaranteed to be available until this method has been called.
  117. @end deftypefun
  118. @node Workers' Properties
  119. @section Workers' Properties
  120. @deftp {Data Type} {enum starpu_archtype}
  121. The different values are:
  122. @table @asis
  123. @item @code{STARPU_CPU_WORKER}
  124. @item @code{STARPU_CUDA_WORKER}
  125. @item @code{STARPU_OPENCL_WORKER}
  126. @item @code{STARPU_GORDON_WORKER}
  127. @end table
  128. @end deftp
  129. @deftypefun unsigned starpu_worker_get_count (void)
  130. This function returns the number of workers (i.e. processing units executing
  131. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  132. @end deftypefun
  133. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  134. Returns the number of workers of the given type indicated by the argument. A positive
  135. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  136. the type is not valid otherwise.
  137. @end deftypefun
  138. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  139. This function returns the number of CPUs controlled by StarPU. The returned
  140. value should be at most @code{STARPU_MAXCPUS}.
  141. @end deftypefun
  142. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  143. This function returns the number of CUDA devices controlled by StarPU. The returned
  144. value should be at most @code{STARPU_MAXCUDADEVS}.
  145. @end deftypefun
  146. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  147. This function returns the number of OpenCL devices controlled by StarPU. The returned
  148. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  149. @end deftypefun
  150. @deftypefun unsigned starpu_spu_worker_get_count (void)
  151. This function returns the number of Cell SPUs controlled by StarPU.
  152. @end deftypefun
  153. @deftypefun int starpu_worker_get_id (void)
  154. This function returns the identifier of the current worker, i.e the one associated to the calling
  155. thread. The returned value is either -1 if the current context is not a StarPU
  156. worker (i.e. when called from the application outside a task or a callback), or
  157. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  158. @end deftypefun
  159. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  160. This function gets the list of identifiers of workers with the given
  161. type. It fills the workerids array with the identifiers of the workers that have the type
  162. indicated in the first argument. The maxsize argument indicates the size of the
  163. workids array. The returned value gives the number of identifiers that were put
  164. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  165. workers with the appropriate type: in that case, the array is filled with the
  166. maxsize first elements. To avoid such overflows, the value of maxsize can be
  167. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  168. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  169. @end deftypefun
  170. @deftypefun int starpu_worker_get_devid (int @var{id})
  171. This functions returns the device id of the given worker. The worker
  172. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  173. CUDA worker, this device identifier is the logical device identifier exposed by
  174. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  175. identifier of a CPU worker is the logical identifier of the core on which the
  176. worker was bound; this identifier is either provided by the OS or by the
  177. @code{hwloc} library in case it is available.
  178. @end deftypefun
  179. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  180. This function returns the type of processing unit associated to a
  181. worker. The worker identifier is a value returned by the
  182. @code{starpu_worker_get_id} function). The returned value
  183. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  184. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  185. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  186. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  187. identifier is unspecified.
  188. @end deftypefun
  189. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  190. This function allows to get the name of a given worker.
  191. StarPU associates a unique human readable string to each processing unit. This
  192. function copies at most the @var{maxlen} first bytes of the unique string
  193. associated to a worker identified by its identifier @var{id} into the
  194. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  195. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  196. function on an invalid identifier results in an unspecified behaviour.
  197. @end deftypefun
  198. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  199. This function returns the identifier of the memory node associated to the
  200. worker identified by @var{workerid}.
  201. @end deftypefun
  202. @node Data Library
  203. @section Data Library
  204. @menu
  205. * Introduction to Data Library::
  206. * Basic Data Library API::
  207. * Access registered data from the application::
  208. @end menu
  209. This section describes the data management facilities provided by StarPU.
  210. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  211. design their own data interfaces if required.
  212. @node Introduction to Data Library
  213. @subsection Introduction
  214. Data management is done at a high-level in StarPU: rather than accessing a mere
  215. list of contiguous buffers, the tasks may manipulate data that are described by
  216. a high-level construct which we call data interface.
  217. An example of data interface is the "vector" interface which describes a
  218. contiguous data array on a spefic memory node. This interface is a simple
  219. structure containing the number of elements in the array, the size of the
  220. elements, and the address of the array in the appropriate address space (this
  221. address may be invalid if there is no valid copy of the array in the memory
  222. node). More informations on the data interfaces provided by StarPU are
  223. given in @ref{Data Interfaces}.
  224. When a piece of data managed by StarPU is used by a task, the task
  225. implementation is given a pointer to an interface describing a valid copy of
  226. the data that is accessible from the current processing unit.
  227. Every worker is associated to a memory node which is a logical abstraction of
  228. the address space from which the processing unit gets its data. For instance,
  229. the memory node associated to the different CPU workers represents main memory
  230. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  231. Every memory node is identified by a logical index which is accessible from the
  232. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  233. to StarPU, the specified memory node indicates where the piece of data
  234. initially resides (we also call this memory node the home node of a piece of
  235. data).
  236. @node Basic Data Library API
  237. @subsection Basic Data Library API
  238. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  239. This function allocates data of the given size in main memory. It will also try to pin it in
  240. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  241. thus permit data transfer and computation overlapping. The allocated buffer must
  242. be freed thanks to the @code{starpu_free} function.
  243. @end deftypefun
  244. @deftypefun int starpu_free (void *@var{A})
  245. This function frees memory which has previously allocated with
  246. @code{starpu_malloc}.
  247. @end deftypefun
  248. @deftp {Data Type} {enum starpu_access_mode}
  249. This datatype describes a data access mode. The different available modes are:
  250. @table @asis
  251. @item @code{STARPU_R}: read-only mode.
  252. @item @code{STARPU_W}: write-only mode.
  253. @item @code{STARPU_RW}: read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  254. @item @code{STARPU_SCRATCH}: scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  255. @item @code{STARPU_REDUX} reduction mode.
  256. @end table
  257. @end deftp
  258. @deftp {Data Type} {starpu_data_handle_t}
  259. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  260. data. Once a piece of data has been registered to StarPU, it is associated to a
  261. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  262. over the entire machine, so that we can maintain data consistency and locate
  263. data replicates for instance.
  264. @end deftp
  265. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  266. Register a piece of data into the handle located at the @var{handleptr}
  267. address. The @var{data_interface} buffer contains the initial description of the
  268. data in the home node. The @var{ops} argument is a pointer to a structure
  269. describing the different methods used to manipulate this type of interface. See
  270. @ref{struct starpu_data_interface_ops} for more details on this structure.
  271. If @code{home_node} is -1, StarPU will automatically
  272. allocate the memory when it is used for the
  273. first time in write-only mode. Once such data handle has been automatically
  274. allocated, it is possible to access it using any access mode.
  275. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  276. matrix) which can be registered by the means of helper functions (e.g.
  277. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  278. @end deftypefun
  279. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  280. This function unregisters a data handle from StarPU. If the data was
  281. automatically allocated by StarPU because the home node was -1, all
  282. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  283. is put back into the home node in the buffer that was initially registered.
  284. Using a data handle that has been unregistered from StarPU results in an
  285. undefined behaviour.
  286. @end deftypefun
  287. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  288. This is the same as starpu_data_unregister, except that StarPU does not put back
  289. a valid copy into the home node, in the buffer that was initially registered.
  290. @end deftypefun
  291. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  292. Destroy all replicates of the data handle. After data invalidation, the first
  293. access to the handle must be performed in write-only mode. Accessing an
  294. invalidated data in read-mode results in undefined behaviour.
  295. @end deftypefun
  296. @c TODO create a specific sections about user interaction with the DSM ?
  297. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  298. This function sets the write-through mask of a given data, i.e. a bitmask of
  299. nodes where the data should be always replicated after modification.
  300. @end deftypefun
  301. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  302. Issue a prefetch request for a given data to a given node, i.e.
  303. requests that the data be replicated to the given node, so that it is available
  304. there for tasks. If the @var{async} parameter is 0, the call will block until
  305. the transfer is achieved, else the call will return as soon as the request is
  306. scheduled (which may however have to wait for a task completion).
  307. @end deftypefun
  308. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  309. Return the handle associated to ptr @var{ptr}.
  310. @end deftypefun
  311. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  312. Explicitly ask StarPU to allocate room for a piece of data on the specified
  313. memory node.
  314. @end deftypefun
  315. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  316. Query the status of the handle on the specified memory node.
  317. @end deftypefun
  318. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  319. This function allows to specify that a piece of data can be discarded
  320. without impacting the application.
  321. @end deftypefun
  322. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  323. todo
  324. @end deftypefun
  325. @node Access registered data from the application
  326. @subsection Access registered data from the application
  327. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  328. The application must call this function prior to accessing registered data from
  329. main memory outside tasks. StarPU ensures that the application will get an
  330. up-to-date copy of the data in main memory located where the data was
  331. originally registered, and that all concurrent accesses (e.g. from tasks) will
  332. be consistent with the access mode specified in the @var{mode} argument.
  333. @code{starpu_data_release} must be called once the application does not need to
  334. access the piece of data anymore. Note that implicit data
  335. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  336. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  337. the data, unless that they have not been disabled explictly by calling
  338. @code{starpu_data_set_default_sequential_consistency_flag} or
  339. @code{starpu_data_set_sequential_consistency_flag}.
  340. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  341. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  342. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  343. @end deftypefun
  344. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  345. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  346. @code{starpu_data_release}. When the data specified in the first argument is
  347. available in the appropriate access mode, the callback function is executed.
  348. The application may access the requested data during the execution of this
  349. callback. The callback function must call @code{starpu_data_release} once the
  350. application does not need to access the piece of data anymore.
  351. Note that implicit data dependencies are also enforced by
  352. @code{starpu_data_acquire_cb} in case they are enabled.
  353. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  354. be called from task callbacks. Upon successful completion, this function
  355. returns 0.
  356. @end deftypefun
  357. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  358. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  359. except that the code to be executed in a callback is directly provided as a
  360. macro parameter, and the data handle is automatically released after it. This
  361. permits to easily execute code which depends on the value of some registered
  362. data. This is non-blocking too and may be called from task callbacks.
  363. @end defmac
  364. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  365. This function releases the piece of data acquired by the application either by
  366. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  367. @end deftypefun
  368. @node Data Interfaces
  369. @section Data Interfaces
  370. @menu
  371. * Registering Data::
  372. * Accessing Data Interfaces::
  373. @end menu
  374. @node Registering Data
  375. @subsection Registering Data
  376. There are several ways to register a memory region so that it can be managed by
  377. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  378. matrices as well as BCSR and CSR sparse matrices.
  379. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  380. Register a void interface. There is no data really associated to that
  381. interface, but it may be used as a synchronization mechanism. It also
  382. permits to express an abstract piece of data that is managed by the
  383. application internally: this makes it possible to forbid the
  384. concurrent execution of different tasks accessing the same "void" data
  385. in read-write concurrently.
  386. @end deftypefun
  387. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  388. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  389. typically a scalar, and initialize @var{handle} to represent this data
  390. item.
  391. @cartouche
  392. @smallexample
  393. float var;
  394. starpu_data_handle_t var_handle;
  395. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  396. @end smallexample
  397. @end cartouche
  398. @end deftypefun
  399. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  400. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  401. @var{ptr} and initialize @var{handle} to represent it.
  402. @cartouche
  403. @smallexample
  404. float vector[NX];
  405. starpu_data_handle_t vector_handle;
  406. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  407. sizeof(vector[0]));
  408. @end smallexample
  409. @end cartouche
  410. @end deftypefun
  411. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  412. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  413. pointed by @var{ptr} and initialize @var{handle} to represent it.
  414. @var{ld} specifies the number of elements between rows.
  415. a value greater than @var{nx} adds padding, which can be useful for
  416. alignment purposes.
  417. @cartouche
  418. @smallexample
  419. float *matrix;
  420. starpu_data_handle_t matrix_handle;
  421. matrix = (float*)malloc(width * height * sizeof(float));
  422. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  423. width, width, height, sizeof(float));
  424. @end smallexample
  425. @end cartouche
  426. @end deftypefun
  427. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  428. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  429. elements pointed by @var{ptr} and initialize @var{handle} to represent
  430. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  431. between rows and between z planes.
  432. @cartouche
  433. @smallexample
  434. float *block;
  435. starpu_data_handle_t block_handle;
  436. block = (float*)malloc(nx*ny*nz*sizeof(float));
  437. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  438. nx, nx*ny, nx, ny, nz, sizeof(float));
  439. @end smallexample
  440. @end cartouche
  441. @end deftypefun
  442. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  443. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  444. Compressed Sparse Row Representation) sparse matrix interface.
  445. TODO
  446. @end deftypefun
  447. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  448. This variant of @code{starpu_data_register} uses the CSR (Compressed
  449. Sparse Row Representation) sparse matrix interface.
  450. TODO
  451. @end deftypefun
  452. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  453. Return the interface associated with @var{handle} on @var{memory_node}.
  454. @end deftypefun
  455. @node Accessing Data Interfaces
  456. @subsection Accessing Data Interfaces
  457. Each data interface is provided with a set of field access functions.
  458. The ones using a @code{void *} parameter aimed to be used in codelet
  459. implementations (see for example the code in @ref{Source code of Vector Scaling}).
  460. @deftp {Data Type} {enum starpu_data_interface_id}
  461. The different values are:
  462. @table @asis
  463. @item @code{STARPU_MATRIX_INTERFACE_ID}
  464. @item @code{STARPU_BLOCK_INTERFACE_ID}
  465. @item @code{STARPU_VECTOR_INTERFACE_ID}
  466. @item @code{STARPU_CSR_INTERFACE_ID}
  467. @item @code{STARPU_BCSR_INTERFACE_ID}
  468. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  469. @item @code{STARPU_VOID_INTERFACE_ID}
  470. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  471. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  472. @end table
  473. @end deftp
  474. @menu
  475. * Accessing Handle::
  476. * Accessing Variable Data Interfaces::
  477. * Accessing Vector Data Interfaces::
  478. * Accessing Matrix Data Interfaces::
  479. * Accessing Block Data Interfaces::
  480. * Accessing BCSR Data Interfaces::
  481. * Accessing CSR Data Interfaces::
  482. @end menu
  483. @node Accessing Handle
  484. @subsubsection Handle
  485. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  486. Return the pointer associated with @var{handle} on node @var{node} or
  487. @code{NULL} if @var{handle}'s interface does not support this
  488. operation or data for this handle is not allocated on that node.
  489. @end deftypefun
  490. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  491. Return the local pointer associated with @var{handle} or @code{NULL}
  492. if @var{handle}'s interface does not have data allocated locally
  493. @end deftypefun
  494. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  495. Return the unique identifier of the interface associated with the given @var{handle}.
  496. @end deftypefun
  497. @node Accessing Variable Data Interfaces
  498. @subsubsection Variable Data Interfaces
  499. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  500. Return the size of the variable designated by @var{handle}.
  501. @end deftypefun
  502. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  503. Return a pointer to the variable designated by @var{handle}.
  504. @end deftypefun
  505. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  506. Return a pointer to the variable designated by @var{interface}.
  507. @end defmac
  508. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  509. Return the size of the variable designated by @var{interface}.
  510. @end defmac
  511. @node Accessing Vector Data Interfaces
  512. @subsubsection Vector Data Interfaces
  513. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  514. Return the number of elements registered into the array designated by @var{handle}.
  515. @end deftypefun
  516. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  517. Return the size of each element of the array designated by @var{handle}.
  518. @end deftypefun
  519. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  520. Return the local pointer associated with @var{handle}.
  521. @end deftypefun
  522. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  523. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  524. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  525. @end defmac
  526. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  527. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  528. documented below has to be used in addition to this.
  529. @end defmac
  530. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  531. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  532. @end defmac
  533. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  534. Return the number of elements registered into the array designated by @var{interface}.
  535. @end defmac
  536. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  537. Return the size of each element of the array designated by @var{interface}.
  538. @end defmac
  539. @node Accessing Matrix Data Interfaces
  540. @subsubsection Matrix Data Interfaces
  541. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  542. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  543. @end deftypefun
  544. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  545. Return the number of elements on the y-axis of the matrix designated by
  546. @var{handle}.
  547. @end deftypefun
  548. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  549. Return the number of extra elements present at the end of each row of the
  550. matrix designated by @var{handle}.
  551. @end deftypefun
  552. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  553. Return the local pointer associated with @var{handle}.
  554. @end deftypefun
  555. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  556. Return the size of the elements registered into the matrix designated by
  557. @var{handle}.
  558. @end deftypefun
  559. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  560. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  561. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  562. used instead.
  563. @end defmac
  564. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  565. Return a device handle for the matrix designated by @var{interface}, to be used
  566. on OpenCL. The offset documented below has to be used in addition to this.
  567. @end defmac
  568. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  569. Return the offset in the matrix designated by @var{interface}, to be used with
  570. the device handle.
  571. @end defmac
  572. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  573. Return the number of elements on the x-axis of the matrix designated by
  574. @var{interface}.
  575. @end defmac
  576. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  577. Return the number of elements on the y-axis of the matrix designated by
  578. @var{interface}.
  579. @end defmac
  580. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  581. Return the number of extra elements present at the end of each row of the
  582. matrix designated by @var{interface}.
  583. @end defmac
  584. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  585. Return the size of the elements registered into the matrix designated by
  586. @var{interface}.
  587. @end defmac
  588. @node Accessing Block Data Interfaces
  589. @subsubsection Block Data Interfaces
  590. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  591. Return the number of elements on the x-axis of the block designated by @var{handle}.
  592. @end deftypefun
  593. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  594. Return the number of elements on the y-axis of the block designated by @var{handle}.
  595. @end deftypefun
  596. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  597. Return the number of elements on the z-axis of the block designated by @var{handle}.
  598. @end deftypefun
  599. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  600. todo
  601. @end deftypefun
  602. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  603. todo
  604. @end deftypefun
  605. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  606. Return the local pointer associated with @var{handle}.
  607. @end deftypefun
  608. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  609. Return the size of the elements of the block designated by @var{handle}.
  610. @end deftypefun
  611. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  612. Return a pointer to the block designated by @var{interface}.
  613. @end defmac
  614. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  615. Return a device handle for the block designated by @var{interface}, to be used
  616. on OpenCL. The offset document below has to be used in addition to this.
  617. @end defmac
  618. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  619. Return the offset in the block designated by @var{interface}, to be used with
  620. the device handle.
  621. @end defmac
  622. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  623. Return the number of elements on the x-axis of the block designated by @var{handle}.
  624. @end defmac
  625. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  626. Return the number of elements on the y-axis of the block designated by @var{handle}.
  627. @end defmac
  628. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  629. Return the number of elements on the z-axis of the block designated by @var{handle}.
  630. @end defmac
  631. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  632. todo
  633. @end defmac
  634. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  635. todo
  636. @end defmac
  637. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  638. Return the size of the elements of the matrix designated by @var{interface}.
  639. @end defmac
  640. @node Accessing BCSR Data Interfaces
  641. @subsubsection BCSR Data Interfaces
  642. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  643. Return the number of non-zero elements in the matrix designated by @var{handle}.
  644. @end deftypefun
  645. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  646. Return the number of rows (in terms of blocks of size r*c) in the matrix
  647. designated by @var{handle}.
  648. @end deftypefun
  649. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  650. Return the index at which all arrays (the column indexes, the row pointers...)
  651. of the matrix desginated by @var{handle} start.
  652. @end deftypefun
  653. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  654. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  655. @end deftypefun
  656. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  657. Return a pointer to the column index, which holds the positions of the non-zero
  658. entries in the matrix designated by @var{handle}.
  659. @end deftypefun
  660. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  661. Return the row pointer array of the matrix designated by @var{handle}.
  662. @end deftypefun
  663. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  664. Return the number of rows in a block.
  665. @end deftypefun
  666. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  667. Return the numberof columns in a block.
  668. @end deftypefun
  669. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  670. Return the size of the elements in the matrix designated by @var{handle}.
  671. @end deftypefun
  672. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  673. todo
  674. @end defmac
  675. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  676. todo
  677. @end defmac
  678. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  679. todo
  680. @end defmac
  681. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  682. todo
  683. @end defmac
  684. @node Accessing CSR Data Interfaces
  685. @subsubsection CSR Data Interfaces
  686. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  687. Return the number of non-zero values in the matrix designated by @var{handle}.
  688. @end deftypefun
  689. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  690. Return the size of the row pointer array of the matrix designated by @var{handle}.
  691. @end deftypefun
  692. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  693. Return the index at which all arrays (the column indexes, the row pointers...)
  694. of the matrix designated by @var{handle} start.
  695. @end deftypefun
  696. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  697. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  698. @end deftypefun
  699. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  700. Return a local pointer to the column index of the matrix designated by @var{handle}.
  701. @end deftypefun
  702. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  703. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  704. @end deftypefun
  705. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  706. Return the size of the elements registered into the matrix designated by @var{handle}.
  707. @end deftypefun
  708. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  709. Return the number of non-zero values in the matrix designated by @var{interface}.
  710. @end defmac
  711. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  712. Return the size of the row pointer array of the matrix designated by @var{interface}.
  713. @end defmac
  714. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  715. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  716. @end defmac
  717. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  718. Return a pointer to the column index of the matrix designated by @var{interface}.
  719. @end defmac
  720. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  721. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  722. @end defmac
  723. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  724. Return the index at which all arrays (the column indexes, the row pointers...)
  725. of the @var{interface} start.
  726. @end defmac
  727. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  728. Return the size of the elements registered into the matrix designated by @var{interface}.
  729. @end defmac
  730. @node Data Partition
  731. @section Data Partition
  732. @menu
  733. * Basic API::
  734. * Predefined filter functions::
  735. @end menu
  736. @node Basic API
  737. @subsection Basic API
  738. @deftp {Data Type} {struct starpu_data_filter}
  739. The filter structure describes a data partitioning operation, to be given to the
  740. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  741. for an example. The different fields are:
  742. @table @asis
  743. @item @code{filter_func}
  744. This function fills the @code{child_interface} structure with interface
  745. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  746. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  747. @item @code{nchildren}
  748. This is the number of parts to partition the data into.
  749. @item @code{get_nchildren}
  750. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  751. children depends on the actual data (e.g. the number of blocks in a sparse
  752. matrix).
  753. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle);}
  754. @item @code{get_child_ops}
  755. In case the resulting children use a different data interface, this function
  756. returns which interface is used by child number @code{id}.
  757. @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  758. @item @code{filter_arg}
  759. Some filters take an addition parameter, but this is usually unused.
  760. @item @code{filter_arg_ptr}
  761. Some filters take an additional array parameter like the sizes of the parts, but
  762. this is usually unused.
  763. @end table
  764. @end deftp
  765. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  766. @anchor{starpu_data_partition}
  767. This requests partitioning one StarPU data @var{initial_handle} into several
  768. subdata according to the filter @var{f}, as shown in the following example:
  769. @cartouche
  770. @smallexample
  771. struct starpu_data_filter f = @{
  772. .filter_func = starpu_vertical_block_filter_func,
  773. .nchildren = nslicesx,
  774. .get_nchildren = NULL,
  775. .get_child_ops = NULL
  776. @};
  777. starpu_data_partition(A_handle, &f);
  778. @end smallexample
  779. @end cartouche
  780. @end deftypefun
  781. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  782. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  783. collected back into one big piece in the @var{gathering_node} (usually 0).
  784. @cartouche
  785. @smallexample
  786. starpu_data_unpartition(A_handle, 0);
  787. @end smallexample
  788. @end cartouche
  789. @end deftypefun
  790. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  791. This function returns the number of children.
  792. @end deftypefun
  793. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  794. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  795. @end deftypefun
  796. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  797. After partitioning a StarPU data by applying a filter,
  798. @code{starpu_data_get_sub_data} can be used to get handles for each of
  799. the data portions. @var{root_data} is the parent data that was
  800. partitioned. @var{depth} is the number of filters to traverse (in
  801. case several filters have been applied, to e.g. partition in row
  802. blocks, and then in column blocks), and the subsequent
  803. parameters are the indexes. The function returns a handle to the
  804. subdata.
  805. @cartouche
  806. @smallexample
  807. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  808. @end smallexample
  809. @end cartouche
  810. @end deftypefun
  811. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  812. This function is similar to @code{starpu_data_get_sub_data} but uses a
  813. va_list for the parameter list.
  814. @end deftypefun
  815. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  816. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  817. recursively. @var{nfilters} pointers to variables of the type
  818. starpu_data_filter should be given.
  819. @end deftypefun
  820. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  821. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  822. recursively. It uses a va_list of pointers to variables of the typer
  823. starpu_data_filter.
  824. @end deftypefun
  825. @node Predefined filter functions
  826. @subsection Predefined filter functions
  827. @menu
  828. * Partitioning BCSR Data::
  829. * Partitioning BLAS interface::
  830. * Partitioning Vector Data::
  831. * Partitioning Block Data::
  832. @end menu
  833. This section gives a partial list of the predefined partitioning functions.
  834. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  835. list can be found in @code{starpu_data_filters.h} .
  836. @node Partitioning BCSR Data
  837. @subsubsection Partitioning BCSR Data
  838. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  839. TODO
  840. @end deftypefun
  841. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  842. TODO
  843. @end deftypefun
  844. @node Partitioning BLAS interface
  845. @subsubsection Partitioning BLAS interface
  846. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  847. This partitions a dense Matrix into horizontal blocks.
  848. @end deftypefun
  849. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  850. This partitions a dense Matrix into vertical blocks.
  851. @end deftypefun
  852. @node Partitioning Vector Data
  853. @subsubsection Partitioning Vector Data
  854. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  855. Return in @code{*@var{child_interface}} the @var{id}th element of the
  856. vector represented by @var{father_interface} once partitioned in
  857. @var{nparts} chunks of equal size.
  858. @end deftypefun
  859. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  860. Return in @code{*@var{child_interface}} the @var{id}th element of the
  861. vector represented by @var{father_interface} once partitioned into
  862. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  863. @code{*@var{f}}.
  864. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  865. @code{uint32_t} elements, each of which specifies the number of elements
  866. in each chunk of the partition.
  867. @end deftypefun
  868. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  869. Return in @code{*@var{child_interface}} the @var{id}th element of the
  870. vector represented by @var{father_interface} once partitioned in two
  871. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  872. @code{0} or @code{1}.
  873. @end deftypefun
  874. @node Partitioning Block Data
  875. @subsubsection Partitioning Block Data
  876. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  877. This partitions a 3D matrix along the X axis.
  878. @end deftypefun
  879. @node Codelets and Tasks
  880. @section Codelets and Tasks
  881. This section describes the interface to manipulate codelets and tasks.
  882. @deftp {Data Type} {enum starpu_codelet_type}
  883. todo
  884. @end deftp
  885. @deftp {Data Type} {struct starpu_codelet}
  886. The codelet structure describes a kernel that is possibly implemented on various
  887. targets. For compatibility, make sure to initialize the whole structure to zero.
  888. @table @asis
  889. @item @code{where} (optional)
  890. Indicates which types of processing units are able to execute the
  891. codelet. The different values
  892. @code{STARPU_CPU}, @code{STARPU_CUDA}, @code{STARPU_SPU},
  893. @code{STARPU_GORDON}, @code{STARPU_OPENCL} can be combined to specify
  894. on which types of processing units the codelet can be executed.
  895. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  896. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  897. indicates that it is only available on Cell SPUs. If the field is
  898. unset, its value will be automatically set based on the availability
  899. of the @code{XXX_funcs} fields defined below.
  900. @item @code{can_execute} (optional)
  901. Function prototype:
  902. @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)}.
  903. Returns 1 if the worker designated by @var{workerid} can execute the @var{nimpl}th implementation of the given@var{task}, 0 otherwise.
  904. @item @code{cpu_func} (optional)
  905. This field has been made deprecated. One should use instead the
  906. @code{cpu_funcs} field.
  907. @item @code{cpu_funcs} (optional)
  908. Is an array of function pointers to the CPU implementations of the codelet.
  909. It must be terminated by a NULL value.
  910. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  911. argument being the array of data managed by the data management library, and
  912. the second argument is a pointer to the argument passed from the @code{cl_arg}
  913. field of the @code{starpu_task} structure.
  914. If the @code{where} field is set, then the @code{cpu_funcs} field is
  915. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  916. field, it must be non-null otherwise.
  917. @item @code{cuda_func} (optional)
  918. This field has been made deprecated. One should use instead the
  919. @code{cuda_funcs} field.
  920. @item @code{cuda_funcs} (optional)
  921. Is an array of function pointers to the CUDA implementations of the codelet.
  922. It must be terminated by a NULL value.
  923. @emph{The functions must be host-functions written in the CUDA runtime
  924. API}. Their prototype must
  925. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  926. If the @code{where} field is set, then the @code{cuda_funcs}
  927. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  928. field, it must be non-null otherwise.
  929. @item @code{opencl_func} (optional)
  930. This field has been made deprecated. One should use instead the
  931. @code{opencl_funcs} field.
  932. @item @code{opencl_funcs} (optional)
  933. Is an array of function pointers to the OpenCL implementations of the codelet.
  934. It must be terminated by a NULL value.
  935. The functions prototype must be:
  936. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  937. If the @code{where} field is set, then the @code{opencl_funcs} field
  938. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  939. field, it must be non-null otherwise.
  940. @item @code{gordon_func} (optional)
  941. This field has been made deprecated. One should use instead the
  942. @code{gordon_funcs} field.
  943. @item @code{gordon_funcs} (optional)
  944. Is an array of index of the Cell SPU implementations of the codelet within the
  945. Gordon library.
  946. It must be terminated by a NULL value.
  947. See Gordon documentation for more details on how to register a kernel and
  948. retrieve its index.
  949. @item @code{nbuffers}
  950. Specifies the number of arguments taken by the codelet. These arguments are
  951. managed by the DSM and are accessed from the @code{void *buffers[]}
  952. array. The constant argument passed with the @code{cl_arg} field of the
  953. @code{starpu_task} structure is not counted in this number. This value should
  954. not be above @code{STARPU_NMAXBUFS}.
  955. @item @code{modes}
  956. Is an array of @code{enum starpu_access_mode}. It describes the
  957. required access modes to the data neeeded by the codelet (e.g.
  958. @code{STARPU_RW}). The number of entries in this array must be
  959. specified in the @code{nbuffers} field (defined above), and should not
  960. exceed @code{STARPU_NMAXBUFS}.
  961. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  962. option when configuring StarPU.
  963. @item @code{model} (optional)
  964. This is a pointer to the task duration performance model associated to this
  965. codelet. This optional field is ignored when set to @code{NULL}.
  966. TODO
  967. @item @code{power_model} (optional)
  968. This is a pointer to the task power consumption performance model associated
  969. to this codelet. This optional field is ignored when set to @code{NULL}.
  970. In the case of parallel codelets, this has to account for all processing units
  971. involved in the parallel execution.
  972. TODO
  973. @item @code{per_worker_stats} (optional)
  974. Statistics collected at runtime: this is filled by StarPU and should not be
  975. accessed directly (use the starpu_display_codelet_stats function instead for
  976. instance).
  977. @item @code{name} (optional)
  978. Codelets are allowed to have a name, which can be useful for debugging purposes.
  979. @item @code{type} (optional)
  980. (@code{enum starpu_codelet_type})
  981. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  982. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  983. implementation is also available. See @ref{Parallel Tasks} for details.
  984. @item @code{max_parallelism} (optional)
  985. If a parallel implementation is available, this denotes the maximum combined
  986. worker size that StarPU will use to execute parallel tasks for this codelet.
  987. @end table
  988. @end deftp
  989. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  990. Initialize @var{cl} with default values. Codelets should preferably be
  991. initialized statically as shown in @ref{Defining a Codelet}. However
  992. such a initialisation is not always possible, e.g. when using C++.
  993. @end deftypefun
  994. @deftp {Data Type} {enum starpu_task_status}
  995. todo
  996. @end deftp
  997. @deftp {Data Type} {struct starpu_task}
  998. The @code{starpu_task} structure describes a task that can be offloaded on the various
  999. processing units managed by StarPU. It instantiates a codelet. It can either be
  1000. allocated dynamically with the @code{starpu_task_create} method, or declared
  1001. statically. In the latter case, the programmer has to zero the
  1002. @code{starpu_task} structure and to fill the different fields properly. The
  1003. indicated default values correspond to the configuration of a task allocated
  1004. with @code{starpu_task_create}.
  1005. @table @asis
  1006. @item @code{cl}
  1007. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1008. describes where the kernel should be executed, and supplies the appropriate
  1009. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1010. such empty tasks can be useful for synchronization purposes.
  1011. @item @code{buffers}
  1012. This field has been made deprecated. One should use instead the
  1013. @code{handles} field to specify the handles to the data accessed by
  1014. the task. The access modes are now defined in the @code{mode} field of
  1015. the @code{struct starpu_codelet} structure.
  1016. @item @code{handles}
  1017. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1018. to the different pieces of data accessed by the task. The number
  1019. of entries in this array must be specified in the @code{nbuffers} field of the
  1020. @code{struct starpu_codelet} structure, and should not exceed
  1021. @code{STARPU_NMAXBUFS}.
  1022. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1023. option when configuring StarPU.
  1024. @item @code{interfaces}
  1025. todo
  1026. @item @code{cl_arg} (optional; default: @code{NULL})
  1027. This pointer is passed to the codelet through the second argument
  1028. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1029. In the specific case of the Cell processor, see the @code{cl_arg_size}
  1030. argument.
  1031. @item @code{cl_arg_size} (optional, Cell-specific)
  1032. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  1033. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  1034. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  1035. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  1036. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  1037. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  1038. codelets, where the @code{cl_arg} pointer is given as such.
  1039. @item @code{callback_func} (optional) (default: @code{NULL})
  1040. This is a function pointer of prototype @code{void (*f)(void *)} which
  1041. specifies a possible callback. If this pointer is non-null, the callback
  1042. function is executed @emph{on the host} after the execution of the task. The
  1043. callback is passed the value contained in the @code{callback_arg} field. No
  1044. callback is executed if the field is set to @code{NULL}.
  1045. @item @code{callback_arg} (optional) (default: @code{NULL})
  1046. This is the pointer passed to the callback function. This field is ignored if
  1047. the @code{callback_func} is set to @code{NULL}.
  1048. @item @code{use_tag} (optional) (default: @code{0})
  1049. If set, this flag indicates that the task should be associated with the tag
  1050. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1051. with the task and to express task dependencies easily.
  1052. @item @code{tag_id}
  1053. This fields contains the tag associated to the task if the @code{use_tag} field
  1054. was set, it is ignored otherwise.
  1055. @item @code{synchronous}
  1056. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1057. returns only when the task has been executed (or if no worker is able to
  1058. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1059. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1060. This field indicates a level of priority for the task. This is an integer value
  1061. that must be set between the return values of the
  1062. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1063. and that of the @code{starpu_sched_get_max_priority} for the most important
  1064. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1065. are provided for convenience and respectively returns value of
  1066. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1067. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1068. order to allow static task initialization. Scheduling strategies that take
  1069. priorities into account can use this parameter to take better scheduling
  1070. decisions, but the scheduling policy may also ignore it.
  1071. @item @code{execute_on_a_specific_worker} (default: @code{0})
  1072. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1073. task to the worker specified by the @code{workerid} field.
  1074. @item @code{workerid} (optional)
  1075. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1076. which is the identifier of the worker that should process this task (as
  1077. returned by @code{starpu_worker_get_id}). This field is ignored if
  1078. @code{execute_on_a_specific_worker} field is set to 0.
  1079. @item @code{bundle} (optional)
  1080. The bundle that includes this task. If no bundle is used, this should be NULL.
  1081. @item @code{detach} (optional) (default: @code{1})
  1082. If this flag is set, it is not possible to synchronize with the task
  1083. by the means of @code{starpu_task_wait} later on. Internal data structures
  1084. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1085. flag is not set.
  1086. @item @code{destroy} (optional) (default: @code{1})
  1087. If this flag is set, the task structure will automatically be freed, either
  1088. after the execution of the callback if the task is detached, or during
  1089. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1090. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1091. called explicitly. Setting this flag for a statically allocated task structure
  1092. will result in undefined behaviour.
  1093. @item @code{regenerate} (optional)
  1094. If this flag is set, the task will be re-submitted to StarPU once it has been
  1095. executed. This flag must not be set if the destroy flag is set too.
  1096. @item @code{status} (optional)
  1097. @code{enum starpu_task_status} todo
  1098. @item @code{profiling_info} (optional)
  1099. @code{struct starpu_task_profiling_info *} todo
  1100. @item @code{predicted} (output field)
  1101. Predicted duration of the task. This field is only set if the scheduling
  1102. strategy used performance models.
  1103. @item @code{predicted_transfer} (optional)
  1104. Predicted data transfer duration for the task in microseconds. This field is
  1105. only valid if the scheduling strategy uses performance models.
  1106. @item @code{prev}
  1107. A pointer to the previous task. This should only be used by StarPU.
  1108. @item @code{next}
  1109. A pointer to the next task. This should only be used by StarPU.
  1110. @item @code{mf_skip}
  1111. todo
  1112. @item @code{starpu_private}
  1113. This is private to StarPU, do not modify. If the task is allocated by hand
  1114. (without starpu_task_create), this field should be set to NULL.
  1115. @item @code{magic}
  1116. This field is set when initializing a task. It prevents a task from being
  1117. submitted if it has not been properly initialized.
  1118. @end table
  1119. @end deftp
  1120. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1121. Initialize @var{task} with default values. This function is implicitly
  1122. called by @code{starpu_task_create}. By default, tasks initialized with
  1123. @code{starpu_task_init} must be deinitialized explicitly with
  1124. @code{starpu_task_deinit}. Tasks can also be initialized statically,
  1125. using @code{STARPU_TASK_INITIALIZER} defined below.
  1126. @end deftypefun
  1127. @defmac STARPU_TASK_INITIALIZER
  1128. It is possible to initialize statically allocated tasks with this
  1129. value. This is equivalent to initializing a starpu_task structure with
  1130. the @code{starpu_task_init} function defined above.
  1131. @end defmac
  1132. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1133. Allocate a task structure and initialize it with default values. Tasks
  1134. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1135. task is terminated. This means that the task pointer can not be used any more
  1136. once the task is submitted, since it can be executed at any time (unless
  1137. dependencies make it wait) and thus freed at any time.
  1138. If the destroy flag is explicitly unset, the resources used
  1139. by the task have to be freed by calling
  1140. @code{starpu_task_destroy}.
  1141. @end deftypefun
  1142. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  1143. Release all the structures automatically allocated to execute @var{task}. This is
  1144. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  1145. freed. This should be used for statically allocated tasks for instance.
  1146. @end deftypefun
  1147. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1148. Free the resource allocated during @code{starpu_task_create} and
  1149. associated with @var{task}. This function can be called automatically
  1150. after the execution of a task by setting the @code{destroy} flag of the
  1151. @code{starpu_task} structure (default behaviour). Calling this function
  1152. on a statically allocated task results in an undefined behaviour.
  1153. @end deftypefun
  1154. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1155. This function blocks until @var{task} has been executed. It is not possible to
  1156. synchronize with a task more than once. It is not possible to wait for
  1157. synchronous or detached tasks.
  1158. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1159. indicates that the specified task was either synchronous or detached.
  1160. @end deftypefun
  1161. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1162. This function submits @var{task} to StarPU. Calling this function does
  1163. not mean that the task will be executed immediately as there can be data or task
  1164. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1165. scheduling this task with respect to such dependencies.
  1166. This function returns immediately if the @code{synchronous} field of the
  1167. @code{starpu_task} structure was set to 0, and block until the termination of
  1168. the task otherwise. It is also possible to synchronize the application with
  1169. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1170. function for instance.
  1171. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1172. means that there is no worker able to process this task (e.g. there is no GPU
  1173. available and this task is only implemented for CUDA devices).
  1174. @end deftypefun
  1175. @deftypefun int starpu_task_wait_for_all (void)
  1176. This function blocks until all the tasks that were submitted are terminated.
  1177. @end deftypefun
  1178. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1179. This function returns the task currently executed by the worker, or
  1180. NULL if it is called either from a thread that is not a task or simply
  1181. because there is no task being executed at the moment.
  1182. @end deftypefun
  1183. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1184. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1185. @end deftypefun
  1186. @deftypefun int starpu_task_wait_for_no_ready (void)
  1187. This function waits until there is no more ready task.
  1188. @end deftypefun
  1189. @c Callbacks: what can we put in callbacks ?
  1190. @node Explicit Dependencies
  1191. @section Explicit Dependencies
  1192. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1193. Declare task dependencies between a @var{task} and an array of tasks of length
  1194. @var{ndeps}. This function must be called prior to the submission of the task,
  1195. but it may called after the submission or the execution of the tasks in the
  1196. array, provided the tasks are still valid (ie. they were not automatically
  1197. destroyed). Calling this function on a task that was already submitted or with
  1198. an entry of @var{task_array} that is not a valid task anymore results in an
  1199. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1200. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1201. same task, in this case, the dependencies are added. It is possible to have
  1202. redundancy in the task dependencies.
  1203. @end deftypefun
  1204. @deftp {Data Type} {starpu_tag_t}
  1205. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1206. dependencies between tasks by the means of those tags. To do so, fill the
  1207. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1208. be arbitrary) and set the @code{use_tag} field to 1.
  1209. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1210. not be started until the tasks which holds the declared dependency tags are
  1211. completed.
  1212. @end deftp
  1213. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1214. Specify the dependencies of the task identified by tag @var{id}. The first
  1215. argument specifies the tag which is configured, the second argument gives the
  1216. number of tag(s) on which @var{id} depends. The following arguments are the
  1217. tags which have to be terminated to unlock the task.
  1218. This function must be called before the associated task is submitted to StarPU
  1219. with @code{starpu_task_submit}.
  1220. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1221. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1222. typically need to be explicitly casted. Using the
  1223. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1224. @cartouche
  1225. @smallexample
  1226. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1227. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1228. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1229. @end smallexample
  1230. @end cartouche
  1231. @end deftypefun
  1232. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1233. This function is similar to @code{starpu_tag_declare_deps}, except
  1234. that its does not take a variable number of arguments but an array of
  1235. tags of size @var{ndeps}.
  1236. @cartouche
  1237. @smallexample
  1238. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1239. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1240. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1241. @end smallexample
  1242. @end cartouche
  1243. @end deftypefun
  1244. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1245. This function blocks until the task associated to tag @var{id} has been
  1246. executed. This is a blocking call which must therefore not be called within
  1247. tasks or callbacks, but only from the application directly. It is possible to
  1248. synchronize with the same tag multiple times, as long as the
  1249. @code{starpu_tag_remove} function is not called. Note that it is still
  1250. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1251. data structure was freed (e.g. if the @code{destroy} flag of the
  1252. @code{starpu_task} was enabled).
  1253. @end deftypefun
  1254. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1255. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1256. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1257. terminated.
  1258. @end deftypefun
  1259. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1260. This function releases the resources associated to tag @var{id}. It can be
  1261. called once the corresponding task has been executed and when there is
  1262. no other tag that depend on this tag anymore.
  1263. @end deftypefun
  1264. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1265. This function explicitly unlocks tag @var{id}. It may be useful in the
  1266. case of applications which execute part of their computation outside StarPU
  1267. tasks (e.g. third-party libraries). It is also provided as a
  1268. convenient tool for the programmer, for instance to entirely construct the task
  1269. DAG before actually giving StarPU the opportunity to execute the tasks.
  1270. @end deftypefun
  1271. @node Implicit Data Dependencies
  1272. @section Implicit Data Dependencies
  1273. In this section, we describe how StarPU makes it possible to insert implicit
  1274. task dependencies in order to enforce sequential data consistency. When this
  1275. data consistency is enabled on a specific data handle, any data access will
  1276. appear as sequentially consistent from the application. For instance, if the
  1277. application submits two tasks that access the same piece of data in read-only
  1278. mode, and then a third task that access it in write mode, dependencies will be
  1279. added between the two first tasks and the third one. Implicit data dependencies
  1280. are also inserted in the case of data accesses from the application.
  1281. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1282. Set the default sequential consistency flag. If a non-zero value is passed, a
  1283. sequential data consistency will be enforced for all handles registered after
  1284. this function call, otherwise it is disabled. By default, StarPU enables
  1285. sequential data consistency. It is also possible to select the data consistency
  1286. mode of a specific data handle with the
  1287. @code{starpu_data_set_sequential_consistency_flag} function.
  1288. @end deftypefun
  1289. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1290. Return the default sequential consistency flag
  1291. @end deftypefun
  1292. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1293. Sets the data consistency mode associated to a data handle. The consistency
  1294. mode set using this function has the priority over the default mode which can
  1295. be set with @code{starpu_data_set_sequential_consistency_flag}.
  1296. @end deftypefun
  1297. @node Performance Model API
  1298. @section Performance Model API
  1299. @deftp {Data Type} {enum starpu_perf_archtype}
  1300. Enumerates the various types of architectures.
  1301. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1302. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1303. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1304. @table @asis
  1305. @item @code{STARPU_CPU_DEFAULT}
  1306. @item @code{STARPU_CUDA_DEFAULT}
  1307. @item @code{STARPU_OPENCL_DEFAULT}
  1308. @item @code{STARPU_GORDON_DEFAULT}
  1309. @end table
  1310. @end deftp
  1311. @deftp {Data Type} {enum starpu_perfmodel_type}
  1312. The possible values are:
  1313. @table @asis
  1314. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1315. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1316. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1317. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1318. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1319. @end table
  1320. @end deftp
  1321. @deftp {Data Type} {struct starpu_perfmodel}
  1322. contains all information about a performance model. At least the
  1323. @code{type} and @code{symbol} fields have to be filled when defining a
  1324. performance model for a codelet. If not provided, other fields have to be zero.
  1325. @table @asis
  1326. @item @code{type}
  1327. is the type of performance model @code{enum starpu_perfmodel_type}:
  1328. @code{STARPU_HISTORY_BASED},
  1329. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1330. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1331. @code{per_arch} has to be filled with functions which return the cost in
  1332. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1333. a function that returns the cost in micro-seconds on a CPU, timing on other
  1334. archs will be determined by multiplying by an arch-specific factor.
  1335. @item @code{symbol}
  1336. is the symbol name for the performance model, which will be used as
  1337. file name to store the model.
  1338. @item @code{cost_model}
  1339. This field is deprecated. Use instead the @code{cost_function} field.
  1340. @item @code{cost_function}
  1341. Used by @code{STARPU_COMMON}: takes a task and
  1342. implementation number, and must return a task duration estimation in micro-seconds.
  1343. @item @code{per_arch}
  1344. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1345. starpu_per_arch_perfmodel} structures.
  1346. @item @code{size_base}
  1347. Used by @code{STARPU_HISTORY_BASED} and
  1348. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1349. implementation number, and returns the size to be used as index for
  1350. history and regression.
  1351. @end table
  1352. @end deftp
  1353. @deftp {Data Type} {struct starpu_per_arch_perfmodel}
  1354. contains information about the performance model of a given arch.
  1355. @table @asis
  1356. @item @code{cost_model}
  1357. This field is deprecated. Use instead the @code{cost_function} field.
  1358. @item @code{cost_function}
  1359. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1360. target arch and implementation number (as mere conveniency, since the array
  1361. is already indexed by these), and must return a task duration estimation in
  1362. micro-seconds.
  1363. @item @code{list}
  1364. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1365. records all execution history measures.
  1366. @item @code{regression}
  1367. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1368. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1369. regression.
  1370. @item @code{size_base}: Same as in @code{struct perfmodel}, but per-arch, in
  1371. case it depends on the architecture-specific implementation.
  1372. @end table
  1373. @end deftp
  1374. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1375. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{~/.starpu}.
  1376. @end deftypefun
  1377. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1378. returns the path to the debugging information for the performance model.
  1379. @end deftypefun
  1380. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1381. returns the architecture name for @var{arch}.
  1382. todo
  1383. @end deftypefun
  1384. @deftypefun void starpu_force_bus_sampling (void)
  1385. forces sampling the bus performance model again.
  1386. @end deftypefun
  1387. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1388. returns the architecture type of a given worker.
  1389. @end deftypefun
  1390. @deftypefun int starpu_list_models ({FILE *}@var{output})
  1391. prints a list of all performance models on @var{output}.
  1392. @end deftypefun
  1393. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1394. prints a matrix of bus bandwidths on @var{f}.
  1395. @end deftypefun
  1396. @node Profiling API
  1397. @section Profiling API
  1398. @deftypefun int starpu_profiling_status_set (int @var{status})
  1399. Thie function sets the profiling status. Profiling is activated by passing
  1400. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1401. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1402. resets all profiling measurements. When profiling is enabled, the
  1403. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1404. to a valid @code{struct starpu_task_profiling_info} structure containing
  1405. information about the execution of the task.
  1406. Negative return values indicate an error, otherwise the previous status is
  1407. returned.
  1408. @end deftypefun
  1409. @deftypefun int starpu_profiling_status_get (void)
  1410. Return the current profiling status or a negative value in case there was an error.
  1411. @end deftypefun
  1412. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1413. This function sets the ID used for profiling trace filename
  1414. @end deftypefun
  1415. @deftp {Data Type} {struct starpu_task_profiling_info}
  1416. This structure contains information about the execution of a task. It is
  1417. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1418. structure if profiling was enabled. The different fields are:
  1419. @table @asis
  1420. @item @code{submit_time}
  1421. Date of task submission (relative to the initialization of StarPU).
  1422. @item @code{start_time}
  1423. Date of task execution beginning (relative to the initialization of StarPU).
  1424. @item @code{end_time}
  1425. Date of task execution termination (relative to the initialization of StarPU).
  1426. @item @code{workerid}
  1427. Identifier of the worker which has executed the task.
  1428. @end table
  1429. @end deftp
  1430. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1431. This structure contains the profiling information associated to a
  1432. worker. The different fields are:
  1433. @table @asis
  1434. @item @code{start_time}
  1435. Starting date for the reported profiling measurements.
  1436. @item @code{total_time}
  1437. Duration of the profiling measurement interval.
  1438. @item @code{executing_time}
  1439. Time spent by the worker to execute tasks during the profiling measurement interval.
  1440. @item @code{sleeping_time}
  1441. Time spent idling by the worker during the profiling measurement interval.
  1442. @item @code{executed_tasks}
  1443. Number of tasks executed by the worker during the profiling measurement interval.
  1444. @end table
  1445. @end deftp
  1446. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1447. Get the profiling info associated to the worker identified by @var{workerid},
  1448. and reset the profiling measurements. If the @var{worker_info} argument is
  1449. NULL, only reset the counters associated to worker @var{workerid}.
  1450. Upon successful completion, this function returns 0. Otherwise, a negative
  1451. value is returned.
  1452. @end deftypefun
  1453. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1454. TODO. The different fields are:
  1455. @table @asis
  1456. @item @code{start_time}
  1457. TODO
  1458. @item @code{total_time}
  1459. TODO
  1460. @item @code{transferred_bytes}
  1461. TODO
  1462. @item @code{transfer_count}
  1463. TODO
  1464. @end table
  1465. @end deftp
  1466. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1467. Get the profiling info associated to the worker designated by @var{workerid},
  1468. and reset the profiling measurements. If worker_info is NULL, only reset the
  1469. counters.
  1470. @end deftypefun
  1471. @deftypefun int starpu_bus_get_count (void)
  1472. TODO
  1473. @end deftypefun
  1474. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1475. TODO
  1476. @end deftypefun
  1477. @deftypefun int starpu_bus_get_src (int @var{busid})
  1478. TODO
  1479. @end deftypefun
  1480. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1481. TODO
  1482. @end deftypefun
  1483. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1484. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  1485. @end deftypefun
  1486. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1487. Converts the given timespec @var{ts} into microseconds.
  1488. @end deftypefun
  1489. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1490. TODO
  1491. @end deftypefun
  1492. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1493. TODO
  1494. @end deftypefun
  1495. @node CUDA extensions
  1496. @section CUDA extensions
  1497. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  1498. This function gets the current worker's CUDA stream.
  1499. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1500. function is only provided for convenience so that programmers can easily use
  1501. asynchronous operations within codelets without having to create a stream by
  1502. hand. Note that the application is not forced to use the stream provided by
  1503. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1504. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1505. the likelihood of having all transfers overlapped.
  1506. @end deftypefun
  1507. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  1508. This function returns a pointer to device properties for worker @var{workerid}
  1509. (assumed to be a CUDA worker).
  1510. @end deftypefun
  1511. @deftypefun size_t starpu_cuda_get_global_mem_size (int @var{devid})
  1512. todo
  1513. @end deftypefun
  1514. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  1515. todo
  1516. @end deftypefun
  1517. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  1518. todo
  1519. @end defmac
  1520. @deftypefun void starpu_helper_cublas_init (void)
  1521. This function initializes CUBLAS on every CUDA device.
  1522. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  1523. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  1524. controlled by StarPU. This call blocks until CUBLAS has been properly
  1525. initialized on every device.
  1526. @end deftypefun
  1527. @deftypefun void starpu_helper_cublas_shutdown (void)
  1528. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  1529. @end deftypefun
  1530. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  1531. todo
  1532. @end deftypefun
  1533. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  1534. todo
  1535. @end defmac
  1536. @node OpenCL extensions
  1537. @section OpenCL extensions
  1538. @menu
  1539. * Writing OpenCL kernels:: Writing OpenCL kernels
  1540. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  1541. * Loading OpenCL kernels:: Loading OpenCL kernels
  1542. * OpenCL statistics:: Collecting statistics from OpenCL
  1543. * OpenCL utilities:: Utilities for OpenCL
  1544. @end menu
  1545. @node Writing OpenCL kernels
  1546. @subsection Writing OpenCL kernels
  1547. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  1548. Return the size of global device memory in bytes.
  1549. @end deftypefun
  1550. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  1551. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  1552. @end deftypefun
  1553. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  1554. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  1555. @end deftypefun
  1556. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  1557. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  1558. @end deftypefun
  1559. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  1560. todo
  1561. @end deftypefun
  1562. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  1563. todo
  1564. @end deftypefun
  1565. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  1566. Sets the arguments of a given kernel. The list of arguments must be given as
  1567. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  1568. The last argument must be 0. Returns the number of arguments that were
  1569. successfully set. In case of failure, @var{err} is set to the error returned by
  1570. OpenCL.
  1571. @end deftypefun
  1572. @node Compiling OpenCL kernels
  1573. @subsection Compiling OpenCL kernels
  1574. Source codes for OpenCL kernels can be stored in a file or in a
  1575. string. StarPU provides functions to build the program executable for
  1576. each available OpenCL device as a @code{cl_program} object. This
  1577. program executable can then be loaded within a specific queue as
  1578. explained in the next section. These are only helpers, Applications
  1579. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  1580. use (e.g. different programs on the different OpenCL devices, for
  1581. relocation purpose for instance).
  1582. @deftp {Data Type} {struct starpu_opencl_program}
  1583. todo
  1584. @end deftp
  1585. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1586. @anchor{starpu_opencl_load_opencl_from_file}
  1587. This function compiles an OpenCL source code stored in a file.
  1588. @end deftypefun
  1589. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1590. This function compiles an OpenCL source code stored in a string.
  1591. @end deftypefun
  1592. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  1593. This function unloads an OpenCL compiled code.
  1594. @end deftypefun
  1595. @node Loading OpenCL kernels
  1596. @subsection Loading OpenCL kernels
  1597. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  1598. TODO
  1599. @end deftypefun
  1600. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  1601. TODO
  1602. @end deftypefun
  1603. @node OpenCL statistics
  1604. @subsection OpenCL statistics
  1605. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  1606. This function allows to collect statistics on a kernel execution.
  1607. After termination of the kernels, the OpenCL codelet should call this function
  1608. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  1609. collect statistics about the kernel execution (used cycles, consumed power).
  1610. @end deftypefun
  1611. @node OpenCL utilities
  1612. @subsection OpenCL utilities
  1613. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1614. Given a valid error @var{status}, prints the corresponding error message on
  1615. stdout, along with the given function name @var{func}, the given filename
  1616. @var{file}, the given line number @var{line} and the given message @var{msg}.
  1617. @end deftypefun
  1618. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  1619. Call the function @code{starpu_opencl_display_error} with the given
  1620. error @var{status}, the current function name, current file and line
  1621. number, and a empty message.
  1622. @end defmac
  1623. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1624. Call the function @code{starpu_opencl_display_error} and abort.
  1625. @end deftypefun
  1626. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  1627. Call the function @code{starpu_opencl_report_error} with the given
  1628. error @var{status}, with the current function name, current file and
  1629. line number, and a empty message.
  1630. @end defmac
  1631. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  1632. Call the function @code{starpu_opencl_report_error} with the given
  1633. message and the given error @var{status}, with the current function
  1634. name, current file and line number.
  1635. @end defmac
  1636. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  1637. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  1638. valid combination of cl_mem_flags values.
  1639. @end deftypefun
  1640. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl_async_sync ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1641. Copy @var{size} bytes asynchronously from the given @var{ptr} on
  1642. @var{src_node} to the given @var{buffer} on @var{dst_node}.
  1643. @var{offset} is the offset, in bytes, in @var{buffer}.
  1644. @var{event} can be used to wait for this particular copy to complete. It can be
  1645. NULL.
  1646. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1647. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1648. was successful, or to 0 if event was NULL.
  1649. @end deftypefun
  1650. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event})
  1651. Copy @var{size} bytes from the given @var{ptr} on @var{src_node} to the
  1652. given @var{buffer} on @var{dst_node}. @var{offset} is the offset, in bytes,
  1653. in @var{buffer}. @var{event} can be used to wait for this particular copy to
  1654. complete. It can be NULL.
  1655. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1656. otherwise.
  1657. @end deftypefun
  1658. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram_async_sync (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1659. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  1660. @var{src_node} to the given @var{ptr} on @var{dst_node}.
  1661. @var{offset} is the offset, in bytes, in @var{buffer}.
  1662. @var{event} can be used to wait for this particular copy to complete. It can be
  1663. NULL.
  1664. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1665. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1666. was successful, or to 0 if event was NULL.
  1667. @end deftypefun
  1668. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event})
  1669. Copy @var{size} bytes from the given @var{buffer} on @var{src_node} to the
  1670. given @var{ptr} on @var{dst_node}. @var{offset} is the offset, in bytes,
  1671. in @var{buffer}. @var{event} can be used to wait for this particular copy to
  1672. complete. It can be NULL.
  1673. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1674. otherwise.
  1675. @end deftypefun
  1676. @node Cell extensions
  1677. @section Cell extensions
  1678. nothing yet.
  1679. @node Miscellaneous helpers
  1680. @section Miscellaneous helpers
  1681. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  1682. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  1683. The @var{asynchronous} parameter indicates whether the function should
  1684. block or not. In the case of an asynchronous call, it is possible to
  1685. synchronize with the termination of this operation either by the means of
  1686. implicit dependencies (if enabled) or by calling
  1687. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  1688. this callback function is executed after the handle has been copied, and it is
  1689. given the @var{callback_arg} pointer as argument.
  1690. @end deftypefun
  1691. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  1692. This function executes the given function on a subset of workers.
  1693. When calling this method, the offloaded function specified by the first argument is
  1694. executed by every StarPU worker that may execute the function.
  1695. The second argument is passed to the offloaded function.
  1696. The last argument specifies on which types of processing units the function
  1697. should be executed. Similarly to the @var{where} field of the
  1698. @code{struct starpu_codelet} structure, it is possible to specify that the function
  1699. should be executed on every CUDA device and every CPU by passing
  1700. @code{STARPU_CPU|STARPU_CUDA}.
  1701. This function blocks until the function has been executed on every appropriate
  1702. processing units, so that it may not be called from a callback function for
  1703. instance.
  1704. @end deftypefun