| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 | # StarPU --- Runtime system for heterogeneous multicore architectures.## Copyright (C) 2020       Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria## StarPU is free software; you can redistribute it and/or modify# it under the terms of the GNU Lesser General Public License as published by# the Free Software Foundation; either version 2.1 of the License, or (at# your option) any later version.## StarPU is distributed in the hope that it will be useful, but# WITHOUT ANY WARRANTY; without even the implied warranty of# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.## See the GNU Lesser General Public License in COPYING.LGPL for more details.#using LinearAlgebrafunction check(mat::Matrix{Float32})    size_p = size(mat, 1)    for i in 1:size_p        for j in 1:size_p            if j < i                mat[i, j] = 0.0f0            end        end    end    test_mat ::Matrix{Float32} = zeros(Float32, size_p, size_p)    BLAS.syrk!('L', 'T', 1.0f0, mat, 0.0f0, test_mat)    for i in 1:size_p        for j in 1:size_p            if j <= i                orig = (1.0f0/(1.0f0+(i-1)+(j-1))) + ((i == j) ? 1.0f0*size_p : 0.0f0)                err = abs(test_mat[i,j] - orig) / orig                if err > 0.0001                    got = test_mat[i,j]                    expected = orig                    error("[$i, $j] -> $got != $expected (err $err)")                end            end        end    end    println(stderr, "Verification successful !")endfunction main(size_p :: Int; verify = false, verbose = false)    mat = zeros(Float32, size_p, size_p)    # create a simple definite positive symetric matrix    # Hilbert matrix h(i,j) = 1/(i+j+1)    for i in 1:size_p        for j in 1:size_p            mat[i, j] = 1.0f0 / (1.0f0+(i-1)+(j-1)) + ((i == j) ? 1.0f0*size_p : 0.0f0)        end    end    if verbose        display(mat)    end    t_start = time_ns()    cholesky!(mat)    t_end = time_ns()    flop = (1.0*size_p*size_p*size_p)/3.0    time_ms = (t_end-t_start) / 1e6    gflops = flop/(time_ms*1000)/1000    println("$size_p\t$time_ms\t$gflops")    if verbose        display(mat)    end    if verify        check(mat)    endendprintln("# size\tms\tGFlops")if length(ARGS) > 0 && ARGS[1] == "-quickcheck"    main(1024, verify = true)else    for size in 1024:1024:15360        main(size)    endend
 |