123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 |
- /* dgglse.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static doublereal c_b31 = -1.;
- static doublereal c_b33 = 1.;
- /* Subroutine */ int _starpu_dgglse_(integer *m, integer *n, integer *p, doublereal *
- a, integer *lda, doublereal *b, integer *ldb, doublereal *c__,
- doublereal *d__, doublereal *x, doublereal *work, integer *lwork,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
- /* Local variables */
- integer nb, mn, nr, nb1, nb2, nb3, nb4, lopt;
- extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), _starpu_dcopy_(integer *,
- doublereal *, integer *, doublereal *, integer *), _starpu_daxpy_(integer
- *, doublereal *, doublereal *, integer *, doublereal *, integer *)
- , _starpu_dtrmv_(char *, char *, char *, integer *, doublereal *, integer
- *, doublereal *, integer *), _starpu_dggrqf_(
- integer *, integer *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, integer *), _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- integer lwkmin;
- extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *),
- _starpu_dormrq_(char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, integer *);
- integer lwkopt;
- logical lquery;
- extern /* Subroutine */ int _starpu_dtrtrs_(char *, char *, char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- integer *);
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGGLSE solves the linear equality-constrained least squares (LSE) */
- /* problem: */
- /* minimize || c - A*x ||_2 subject to B*x = d */
- /* where A is an M-by-N matrix, B is a P-by-N matrix, c is a given */
- /* M-vector, and d is a given P-vector. It is assumed that */
- /* P <= N <= M+P, and */
- /* rank(B) = P and rank( (A) ) = N. */
- /* ( (B) ) */
- /* These conditions ensure that the LSE problem has a unique solution, */
- /* which is obtained using a generalized RQ factorization of the */
- /* matrices (B, A) given by */
- /* B = (0 R)*Q, A = Z*T*Q. */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrices A and B. N >= 0. */
- /* P (input) INTEGER */
- /* The number of rows of the matrix B. 0 <= P <= N <= M+P. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the M-by-N matrix A. */
- /* On exit, the elements on and above the diagonal of the array */
- /* contain the min(M,N)-by-N upper trapezoidal matrix T. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,N) */
- /* On entry, the P-by-N matrix B. */
- /* On exit, the upper triangle of the subarray B(1:P,N-P+1:N) */
- /* contains the P-by-P upper triangular matrix R. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,P). */
- /* C (input/output) DOUBLE PRECISION array, dimension (M) */
- /* On entry, C contains the right hand side vector for the */
- /* least squares part of the LSE problem. */
- /* On exit, the residual sum of squares for the solution */
- /* is given by the sum of squares of elements N-P+1 to M of */
- /* vector C. */
- /* D (input/output) DOUBLE PRECISION array, dimension (P) */
- /* On entry, D contains the right hand side vector for the */
- /* constrained equation. */
- /* On exit, D is destroyed. */
- /* X (output) DOUBLE PRECISION array, dimension (N) */
- /* On exit, X is the solution of the LSE problem. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= max(1,M+N+P). */
- /* For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB, */
- /* where NB is an upper bound for the optimal blocksizes for */
- /* DGEQRF, SGERQF, DORMQR and SORMRQ. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* = 1: the upper triangular factor R associated with B in the */
- /* generalized RQ factorization of the pair (B, A) is */
- /* singular, so that rank(B) < P; the least squares */
- /* solution could not be computed. */
- /* = 2: the (N-P) by (N-P) part of the upper trapezoidal factor */
- /* T associated with A in the generalized RQ factorization */
- /* of the pair (B, A) is singular, so that */
- /* rank( (A) ) < N; the least squares solution could not */
- /* ( (B) ) */
- /* be computed. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --c__;
- --d__;
- --x;
- --work;
- /* Function Body */
- *info = 0;
- mn = min(*m,*n);
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*p < 0 || *p > *n || *p < *n - *m) {
- *info = -3;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- } else if (*ldb < max(1,*p)) {
- *info = -7;
- }
- /* Calculate workspace */
- if (*info == 0) {
- if (*n == 0) {
- lwkmin = 1;
- lwkopt = 1;
- } else {
- nb1 = _starpu_ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1);
- nb2 = _starpu_ilaenv_(&c__1, "DGERQF", " ", m, n, &c_n1, &c_n1);
- nb3 = _starpu_ilaenv_(&c__1, "DORMQR", " ", m, n, p, &c_n1);
- nb4 = _starpu_ilaenv_(&c__1, "DORMRQ", " ", m, n, p, &c_n1);
- /* Computing MAX */
- i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);
- nb = max(i__1,nb4);
- lwkmin = *m + *n + *p;
- lwkopt = *p + mn + max(*m,*n) * nb;
- }
- work[1] = (doublereal) lwkopt;
- if (*lwork < lwkmin && ! lquery) {
- *info = -12;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGGLSE", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Compute the GRQ factorization of matrices B and A: */
- /* B*Q' = ( 0 T12 ) P Z'*A*Q' = ( R11 R12 ) N-P */
- /* N-P P ( 0 R22 ) M+P-N */
- /* N-P P */
- /* where T12 and R11 are upper triangular, and Q and Z are */
- /* orthogonal. */
- i__1 = *lwork - *p - mn;
- _starpu_dggrqf_(p, m, n, &b[b_offset], ldb, &work[1], &a[a_offset], lda, &work[*p
- + 1], &work[*p + mn + 1], &i__1, info);
- lopt = (integer) work[*p + mn + 1];
- /* Update c = Z'*c = ( c1 ) N-P */
- /* ( c2 ) M+P-N */
- i__1 = max(1,*m);
- i__2 = *lwork - *p - mn;
- _starpu_dormqr_("Left", "Transpose", m, &c__1, &mn, &a[a_offset], lda, &work[*p +
- 1], &c__[1], &i__1, &work[*p + mn + 1], &i__2, info);
- /* Computing MAX */
- i__1 = lopt, i__2 = (integer) work[*p + mn + 1];
- lopt = max(i__1,i__2);
- /* Solve T12*x2 = d for x2 */
- if (*p > 0) {
- _starpu_dtrtrs_("Upper", "No transpose", "Non-unit", p, &c__1, &b[(*n - *p +
- 1) * b_dim1 + 1], ldb, &d__[1], p, info);
- if (*info > 0) {
- *info = 1;
- return 0;
- }
- /* Put the solution in X */
- _starpu_dcopy_(p, &d__[1], &c__1, &x[*n - *p + 1], &c__1);
- /* Update c1 */
- i__1 = *n - *p;
- _starpu_dgemv_("No transpose", &i__1, p, &c_b31, &a[(*n - *p + 1) * a_dim1 +
- 1], lda, &d__[1], &c__1, &c_b33, &c__[1], &c__1);
- }
- /* Solve R11*x1 = c1 for x1 */
- if (*n > *p) {
- i__1 = *n - *p;
- i__2 = *n - *p;
- _starpu_dtrtrs_("Upper", "No transpose", "Non-unit", &i__1, &c__1, &a[
- a_offset], lda, &c__[1], &i__2, info);
- if (*info > 0) {
- *info = 2;
- return 0;
- }
- /* Put the solutions in X */
- i__1 = *n - *p;
- _starpu_dcopy_(&i__1, &c__[1], &c__1, &x[1], &c__1);
- }
- /* Compute the residual vector: */
- if (*m < *n) {
- nr = *m + *p - *n;
- if (nr > 0) {
- i__1 = *n - *m;
- _starpu_dgemv_("No transpose", &nr, &i__1, &c_b31, &a[*n - *p + 1 + (*m +
- 1) * a_dim1], lda, &d__[nr + 1], &c__1, &c_b33, &c__[*n -
- *p + 1], &c__1);
- }
- } else {
- nr = *p;
- }
- if (nr > 0) {
- _starpu_dtrmv_("Upper", "No transpose", "Non unit", &nr, &a[*n - *p + 1 + (*n
- - *p + 1) * a_dim1], lda, &d__[1], &c__1);
- _starpu_daxpy_(&nr, &c_b31, &d__[1], &c__1, &c__[*n - *p + 1], &c__1);
- }
- /* Backward transformation x = Q'*x */
- i__1 = *lwork - *p - mn;
- _starpu_dormrq_("Left", "Transpose", n, &c__1, p, &b[b_offset], ldb, &work[1], &x[
- 1], n, &work[*p + mn + 1], &i__1, info);
- /* Computing MAX */
- i__1 = lopt, i__2 = (integer) work[*p + mn + 1];
- work[1] = (doublereal) (*p + mn + max(i__1,i__2));
- return 0;
- /* End of DGGLSE */
- } /* _starpu_dgglse_ */
|