| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408 | /* dsyr2k.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dsyr2k_(char *uplo, char *trans, integer *n, integer *k, 	doublereal *alpha, doublereal *a, integer *lda, doublereal *b, 	integer *ldb, doublereal *beta, doublereal *c__, integer *ldc){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 	    i__3;    /* Local variables */    integer i__, j, l, info;    doublereal temp1, temp2;    extern logical _starpu_lsame_(char *, char *);    integer nrowa;    logical upper;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);/*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYR2K  performs one of the symmetric rank 2k operations *//*     C := alpha*A*B' + alpha*B*A' + beta*C, *//*  or *//*     C := alpha*A'*B + alpha*B'*A + beta*C, *//*  where  alpha and beta  are scalars, C is an  n by n  symmetric matrix *//*  and  A and B  are  n by k  matrices  in the  first  case  and  k by n *//*  matrices in the second case. *//*  Arguments *//*  ========== *//*  UPLO   - CHARACTER*1. *//*           On  entry,   UPLO  specifies  whether  the  upper  or  lower *//*           triangular  part  of the  array  C  is to be  referenced  as *//*           follows: *//*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C *//*                                  is to be referenced. *//*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C *//*                                  is to be referenced. *//*           Unchanged on exit. *//*  TRANS  - CHARACTER*1. *//*           On entry,  TRANS  specifies the operation to be performed as *//*           follows: *//*              TRANS = 'N' or 'n'   C := alpha*A*B' + alpha*B*A' + *//*                                        beta*C. *//*              TRANS = 'T' or 't'   C := alpha*A'*B + alpha*B'*A + *//*                                        beta*C. *//*              TRANS = 'C' or 'c'   C := alpha*A'*B + alpha*B'*A + *//*                                        beta*C. *//*           Unchanged on exit. *//*  N      - INTEGER. *//*           On entry,  N specifies the order of the matrix C.  N must be *//*           at least zero. *//*           Unchanged on exit. *//*  K      - INTEGER. *//*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number *//*           of  columns  of the  matrices  A and B,  and on  entry  with *//*           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number *//*           of rows of the matrices  A and B.  K must be at least  zero. *//*           Unchanged on exit. *//*  ALPHA  - DOUBLE PRECISION. *//*           On entry, ALPHA specifies the scalar alpha. *//*           Unchanged on exit. *//*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is *//*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise. *//*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k *//*           part of the array  A  must contain the matrix  A,  otherwise *//*           the leading  k by n  part of the array  A  must contain  the *//*           matrix A. *//*           Unchanged on exit. *//*  LDA    - INTEGER. *//*           On entry, LDA specifies the first dimension of A as declared *//*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n' *//*           then  LDA must be at least  max( 1, n ), otherwise  LDA must *//*           be at least  max( 1, k ). *//*           Unchanged on exit. *//*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is *//*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise. *//*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k *//*           part of the array  B  must contain the matrix  B,  otherwise *//*           the leading  k by n  part of the array  B  must contain  the *//*           matrix B. *//*           Unchanged on exit. *//*  LDB    - INTEGER. *//*           On entry, LDB specifies the first dimension of B as declared *//*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n' *//*           then  LDB must be at least  max( 1, n ), otherwise  LDB must *//*           be at least  max( 1, k ). *//*           Unchanged on exit. *//*  BETA   - DOUBLE PRECISION. *//*           On entry, BETA specifies the scalar beta. *//*           Unchanged on exit. *//*  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ). *//*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n *//*           upper triangular part of the array C must contain the upper *//*           triangular part  of the  symmetric matrix  and the strictly *//*           lower triangular part of C is not referenced.  On exit, the *//*           upper triangular part of the array  C is overwritten by the *//*           upper triangular part of the updated matrix. *//*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n *//*           lower triangular part of the array C must contain the lower *//*           triangular part  of the  symmetric matrix  and the strictly *//*           upper triangular part of C is not referenced.  On exit, the *//*           lower triangular part of the array  C is overwritten by the *//*           lower triangular part of the updated matrix. *//*  LDC    - INTEGER. *//*           On entry, LDC specifies the first dimension of C as declared *//*           in  the  calling  (sub)  program.   LDC  must  be  at  least *//*           max( 1, n ). *//*           Unchanged on exit. *//*  Level 3 Blas routine. *//*  -- Written on 8-February-1989. *//*     Jack Dongarra, Argonne National Laboratory. *//*     Iain Duff, AERE Harwell. *//*     Jeremy Du Croz, Numerical Algorithms Group Ltd. *//*     Sven Hammarling, Numerical Algorithms Group Ltd. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Parameters .. *//*     .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    c_dim1 = *ldc;    c_offset = 1 + c_dim1;    c__ -= c_offset;    /* Function Body */    if (_starpu_lsame_(trans, "N")) {	nrowa = *n;    } else {	nrowa = *k;    }    upper = _starpu_lsame_(uplo, "U");    info = 0;    if (! upper && ! _starpu_lsame_(uplo, "L")) {	info = 1;    } else if (! _starpu_lsame_(trans, "N") && ! _starpu_lsame_(trans, 	    "T") && ! _starpu_lsame_(trans, "C")) {	info = 2;    } else if (*n < 0) {	info = 3;    } else if (*k < 0) {	info = 4;    } else if (*lda < max(1,nrowa)) {	info = 7;    } else if (*ldb < max(1,nrowa)) {	info = 9;    } else if (*ldc < max(1,*n)) {	info = 12;    }    if (info != 0) {	_starpu_xerbla_("DSYR2K", &info);	return 0;    }/*     Quick return if possible. */    if (*n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) {	return 0;    }/*     And when  alpha.eq.zero. */    if (*alpha == 0.) {	if (upper) {	    if (*beta == 0.) {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = j;		    for (i__ = 1; i__ <= i__2; ++i__) {			c__[i__ + j * c_dim1] = 0.;/* L10: */		    }/* L20: */		}	    } else {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = j;		    for (i__ = 1; i__ <= i__2; ++i__) {			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];/* L30: */		    }/* L40: */		}	    }	} else {	    if (*beta == 0.) {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = *n;		    for (i__ = j; i__ <= i__2; ++i__) {			c__[i__ + j * c_dim1] = 0.;/* L50: */		    }/* L60: */		}	    } else {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = *n;		    for (i__ = j; i__ <= i__2; ++i__) {			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];/* L70: */		    }/* L80: */		}	    }	}	return 0;    }/*     Start the operations. */    if (_starpu_lsame_(trans, "N")) {/*        Form  C := alpha*A*B' + alpha*B*A' + C. */	if (upper) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (*beta == 0.) {		    i__2 = j;		    for (i__ = 1; i__ <= i__2; ++i__) {			c__[i__ + j * c_dim1] = 0.;/* L90: */		    }		} else if (*beta != 1.) {		    i__2 = j;		    for (i__ = 1; i__ <= i__2; ++i__) {			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];/* L100: */		    }		}		i__2 = *k;		for (l = 1; l <= i__2; ++l) {		    if (a[j + l * a_dim1] != 0. || b[j + l * b_dim1] != 0.) {			temp1 = *alpha * b[j + l * b_dim1];			temp2 = *alpha * a[j + l * a_dim1];			i__3 = j;			for (i__ = 1; i__ <= i__3; ++i__) {			    c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[				    i__ + l * a_dim1] * temp1 + b[i__ + l * 				    b_dim1] * temp2;/* L110: */			}		    }/* L120: */		}/* L130: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (*beta == 0.) {		    i__2 = *n;		    for (i__ = j; i__ <= i__2; ++i__) {			c__[i__ + j * c_dim1] = 0.;/* L140: */		    }		} else if (*beta != 1.) {		    i__2 = *n;		    for (i__ = j; i__ <= i__2; ++i__) {			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];/* L150: */		    }		}		i__2 = *k;		for (l = 1; l <= i__2; ++l) {		    if (a[j + l * a_dim1] != 0. || b[j + l * b_dim1] != 0.) {			temp1 = *alpha * b[j + l * b_dim1];			temp2 = *alpha * a[j + l * a_dim1];			i__3 = *n;			for (i__ = j; i__ <= i__3; ++i__) {			    c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[				    i__ + l * a_dim1] * temp1 + b[i__ + l * 				    b_dim1] * temp2;/* L160: */			}		    }/* L170: */		}/* L180: */	    }	}    } else {/*        Form  C := alpha*A'*B + alpha*B'*A + C. */	if (upper) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		i__2 = j;		for (i__ = 1; i__ <= i__2; ++i__) {		    temp1 = 0.;		    temp2 = 0.;		    i__3 = *k;		    for (l = 1; l <= i__3; ++l) {			temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1];			temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1];/* L190: */		    }		    if (*beta == 0.) {			c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha * 				temp2;		    } else {			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] 				+ *alpha * temp1 + *alpha * temp2;		    }/* L200: */		}/* L210: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		i__2 = *n;		for (i__ = j; i__ <= i__2; ++i__) {		    temp1 = 0.;		    temp2 = 0.;		    i__3 = *k;		    for (l = 1; l <= i__3; ++l) {			temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1];			temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1];/* L220: */		    }		    if (*beta == 0.) {			c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha * 				temp2;		    } else {			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] 				+ *alpha * temp1 + *alpha * temp2;		    }/* L230: */		}/* L240: */	    }	}    }    return 0;/*     End of DSYR2K. */} /* _starpu_dsyr2k_ */
 |