123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 |
- /* _starpu_dla_syrpvgrw.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- doublereal _starpu_dla_syrpvgrw__(char *uplo, integer *n, integer *info, doublereal *
- a, integer *lda, doublereal *af, integer *ldaf, integer *ipiv,
- doublereal *work, ftnlen uplo_len)
- {
- /* System generated locals */
- integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2;
- doublereal ret_val, d__1, d__2, d__3;
- /* Local variables */
- integer i__, j, k, kp;
- doublereal tmp, amax, umax;
- extern logical _starpu_lsame_(char *, char *);
- integer ncols;
- logical upper;
- doublereal rpvgrw;
- /* -- LAPACK routine (version 3.2.1) -- */
- /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
- /* -- Jason Riedy of Univ. of California Berkeley. -- */
- /* -- April 2009 -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley and NAG Ltd. -- */
- /* .. */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLA_SYRPVGRW computes the reciprocal pivot growth factor */
- /* norm(A)/norm(U). The "max absolute element" norm is used. If this is */
- /* much less than 1, the stability of the LU factorization of the */
- /* (equilibrated) matrix A could be poor. This also means that the */
- /* solution X, estimated condition numbers, and error bounds could be */
- /* unreliable. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangle of A is stored; */
- /* = 'L': Lower triangle of A is stored. */
- /* N (input) INTEGER */
- /* The number of linear equations, i.e., the order of the */
- /* matrix A. N >= 0. */
- /* INFO (input) INTEGER */
- /* The value of INFO returned from DSYTRF, .i.e., the pivot in */
- /* column INFO is exactly 0. */
- /* NCOLS (input) INTEGER */
- /* The number of columns of the matrix A. NCOLS >= 0. */
- /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the N-by-N matrix A. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* AF (input) DOUBLE PRECISION array, dimension (LDAF,N) */
- /* The block diagonal matrix D and the multipliers used to */
- /* obtain the factor U or L as computed by DSYTRF. */
- /* LDAF (input) INTEGER */
- /* The leading dimension of the array AF. LDAF >= max(1,N). */
- /* IPIV (input) INTEGER array, dimension (N) */
- /* Details of the interchanges and the block structure of D */
- /* as determined by DSYTRF. */
- /* WORK (input) DOUBLE PRECISION array, dimension (2*N) */
- /* ===================================================================== */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- af_dim1 = *ldaf;
- af_offset = 1 + af_dim1;
- af -= af_offset;
- --ipiv;
- --work;
- /* Function Body */
- upper = _starpu_lsame_("Upper", uplo);
- if (*info == 0) {
- if (upper) {
- ncols = 1;
- } else {
- ncols = *n;
- }
- } else {
- ncols = *info;
- }
- rpvgrw = 1.;
- i__1 = *n << 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- }
- /* Find the max magnitude entry of each column of A. Compute the max */
- /* for all N columns so we can apply the pivot permutation while */
- /* looping below. Assume a full factorization is the common case. */
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*
- n + i__];
- work[*n + i__] = max(d__2,d__3);
- /* Computing MAX */
- d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*
- n + j];
- work[*n + j] = max(d__2,d__3);
- }
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*
- n + i__];
- work[*n + i__] = max(d__2,d__3);
- /* Computing MAX */
- d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*
- n + j];
- work[*n + j] = max(d__2,d__3);
- }
- }
- }
- /* Now find the max magnitude entry of each column of U or L. Also */
- /* permute the magnitudes of A above so they're in the same order as */
- /* the factor. */
- /* The iteration orders and permutations were copied from dsytrs. */
- /* Calls to SSWAP would be severe overkill. */
- if (upper) {
- k = *n;
- while(k < ncols && k > 0) {
- if (ipiv[k] > 0) {
- /* 1x1 pivot */
- kp = ipiv[k];
- if (kp != k) {
- tmp = work[*n + k];
- work[*n + k] = work[*n + kp];
- work[*n + kp] = tmp;
- }
- i__1 = k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__2 = (d__1 = af[i__ + k * af_dim1], abs(d__1)), d__3 =
- work[k];
- work[k] = max(d__2,d__3);
- }
- --k;
- } else {
- /* 2x2 pivot */
- kp = -ipiv[k];
- tmp = work[*n + k - 1];
- work[*n + k - 1] = work[*n + kp];
- work[*n + kp] = tmp;
- i__1 = k - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__2 = (d__1 = af[i__ + k * af_dim1], abs(d__1)), d__3 =
- work[k];
- work[k] = max(d__2,d__3);
- /* Computing MAX */
- d__2 = (d__1 = af[i__ + (k - 1) * af_dim1], abs(d__1)),
- d__3 = work[k - 1];
- work[k - 1] = max(d__2,d__3);
- }
- /* Computing MAX */
- d__2 = (d__1 = af[k + k * af_dim1], abs(d__1)), d__3 = work[k]
- ;
- work[k] = max(d__2,d__3);
- k += -2;
- }
- }
- k = ncols;
- while(k <= *n) {
- if (ipiv[k] > 0) {
- kp = ipiv[k];
- if (kp != k) {
- tmp = work[*n + k];
- work[*n + k] = work[*n + kp];
- work[*n + kp] = tmp;
- }
- ++k;
- } else {
- kp = -ipiv[k];
- tmp = work[*n + k];
- work[*n + k] = work[*n + kp];
- work[*n + kp] = tmp;
- k += 2;
- }
- }
- } else {
- k = 1;
- while(k <= ncols) {
- if (ipiv[k] > 0) {
- /* 1x1 pivot */
- kp = ipiv[k];
- if (kp != k) {
- tmp = work[*n + k];
- work[*n + k] = work[*n + kp];
- work[*n + kp] = tmp;
- }
- i__1 = *n;
- for (i__ = k; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__2 = (d__1 = af[i__ + k * af_dim1], abs(d__1)), d__3 =
- work[k];
- work[k] = max(d__2,d__3);
- }
- ++k;
- } else {
- /* 2x2 pivot */
- kp = -ipiv[k];
- tmp = work[*n + k + 1];
- work[*n + k + 1] = work[*n + kp];
- work[*n + kp] = tmp;
- i__1 = *n;
- for (i__ = k + 1; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__2 = (d__1 = af[i__ + k * af_dim1], abs(d__1)), d__3 =
- work[k];
- work[k] = max(d__2,d__3);
- /* Computing MAX */
- d__2 = (d__1 = af[i__ + (k + 1) * af_dim1], abs(d__1)),
- d__3 = work[k + 1];
- work[k + 1] = max(d__2,d__3);
- }
- /* Computing MAX */
- d__2 = (d__1 = af[k + k * af_dim1], abs(d__1)), d__3 = work[k]
- ;
- work[k] = max(d__2,d__3);
- k += 2;
- }
- }
- k = ncols;
- while(k >= 1) {
- if (ipiv[k] > 0) {
- kp = ipiv[k];
- if (kp != k) {
- tmp = work[*n + k];
- work[*n + k] = work[*n + kp];
- work[*n + kp] = tmp;
- }
- --k;
- } else {
- kp = -ipiv[k];
- tmp = work[*n + k];
- work[*n + k] = work[*n + kp];
- work[*n + kp] = tmp;
- k += -2;
- }
- }
- }
- /* Compute the *inverse* of the max element growth factor. Dividing */
- /* by zero would imply the largest entry of the factor's column is */
- /* zero. Than can happen when either the column of A is zero or */
- /* massive pivots made the factor underflow to zero. Neither counts */
- /* as growth in itself, so simply ignore terms with zero */
- /* denominators. */
- if (upper) {
- i__1 = *n;
- for (i__ = ncols; i__ <= i__1; ++i__) {
- umax = work[i__];
- amax = work[*n + i__];
- if (umax != 0.) {
- /* Computing MIN */
- d__1 = amax / umax;
- rpvgrw = min(d__1,rpvgrw);
- }
- }
- } else {
- i__1 = ncols;
- for (i__ = 1; i__ <= i__1; ++i__) {
- umax = work[i__];
- amax = work[*n + i__];
- if (umax != 0.) {
- /* Computing MIN */
- d__1 = amax / umax;
- rpvgrw = min(d__1,rpvgrw);
- }
- }
- }
- ret_val = rpvgrw;
- return ret_val;
- } /* _starpu_dla_syrpvgrw__ */
|