| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359 | /* dgeqp3.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__3 = 3;static integer c__2 = 2;/* Subroutine */ int dgeqp3_(integer *m, integer *n, doublereal *a, integer *	lda, integer *jpvt, doublereal *tau, doublereal *work, integer *lwork, 	 integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    /* Local variables */    integer j, jb, na, nb, sm, sn, nx, fjb, iws, nfxd;    extern doublereal dnrm2_(integer *, doublereal *, integer *);    integer nbmin, minmn;    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    integer minws;    extern /* Subroutine */ int dlaqp2_(integer *, integer *, integer *, 	    doublereal *, integer *, integer *, doublereal *, doublereal *, 	    doublereal *, doublereal *), dgeqrf_(integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    integer *), xerbla_(char *, integer *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int dlaqps_(integer *, integer *, integer *, 	    integer *, integer *, doublereal *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *, integer *);    integer topbmn, sminmn;    extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *);    integer lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGEQP3 computes a QR factorization with column pivoting of a *//*  matrix A:  A*P = Q*R  using Level 3 BLAS. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A. M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M-by-N matrix A. *//*          On exit, the upper triangle of the array contains the *//*          min(M,N)-by-N upper trapezoidal matrix R; the elements below *//*          the diagonal, together with the array TAU, represent the *//*          orthogonal matrix Q as a product of min(M,N) elementary *//*          reflectors. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1,M). *//*  JPVT    (input/output) INTEGER array, dimension (N) *//*          On entry, if JPVT(J).ne.0, the J-th column of A is permuted *//*          to the front of A*P (a leading column); if JPVT(J)=0, *//*          the J-th column of A is a free column. *//*          On exit, if JPVT(J)=K, then the J-th column of A*P was the *//*          the K-th column of A. *//*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The scalar factors of the elementary reflectors. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO=0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. LWORK >= 3*N+1. *//*          For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB *//*          is the optimal blocksize. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0: successful exit. *//*          < 0: if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  The matrix Q is represented as a product of elementary reflectors *//*     Q = H(1) H(2) . . . H(k), where k = min(m,n). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real/complex scalar, and v is a real/complex vector *//*  with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in *//*  A(i+1:m,i), and tau in TAU(i). *//*  Based on contributions by *//*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain *//*    X. Sun, Computer Science Dept., Duke University, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test input arguments *//*     ==================== */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --jpvt;    --tau;    --work;    /* Function Body */    *info = 0;    lquery = *lwork == -1;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*m)) {	*info = -4;    }    if (*info == 0) {	minmn = min(*m,*n);	if (minmn == 0) {	    iws = 1;	    lwkopt = 1;	} else {	    iws = *n * 3 + 1;	    nb = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1);	    lwkopt = (*n << 1) + (*n + 1) * nb;	}	work[1] = (doublereal) lwkopt;	if (*lwork < iws && ! lquery) {	    *info = -8;	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGEQP3", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible. */    if (minmn == 0) {	return 0;    }/*     Move initial columns up front. */    nfxd = 1;    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	if (jpvt[j] != 0) {	    if (j != nfxd) {		dswap_(m, &a[j * a_dim1 + 1], &c__1, &a[nfxd * a_dim1 + 1], &			c__1);		jpvt[j] = jpvt[nfxd];		jpvt[nfxd] = j;	    } else {		jpvt[j] = j;	    }	    ++nfxd;	} else {	    jpvt[j] = j;	}/* L10: */    }    --nfxd;/*     Factorize fixed columns *//*     ======================= *//*     Compute the QR factorization of fixed columns and update *//*     remaining columns. */    if (nfxd > 0) {	na = min(*m,nfxd);/* CC      CALL DGEQR2( M, NA, A, LDA, TAU, WORK, INFO ) */	dgeqrf_(m, &na, &a[a_offset], lda, &tau[1], &work[1], lwork, info);/* Computing MAX */	i__1 = iws, i__2 = (integer) work[1];	iws = max(i__1,i__2);	if (na < *n) {/* CC         CALL DORM2R( 'Left', 'Transpose', M, N-NA, NA, A, LDA, *//* CC  $                   TAU, A( 1, NA+1 ), LDA, WORK, INFO ) */	    i__1 = *n - na;	    dormqr_("Left", "Transpose", m, &i__1, &na, &a[a_offset], lda, &		    tau[1], &a[(na + 1) * a_dim1 + 1], lda, &work[1], lwork, 		    info);/* Computing MAX */	    i__1 = iws, i__2 = (integer) work[1];	    iws = max(i__1,i__2);	}    }/*     Factorize free columns *//*     ====================== */    if (nfxd < minmn) {	sm = *m - nfxd;	sn = *n - nfxd;	sminmn = minmn - nfxd;/*        Determine the block size. */	nb = ilaenv_(&c__1, "DGEQRF", " ", &sm, &sn, &c_n1, &c_n1);	nbmin = 2;	nx = 0;	if (nb > 1 && nb < sminmn) {/*           Determine when to cross over from blocked to unblocked code. *//* Computing MAX */	    i__1 = 0, i__2 = ilaenv_(&c__3, "DGEQRF", " ", &sm, &sn, &c_n1, &		    c_n1);	    nx = max(i__1,i__2);	    if (nx < sminmn) {/*              Determine if workspace is large enough for blocked code. */		minws = (sn << 1) + (sn + 1) * nb;		iws = max(iws,minws);		if (*lwork < minws) {/*                 Not enough workspace to use optimal NB: Reduce NB and *//*                 determine the minimum value of NB. */		    nb = (*lwork - (sn << 1)) / (sn + 1);/* Computing MAX */		    i__1 = 2, i__2 = ilaenv_(&c__2, "DGEQRF", " ", &sm, &sn, &			    c_n1, &c_n1);		    nbmin = max(i__1,i__2);		}	    }	}/*        Initialize partial column norms. The first N elements of work *//*        store the exact column norms. */	i__1 = *n;	for (j = nfxd + 1; j <= i__1; ++j) {	    work[j] = dnrm2_(&sm, &a[nfxd + 1 + j * a_dim1], &c__1);	    work[*n + j] = work[j];/* L20: */	}	if (nb >= nbmin && nb < sminmn && nx < sminmn) {/*           Use blocked code initially. */	    j = nfxd + 1;/*           Compute factorization: while loop. */	    topbmn = minmn - nx;L30:	    if (j <= topbmn) {/* Computing MIN */		i__1 = nb, i__2 = topbmn - j + 1;		jb = min(i__1,i__2);/*              Factorize JB columns among columns J:N. */		i__1 = *n - j + 1;		i__2 = j - 1;		i__3 = *n - j + 1;		dlaqps_(m, &i__1, &i__2, &jb, &fjb, &a[j * a_dim1 + 1], lda, &			jpvt[j], &tau[j], &work[j], &work[*n + j], &work[(*n 			<< 1) + 1], &work[(*n << 1) + jb + 1], &i__3);		j += fjb;		goto L30;	    }	} else {	    j = nfxd + 1;	}/*        Use unblocked code to factor the last or only block. */	if (j <= minmn) {	    i__1 = *n - j + 1;	    i__2 = j - 1;	    dlaqp2_(m, &i__1, &i__2, &a[j * a_dim1 + 1], lda, &jpvt[j], &tau[		    j], &work[j], &work[*n + j], &work[(*n << 1) + 1]);	}    }    work[1] = (doublereal) iws;    return 0;/*     End of DGEQP3 */} /* dgeqp3_ */
 |