| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 | /* dlarf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b4 = 1.;static doublereal c_b5 = 0.;static integer c__1 = 1;/* Subroutine */ int dlarf_(char *side, integer *m, integer *n, doublereal *v, 	 integer *incv, doublereal *tau, doublereal *c__, integer *ldc, 	doublereal *work){    /* System generated locals */    integer c_dim1, c_offset;    doublereal d__1;    /* Local variables */    integer i__;    logical applyleft;    extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *);    integer lastc, lastv;    extern integer iladlc_(integer *, integer *, doublereal *, integer *), 	    iladlr_(integer *, integer *, doublereal *, integer *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLARF applies a real elementary reflector H to a real m by n matrix *//*  C, from either the left or the right. H is represented in the form *//*        H = I - tau * v * v' *//*  where tau is a real scalar and v is a real vector. *//*  If tau = 0, then H is taken to be the unit matrix. *//*  Arguments *//*  ========= *//*  SIDE    (input) CHARACTER*1 *//*          = 'L': form  H * C *//*          = 'R': form  C * H *//*  M       (input) INTEGER *//*          The number of rows of the matrix C. *//*  N       (input) INTEGER *//*          The number of columns of the matrix C. *//*  V       (input) DOUBLE PRECISION array, dimension *//*                     (1 + (M-1)*abs(INCV)) if SIDE = 'L' *//*                  or (1 + (N-1)*abs(INCV)) if SIDE = 'R' *//*          The vector v in the representation of H. V is not used if *//*          TAU = 0. *//*  INCV    (input) INTEGER *//*          The increment between elements of v. INCV <> 0. *//*  TAU     (input) DOUBLE PRECISION *//*          The value tau in the representation of H. *//*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N) *//*          On entry, the m by n matrix C. *//*          On exit, C is overwritten by the matrix H * C if SIDE = 'L', *//*          or C * H if SIDE = 'R'. *//*  LDC     (input) INTEGER *//*          The leading dimension of the array C. LDC >= max(1,M). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension *//*                         (N) if SIDE = 'L' *//*                      or (M) if SIDE = 'R' *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --v;    c_dim1 = *ldc;    c_offset = 1 + c_dim1;    c__ -= c_offset;    --work;    /* Function Body */    applyleft = lsame_(side, "L");    lastv = 0;    lastc = 0;    if (*tau != 0.) {/*     Set up variables for scanning V.  LASTV begins pointing to the end *//*     of V. */	if (applyleft) {	    lastv = *m;	} else {	    lastv = *n;	}	if (*incv > 0) {	    i__ = (lastv - 1) * *incv + 1;	} else {	    i__ = 1;	}/*     Look for the last non-zero row in V. */	while(lastv > 0 && v[i__] == 0.) {	    --lastv;	    i__ -= *incv;	}	if (applyleft) {/*     Scan for the last non-zero column in C(1:lastv,:). */	    lastc = iladlc_(&lastv, n, &c__[c_offset], ldc);	} else {/*     Scan for the last non-zero row in C(:,1:lastv). */	    lastc = iladlr_(m, &lastv, &c__[c_offset], ldc);	}    }/*     Note that lastc.eq.0 renders the BLAS operations null; no special *//*     case is needed at this level. */    if (applyleft) {/*        Form  H * C */	if (lastv > 0) {/*           w(1:lastc,1) := C(1:lastv,1:lastc)' * v(1:lastv,1) */	    dgemv_("Transpose", &lastv, &lastc, &c_b4, &c__[c_offset], ldc, &		    v[1], incv, &c_b5, &work[1], &c__1);/*           C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)' */	    d__1 = -(*tau);	    dger_(&lastv, &lastc, &d__1, &v[1], incv, &work[1], &c__1, &c__[		    c_offset], ldc);	}    } else {/*        Form  C * H */	if (lastv > 0) {/*           w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1) */	    dgemv_("No transpose", &lastc, &lastv, &c_b4, &c__[c_offset], ldc, 		     &v[1], incv, &c_b5, &work[1], &c__1);/*           C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)' */	    d__1 = -(*tau);	    dger_(&lastc, &lastv, &d__1, &work[1], &c__1, &v[1], incv, &c__[		    c_offset], ldc);	}    }    return 0;/*     End of DLARF */} /* dlarf_ */
 |