c-extensions.texi 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  4. @c See the file starpu.texi for copying conditions.
  5. @cindex C extensions
  6. @cindex GCC plug-in
  7. When GCC plug-in support is available, StarPU builds a plug-in for the
  8. GNU Compiler Collection (GCC), which defines extensions to languages of
  9. the C family (C, C++, Objective-C) that make it easier to write StarPU
  10. code@footnote{This feature is only available for GCC 4.5 and later. It
  11. can be disabled by configuring with @code{--disable-gcc-extensions}.}.
  12. Those extensions include syntactic sugar for defining
  13. tasks and their implementations, invoking a task, and manipulating data
  14. buffers. Use of these extensions can be made conditional on the
  15. availability of the plug-in, leading to valid C sequential code when the
  16. plug-in is not used (@pxref{Conditional Extensions}).
  17. When StarPU has been installed with its GCC plug-in, programs that use
  18. these extensions can be compiled this way:
  19. @example
  20. $ gcc -c -fplugin=`pkg-config starpu-1.0 --variable=gccplugin` foo.c
  21. @end example
  22. @noindent
  23. When the plug-in is not available, the above @command{pkg-config}
  24. command returns the empty string.
  25. This section describes the C extensions implemented by StarPU's GCC
  26. plug-in. It does not require detailed knowledge of the StarPU library.
  27. Note: as of StarPU @value{VERSION}, this is still an area under
  28. development and subject to change.
  29. @menu
  30. * Defining Tasks:: Defining StarPU tasks
  31. * Synchronization and Other Pragmas:: Synchronization, and more.
  32. * Registered Data Buffers:: Manipulating data buffers
  33. * Conditional Extensions:: Using C extensions only when available
  34. @end menu
  35. @node Defining Tasks
  36. @section Defining Tasks
  37. @cindex task
  38. @cindex task implementation
  39. The StarPU GCC plug-in views @dfn{tasks} as ``extended'' C functions:
  40. @enumerate
  41. @item
  42. tasks may have several implementations---e.g., one for CPUs, one written
  43. in OpenCL, one written in CUDA;
  44. @item
  45. tasks may have several implementations of the same target---e.g.,
  46. several CPU implementations;
  47. @item
  48. when a task is invoked, it may run in parallel, and StarPU is free to
  49. choose any of its implementations.
  50. @end enumerate
  51. Tasks and their implementations must be @emph{declared}. These
  52. declarations are annotated with @dfn{attributes} (@pxref{Attribute
  53. Syntax, attributes in GNU C,, gcc, Using the GNU Compiler Collection
  54. (GCC)}): the declaration of a task is a regular C function declaration
  55. with an additional @code{task} attribute, and task implementations are
  56. declared with a @code{task_implementation} attribute.
  57. The following function attributes are provided:
  58. @table @code
  59. @item task
  60. @cindex @code{task} attribute
  61. Declare the given function as a StarPU task. Its return type must be
  62. @code{void}, and it must not be defined---instead, a definition will
  63. automatically be provided by the compiler.
  64. Under the hood, declaring a task leads to the declaration of the
  65. corresponding @code{codelet} (@pxref{Codelet and Tasks}). If one or
  66. more task implementations are declared in the same compilation unit,
  67. then the codelet and the function itself are also defined; they inherit
  68. the scope of the task.
  69. Scalar arguments to the task are passed by value and copied to the
  70. target device if need be---technically, they are passed as the
  71. @code{cl_arg} buffer (@pxref{Codelets and Tasks, @code{cl_arg}}).
  72. @cindex @code{output} type attribute
  73. Pointer arguments are assumed to be registered data buffers---the
  74. @code{buffers} argument of a task (@pxref{Codelets and Tasks,
  75. @code{buffers}}); @code{const}-qualified pointer arguments are viewed as
  76. read-only buffers (@code{STARPU_R}), and non-@code{const}-qualified
  77. buffers are assumed to be used read-write (@code{STARPU_RW}). In
  78. addition, the @code{output} type attribute can be as a type qualifier
  79. for output pointer or array parameters (@code{STARPU_W}).
  80. @item task_implementation (@var{target}, @var{task})
  81. @cindex @code{task_implementation} attribute
  82. Declare the given function as an implementation of @var{task} to run on
  83. @var{target}. @var{target} must be a string, currently one of
  84. @code{"cpu"}, @code{"opencl"}, or @code{"cuda"}.
  85. @c FIXME: Update when OpenCL support is ready.
  86. @end table
  87. Here is an example:
  88. @cartouche
  89. @smallexample
  90. #define __output __attribute__ ((output))
  91. static void matmul (const float *A, const float *B,
  92. __output float *C,
  93. size_t nx, size_t ny, size_t nz)
  94. __attribute__ ((task));
  95. static void matmul_cpu (const float *A, const float *B,
  96. __output float *C,
  97. size_t nx, size_t ny, size_t nz)
  98. __attribute__ ((task_implementation ("cpu", matmul)));
  99. static void
  100. matmul_cpu (const float *A, const float *B, __output float *C,
  101. size_t nx, size_t ny, size_t nz)
  102. @{
  103. size_t i, j, k;
  104. for (j = 0; j < ny; j++)
  105. for (i = 0; i < nx; i++)
  106. @{
  107. for (k = 0; k < nz; k++)
  108. C[j * nx + i] += A[j * nz + k] * B[k * nx + i];
  109. @}
  110. @}
  111. @end smallexample
  112. @end cartouche
  113. @noindent
  114. A @code{matmult} task is defined; it has only one implementation,
  115. @code{matmult_cpu}, which runs on the CPU. Variables @var{A} and
  116. @var{B} are input buffers, whereas @var{C} is considered an input/output
  117. buffer.
  118. CUDA and OpenCL implementations can be declared in a similar way:
  119. @cartouche
  120. @smallexample
  121. static void matmul_cuda (const float *A, const float *B, float *C,
  122. size_t nx, size_t ny, size_t nz)
  123. __attribute__ ((task_implementation ("cuda", matmul)));
  124. static void matmul_opencl (const float *A, const float *B, float *C,
  125. size_t nx, size_t ny, size_t nz)
  126. __attribute__ ((task_implementation ("opencl", matmul)));
  127. @end smallexample
  128. @end cartouche
  129. @noindent
  130. The CUDA and OpenCL implementations typically either invoke a kernel
  131. written in CUDA or OpenCL (for similar code, @pxref{CUDA Kernel}, and
  132. @pxref{OpenCL Kernel}), or call a library function that uses CUDA or
  133. OpenCL under the hood, such as CUBLAS functions:
  134. @cartouche
  135. @smallexample
  136. static void
  137. matmul_cuda (const float *A, const float *B, float *C,
  138. size_t nx, size_t ny, size_t nz)
  139. @{
  140. cublasSgemm ('n', 'n', nx, ny, nz,
  141. 1.0f, A, 0, B, 0,
  142. 0.0f, C, 0);
  143. cudaStreamSynchronize (starpu_cuda_get_local_stream ());
  144. @}
  145. @end smallexample
  146. @end cartouche
  147. A task can be invoked like a regular C function:
  148. @cartouche
  149. @smallexample
  150. matmul (&A[i * zdim * bydim + k * bzdim * bydim],
  151. &B[k * xdim * bzdim + j * bxdim * bzdim],
  152. &C[i * xdim * bydim + j * bxdim * bydim],
  153. bxdim, bydim, bzdim);
  154. @end smallexample
  155. @end cartouche
  156. @noindent
  157. This leads to an @dfn{asynchronous invocation}, whereby @code{matmult}'s
  158. implementation may run in parallel with the continuation of the caller.
  159. The next section describes how memory buffers must be handled in
  160. StarPU-GCC code. For a complete example, see the
  161. @code{gcc-plugin/examples} directory of the source distribution, and
  162. @ref{Vector Scaling Using the C Extension, the vector-scaling
  163. example}.
  164. @node Synchronization and Other Pragmas
  165. @section Initialization, Termination, and Synchronization
  166. The following pragmas allow user code to control StarPU's life time and
  167. to synchronize with tasks.
  168. @table @code
  169. @item #pragma starpu initialize
  170. Initialize StarPU. This call is compulsory and is @emph{never} added
  171. implicitly. One of the reasons this has to be done explicitly is that
  172. it provides greater control to user code over its resource usage.
  173. @item #pragma starpu shutdown
  174. Shut down StarPU, giving it an opportunity to write profiling info to a
  175. file on disk, for instance (@pxref{Off-line, off-line performance
  176. feedback}).
  177. @item #pragma starpu wait
  178. Wait for all task invocations to complete, as with
  179. @code{starpu_wait_for_all} (@pxref{Codelets and Tasks,
  180. starpu_wait_for_all}).
  181. @end table
  182. @node Registered Data Buffers
  183. @section Registered Data Buffers
  184. Data buffers such as matrices and vectors that are to be passed to tasks
  185. must be @dfn{registered}. Registration allows StarPU to handle data
  186. transfers among devices---e.g., transferring an input buffer from the
  187. CPU's main memory to a task scheduled to run a GPU (@pxref{StarPU Data
  188. Management Library}).
  189. The following pragmas are provided:
  190. @table @code
  191. @item #pragma starpu register @var{ptr} [@var{size}]
  192. Register @var{ptr} as a @var{size}-element buffer. When @var{ptr} has
  193. an array type whose size is known, @var{size} may be omitted.
  194. @item #pragma starpu unregister @var{ptr}
  195. Unregister the previously-registered memory area pointed to by
  196. @var{ptr}. As a side-effect, @var{ptr} points to a valid copy in main
  197. memory.
  198. @item #pragma starpu acquire @var{ptr}
  199. Acquire in main memory an up-to-date copy of the previously-registered
  200. memory area pointed to by @var{ptr}, for read-write access.
  201. @item #pragma starpu release @var{ptr}
  202. Release the previously-register memory area pointed to by @var{ptr},
  203. making it available to the tasks.
  204. @end table
  205. Additionally, the @code{heap_allocated} variable attribute offers a
  206. simple way to allocate storage for arrays on the heap:
  207. @table @code
  208. @item heap_allocated
  209. @cindex @code{heap_allocated} attribute
  210. This attributes applies to local variables with an array type. Its
  211. effect is to automatically allocate the array's storage on
  212. the heap, using @code{starpu_malloc} under the hood (@pxref{Basic Data
  213. Library API, starpu_malloc}). The heap-allocated array is automatically
  214. freed when the variable's scope is left, as with
  215. automatic variables.
  216. @end table
  217. @noindent
  218. The following example illustrates use of the @code{heap_allocated}
  219. attribute:
  220. @example
  221. extern void cholesky(unsigned nblocks, unsigned size,
  222. float mat[nblocks][nblocks][size])
  223. __attribute__ ((task));
  224. int
  225. main (int argc, char *argv[])
  226. @{
  227. #pragma starpu initialize
  228. /* ... */
  229. int nblocks, size;
  230. parse_args (&nblocks, &size);
  231. /* Allocate an array of the required size on the heap,
  232. and register it. */
  233. @{
  234. float matrix[nblocks][nblocks][size]
  235. __attribute__ ((heap_allocated));
  236. #pragma starpu register matrix
  237. cholesky (nblocks, size, matrix);
  238. #pragma starpu wait
  239. #pragma starpu unregister matrix
  240. @} /* MATRIX is automatically freed here. */
  241. #pragma starpu shutdown
  242. return EXIT_SUCCESS;
  243. @}
  244. @end example
  245. @node Conditional Extensions
  246. @section Using C Extensions Conditionally
  247. The C extensions described in this chapter are only available when GCC
  248. and its StarPU plug-in are in use. Yet, it is possible to make use of
  249. these extensions when they are available---leading to hybrid CPU/GPU
  250. code---and discard them when they are not available---leading to valid
  251. sequential code.
  252. To that end, the GCC plug-in defines a C preprocessor macro when it is
  253. being used:
  254. @defmac STARPU_GCC_PLUGIN
  255. Defined for code being compiled with the StarPU GCC plug-in. When
  256. defined, this macro expands to an integer denoting the version of the
  257. supported C extensions.
  258. @end defmac
  259. The code below illustrates how to define a task and its implementations
  260. in a way that allows it to be compiled without the GCC plug-in:
  261. @smallexample
  262. /* The macros below abstract over the attributes specific to
  263. StarPU-GCC and the name of the CPU implementation. */
  264. #ifdef STARPU_GCC_PLUGIN
  265. # define __task __attribute__ ((task))
  266. # define CPU_TASK_IMPL(task) task ## _cpu
  267. #else
  268. # define __task
  269. # define CPU_TASK_IMPL(task) task
  270. #endif
  271. #include <stdlib.h>
  272. static void matmul (const float *A, const float *B, float *C,
  273. size_t nx, size_t ny, size_t nz) __task;
  274. #ifdef STARPU_GCC_PLUGIN
  275. static void matmul_cpu (const float *A, const float *B, float *C,
  276. size_t nx, size_t ny, size_t nz)
  277. __attribute__ ((task_implementation ("cpu", matmul)));
  278. #endif
  279. static void
  280. CPU_TASK_IMPL (matmul) (const float *A, const float *B, float *C,
  281. size_t nx, size_t ny, size_t nz)
  282. @{
  283. /* Code of the CPU kernel here... */
  284. @}
  285. int
  286. main (int argc, char *argv[])
  287. @{
  288. /* The pragmas below are simply ignored when StarPU-GCC
  289. is not used. */
  290. #pragma starpu initialize
  291. float A[123][42][7], B[123][42][7], C[123][42][7];
  292. #pragma starpu register A
  293. #pragma starpu register B
  294. #pragma starpu register C
  295. /* When StarPU-GCC is used, the call below is asynchronous;
  296. otherwise, it is synchronous. */
  297. matmul (A, B, C, 123, 42, 7);
  298. #pragma starpu wait
  299. #pragma starpu shutdown
  300. return EXIT_SUCCESS;
  301. @}
  302. @end smallexample
  303. Note that attributes such as @code{task} are simply ignored by GCC when
  304. the StarPU plug-in is not loaded, so the @code{__task} macro could be
  305. omitted altogether. However, @command{gcc -Wall} emits a warning for
  306. unknown attributes, which can be inconvenient, and other compilers may
  307. be unable to parse the attribute syntax. Thus, using macros such as
  308. @code{__task} above is recommended.
  309. @c Local Variables:
  310. @c TeX-master: "../starpu.texi"
  311. @c ispell-local-dictionary: "american"
  312. @c End: