| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368 | /* dlasd6.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__0 = 0;static doublereal c_b7 = 1.;static integer c__1 = 1;static integer c_n1 = -1;/* Subroutine */ int dlasd6_(integer *icompq, integer *nl, integer *nr, 	integer *sqre, doublereal *d__, doublereal *vf, doublereal *vl, 	doublereal *alpha, doublereal *beta, integer *idxq, integer *perm, 	integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum, 	 integer *ldgnum, doublereal *poles, doublereal *difl, doublereal *	difr, doublereal *z__, integer *k, doublereal *c__, doublereal *s, 	doublereal *work, integer *iwork, integer *info){    /* System generated locals */    integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, 	    poles_dim1, poles_offset, i__1;    doublereal d__1, d__2;    /* Local variables */    integer i__, m, n, n1, n2, iw, idx, idxc, idxp, ivfw, ivlw;    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *), dlasd7_(integer *, integer *, integer *, 	     integer *, integer *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, integer *, integer *, 	    integer *, integer *, integer *, integer *, integer *, doublereal 	    *, integer *, doublereal *, doublereal *, integer *), dlasd8_(	    integer *, integer *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 	     doublereal *, integer *), dlascl_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *), dlamrg_(integer *, integer *, 	    doublereal *, integer *, integer *, integer *);    integer isigma;    extern /* Subroutine */ int xerbla_(char *, integer *);    doublereal orgnrm;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLASD6 computes the SVD of an updated upper bidiagonal matrix B *//*  obtained by merging two smaller ones by appending a row. This *//*  routine is used only for the problem which requires all singular *//*  values and optionally singular vector matrices in factored form. *//*  B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE. *//*  A related subroutine, DLASD1, handles the case in which all singular *//*  values and singular vectors of the bidiagonal matrix are desired. *//*  DLASD6 computes the SVD as follows: *//*                ( D1(in)  0    0     0 ) *//*    B = U(in) * (   Z1'   a   Z2'    b ) * VT(in) *//*                (   0     0   D2(in) 0 ) *//*      = U(out) * ( D(out) 0) * VT(out) *//*  where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M *//*  with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros *//*  elsewhere; and the entry b is empty if SQRE = 0. *//*  The singular values of B can be computed using D1, D2, the first *//*  components of all the right singular vectors of the lower block, and *//*  the last components of all the right singular vectors of the upper *//*  block. These components are stored and updated in VF and VL, *//*  respectively, in DLASD6. Hence U and VT are not explicitly *//*  referenced. *//*  The singular values are stored in D. The algorithm consists of two *//*  stages: *//*        The first stage consists of deflating the size of the problem *//*        when there are multiple singular values or if there is a zero *//*        in the Z vector. For each such occurence the dimension of the *//*        secular equation problem is reduced by one. This stage is *//*        performed by the routine DLASD7. *//*        The second stage consists of calculating the updated *//*        singular values. This is done by finding the roots of the *//*        secular equation via the routine DLASD4 (as called by DLASD8). *//*        This routine also updates VF and VL and computes the distances *//*        between the updated singular values and the old singular *//*        values. *//*  DLASD6 is called from DLASDA. *//*  Arguments *//*  ========= *//*  ICOMPQ (input) INTEGER *//*         Specifies whether singular vectors are to be computed in *//*         factored form: *//*         = 0: Compute singular values only. *//*         = 1: Compute singular vectors in factored form as well. *//*  NL     (input) INTEGER *//*         The row dimension of the upper block.  NL >= 1. *//*  NR     (input) INTEGER *//*         The row dimension of the lower block.  NR >= 1. *//*  SQRE   (input) INTEGER *//*         = 0: the lower block is an NR-by-NR square matrix. *//*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. *//*         The bidiagonal matrix has row dimension N = NL + NR + 1, *//*         and column dimension M = N + SQRE. *//*  D      (input/output) DOUBLE PRECISION array, dimension ( NL+NR+1 ). *//*         On entry D(1:NL,1:NL) contains the singular values of the *//*         upper block, and D(NL+2:N) contains the singular values *//*         of the lower block. On exit D(1:N) contains the singular *//*         values of the modified matrix. *//*  VF     (input/output) DOUBLE PRECISION array, dimension ( M ) *//*         On entry, VF(1:NL+1) contains the first components of all *//*         right singular vectors of the upper block; and VF(NL+2:M) *//*         contains the first components of all right singular vectors *//*         of the lower block. On exit, VF contains the first components *//*         of all right singular vectors of the bidiagonal matrix. *//*  VL     (input/output) DOUBLE PRECISION array, dimension ( M ) *//*         On entry, VL(1:NL+1) contains the  last components of all *//*         right singular vectors of the upper block; and VL(NL+2:M) *//*         contains the last components of all right singular vectors of *//*         the lower block. On exit, VL contains the last components of *//*         all right singular vectors of the bidiagonal matrix. *//*  ALPHA  (input/output) DOUBLE PRECISION *//*         Contains the diagonal element associated with the added row. *//*  BETA   (input/output) DOUBLE PRECISION *//*         Contains the off-diagonal element associated with the added *//*         row. *//*  IDXQ   (output) INTEGER array, dimension ( N ) *//*         This contains the permutation which will reintegrate the *//*         subproblem just solved back into sorted order, i.e. *//*         D( IDXQ( I = 1, N ) ) will be in ascending order. *//*  PERM   (output) INTEGER array, dimension ( N ) *//*         The permutations (from deflation and sorting) to be applied *//*         to each block. Not referenced if ICOMPQ = 0. *//*  GIVPTR (output) INTEGER *//*         The number of Givens rotations which took place in this *//*         subproblem. Not referenced if ICOMPQ = 0. *//*  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 ) *//*         Each pair of numbers indicates a pair of columns to take place *//*         in a Givens rotation. Not referenced if ICOMPQ = 0. *//*  LDGCOL (input) INTEGER *//*         leading dimension of GIVCOL, must be at least N. *//*  GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) *//*         Each number indicates the C or S value to be used in the *//*         corresponding Givens rotation. Not referenced if ICOMPQ = 0. *//*  LDGNUM (input) INTEGER *//*         The leading dimension of GIVNUM and POLES, must be at least N. *//*  POLES  (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) *//*         On exit, POLES(1,*) is an array containing the new singular *//*         values obtained from solving the secular equation, and *//*         POLES(2,*) is an array containing the poles in the secular *//*         equation. Not referenced if ICOMPQ = 0. *//*  DIFL   (output) DOUBLE PRECISION array, dimension ( N ) *//*         On exit, DIFL(I) is the distance between I-th updated *//*         (undeflated) singular value and the I-th (undeflated) old *//*         singular value. *//*  DIFR   (output) DOUBLE PRECISION array, *//*                  dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and *//*                  dimension ( N ) if ICOMPQ = 0. *//*         On exit, DIFR(I, 1) is the distance between I-th updated *//*         (undeflated) singular value and the I+1-th (undeflated) old *//*         singular value. *//*         If ICOMPQ = 1, DIFR(1:K,2) is an array containing the *//*         normalizing factors for the right singular vector matrix. *//*         See DLASD8 for details on DIFL and DIFR. *//*  Z      (output) DOUBLE PRECISION array, dimension ( M ) *//*         The first elements of this array contain the components *//*         of the deflation-adjusted updating row vector. *//*  K      (output) INTEGER *//*         Contains the dimension of the non-deflated matrix, *//*         This is the order of the related secular equation. 1 <= K <=N. *//*  C      (output) DOUBLE PRECISION *//*         C contains garbage if SQRE =0 and the C-value of a Givens *//*         rotation related to the right null space if SQRE = 1. *//*  S      (output) DOUBLE PRECISION *//*         S contains garbage if SQRE =0 and the S-value of a Givens *//*         rotation related to the right null space if SQRE = 1. *//*  WORK   (workspace) DOUBLE PRECISION array, dimension ( 4 * M ) *//*  IWORK  (workspace) INTEGER array, dimension ( 3 * N ) *//*  INFO   (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  if INFO = 1, an singular value did not converge *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ming Gu and Huan Ren, Computer Science Division, University of *//*     California at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --vf;    --vl;    --idxq;    --perm;    givcol_dim1 = *ldgcol;    givcol_offset = 1 + givcol_dim1;    givcol -= givcol_offset;    poles_dim1 = *ldgnum;    poles_offset = 1 + poles_dim1;    poles -= poles_offset;    givnum_dim1 = *ldgnum;    givnum_offset = 1 + givnum_dim1;    givnum -= givnum_offset;    --difl;    --difr;    --z__;    --work;    --iwork;    /* Function Body */    *info = 0;    n = *nl + *nr + 1;    m = n + *sqre;    if (*icompq < 0 || *icompq > 1) {	*info = -1;    } else if (*nl < 1) {	*info = -2;    } else if (*nr < 1) {	*info = -3;    } else if (*sqre < 0 || *sqre > 1) {	*info = -4;    } else if (*ldgcol < n) {	*info = -14;    } else if (*ldgnum < n) {	*info = -16;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DLASD6", &i__1);	return 0;    }/*     The following values are for bookkeeping purposes only.  They are *//*     integer pointers which indicate the portion of the workspace *//*     used by a particular array in DLASD7 and DLASD8. */    isigma = 1;    iw = isigma + n;    ivfw = iw + m;    ivlw = ivfw + m;    idx = 1;    idxc = idx + n;    idxp = idxc + n;/*     Scale. *//* Computing MAX */    d__1 = abs(*alpha), d__2 = abs(*beta);    orgnrm = max(d__1,d__2);    d__[*nl + 1] = 0.;    i__1 = n;    for (i__ = 1; i__ <= i__1; ++i__) {	if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {	    orgnrm = (d__1 = d__[i__], abs(d__1));	}/* L10: */    }    dlascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);    *alpha /= orgnrm;    *beta /= orgnrm;/*     Sort and Deflate singular values. */    dlasd7_(icompq, nl, nr, sqre, k, &d__[1], &z__[1], &work[iw], &vf[1], &	    work[ivfw], &vl[1], &work[ivlw], alpha, beta, &work[isigma], &	    iwork[idx], &iwork[idxp], &idxq[1], &perm[1], givptr, &givcol[	    givcol_offset], ldgcol, &givnum[givnum_offset], ldgnum, c__, s, 	    info);/*     Solve Secular Equation, compute DIFL, DIFR, and update VF, VL. */    dlasd8_(icompq, k, &d__[1], &z__[1], &vf[1], &vl[1], &difl[1], &difr[1], 	    ldgnum, &work[isigma], &work[iw], info);/*     Save the poles if ICOMPQ = 1. */    if (*icompq == 1) {	dcopy_(k, &d__[1], &c__1, &poles[poles_dim1 + 1], &c__1);	dcopy_(k, &work[isigma], &c__1, &poles[(poles_dim1 << 1) + 1], &c__1);    }/*     Unscale. */    dlascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);/*     Prepare the IDXQ sorting permutation. */    n1 = *k;    n2 = n - *k;    dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);    return 0;/*     End of DLASD6 */} /* dlasd6_ */
 |