| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516 | 
							- /* dpbsvx.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dpbsvx_(char *fact, char *uplo, integer *n, integer *kd, 
 
- 	integer *nrhs, doublereal *ab, integer *ldab, doublereal *afb, 
 
- 	integer *ldafb, char *equed, doublereal *s, doublereal *b, integer *
 
- 	ldb, doublereal *x, integer *ldx, doublereal *rcond, doublereal *ferr, 
 
- 	 doublereal *berr, doublereal *work, integer *iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 
 
- 	    x_dim1, x_offset, i__1, i__2;
 
-     doublereal d__1, d__2;
 
-     /* Local variables */
 
-     integer i__, j, j1, j2;
 
-     doublereal amax, smin, smax;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     doublereal scond, anorm;
 
-     extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     logical equil, rcequ, upper;
 
-     extern doublereal _starpu_dlamch_(char *), _starpu_dlansb_(char *, char *, 
 
- 	    integer *, integer *, doublereal *, integer *, doublereal *);
 
-     extern /* Subroutine */ int _starpu_dpbcon_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, integer *), _starpu_dlaqsb_(char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, char *);
 
-     logical nofact;
 
-     extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), 
 
- 	    _starpu_xerbla_(char *, integer *), _starpu_dpbequ_(char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, integer *);
 
-     doublereal bignum;
 
-     extern /* Subroutine */ int _starpu_dpbrfs_(char *, integer *, integer *, integer 
 
- 	    *, doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, integer *, integer *), _starpu_dpbtrf_(char *, 
 
- 	    integer *, integer *, doublereal *, integer *, integer *);
 
-     integer infequ;
 
-     extern /* Subroutine */ int _starpu_dpbtrs_(char *, integer *, integer *, integer 
 
- 	    *, doublereal *, integer *, doublereal *, integer *, integer *);
 
-     doublereal smlnum;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to */
 
- /*  compute the solution to a real system of linear equations */
 
- /*     A * X = B, */
 
- /*  where A is an N-by-N symmetric positive definite band matrix and X */
 
- /*  and B are N-by-NRHS matrices. */
 
- /*  Error bounds on the solution and a condition estimate are also */
 
- /*  provided. */
 
- /*  Description */
 
- /*  =========== */
 
- /*  The following steps are performed: */
 
- /*  1. If FACT = 'E', real scaling factors are computed to equilibrate */
 
- /*     the system: */
 
- /*        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
 
- /*     Whether or not the system will be equilibrated depends on the */
 
- /*     scaling of the matrix A, but if equilibration is used, A is */
 
- /*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */
 
- /*  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
 
- /*     factor the matrix A (after equilibration if FACT = 'E') as */
 
- /*        A = U**T * U,  if UPLO = 'U', or */
 
- /*        A = L * L**T,  if UPLO = 'L', */
 
- /*     where U is an upper triangular band matrix, and L is a lower */
 
- /*     triangular band matrix. */
 
- /*  3. If the leading i-by-i principal minor is not positive definite, */
 
- /*     then the routine returns with INFO = i. Otherwise, the factored */
 
- /*     form of A is used to estimate the condition number of the matrix */
 
- /*     A.  If the reciprocal of the condition number is less than machine */
 
- /*     precision, INFO = N+1 is returned as a warning, but the routine */
 
- /*     still goes on to solve for X and compute error bounds as */
 
- /*     described below. */
 
- /*  4. The system of equations is solved for X using the factored form */
 
- /*     of A. */
 
- /*  5. Iterative refinement is applied to improve the computed solution */
 
- /*     matrix and calculate error bounds and backward error estimates */
 
- /*     for it. */
 
- /*  6. If equilibration was used, the matrix X is premultiplied by */
 
- /*     diag(S) so that it solves the original system before */
 
- /*     equilibration. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  FACT    (input) CHARACTER*1 */
 
- /*          Specifies whether or not the factored form of the matrix A is */
 
- /*          supplied on entry, and if not, whether the matrix A should be */
 
- /*          equilibrated before it is factored. */
 
- /*          = 'F':  On entry, AFB contains the factored form of A. */
 
- /*                  If EQUED = 'Y', the matrix A has been equilibrated */
 
- /*                  with scaling factors given by S.  AB and AFB will not */
 
- /*                  be modified. */
 
- /*          = 'N':  The matrix A will be copied to AFB and factored. */
 
- /*          = 'E':  The matrix A will be equilibrated if necessary, then */
 
- /*                  copied to AFB and factored. */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of linear equations, i.e., the order of the */
 
- /*          matrix A.  N >= 0. */
 
- /*  KD      (input) INTEGER */
 
- /*          The number of superdiagonals of the matrix A if UPLO = 'U', */
 
- /*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right-hand sides, i.e., the number of columns */
 
- /*          of the matrices B and X.  NRHS >= 0. */
 
- /*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*          On entry, the upper or lower triangle of the symmetric band */
 
- /*          matrix A, stored in the first KD+1 rows of the array, except */
 
- /*          if FACT = 'F' and EQUED = 'Y', then A must contain the */
 
- /*          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A */
 
- /*          is stored in the j-th column of the array AB as follows: */
 
- /*          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j; */
 
- /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD). */
 
- /*          See below for further details. */
 
- /*          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
 
- /*          diag(S)*A*diag(S). */
 
- /*  LDAB    (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDAB >= KD+1. */
 
- /*  AFB     (input or output) DOUBLE PRECISION array, dimension (LDAFB,N) */
 
- /*          If FACT = 'F', then AFB is an input argument and on entry */
 
- /*          contains the triangular factor U or L from the Cholesky */
 
- /*          factorization A = U**T*U or A = L*L**T of the band matrix */
 
- /*          A, in the same storage format as A (see AB).  If EQUED = 'Y', */
 
- /*          then AFB is the factored form of the equilibrated matrix A. */
 
- /*          If FACT = 'N', then AFB is an output argument and on exit */
 
- /*          returns the triangular factor U or L from the Cholesky */
 
- /*          factorization A = U**T*U or A = L*L**T. */
 
- /*          If FACT = 'E', then AFB is an output argument and on exit */
 
- /*          returns the triangular factor U or L from the Cholesky */
 
- /*          factorization A = U**T*U or A = L*L**T of the equilibrated */
 
- /*          matrix A (see the description of A for the form of the */
 
- /*          equilibrated matrix). */
 
- /*  LDAFB   (input) INTEGER */
 
- /*          The leading dimension of the array AFB.  LDAFB >= KD+1. */
 
- /*  EQUED   (input or output) CHARACTER*1 */
 
- /*          Specifies the form of equilibration that was done. */
 
- /*          = 'N':  No equilibration (always true if FACT = 'N'). */
 
- /*          = 'Y':  Equilibration was done, i.e., A has been replaced by */
 
- /*                  diag(S) * A * diag(S). */
 
- /*          EQUED is an input argument if FACT = 'F'; otherwise, it is an */
 
- /*          output argument. */
 
- /*  S       (input or output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The scale factors for A; not accessed if EQUED = 'N'.  S is */
 
- /*          an input argument if FACT = 'F'; otherwise, S is an output */
 
- /*          argument.  If FACT = 'F' and EQUED = 'Y', each element of S */
 
- /*          must be positive. */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the N-by-NRHS right hand side matrix B. */
 
- /*          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
 
- /*          B is overwritten by diag(S) * B. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
 
- /*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
 
- /*          the original system of equations.  Note that if EQUED = 'Y', */
 
- /*          A and B are modified on exit, and the solution to the */
 
- /*          equilibrated system is inv(diag(S))*X. */
 
- /*  LDX     (input) INTEGER */
 
- /*          The leading dimension of the array X.  LDX >= max(1,N). */
 
- /*  RCOND   (output) DOUBLE PRECISION */
 
- /*          The estimate of the reciprocal condition number of the matrix */
 
- /*          A after equilibration (if done).  If RCOND is less than the */
 
- /*          machine precision (in particular, if RCOND = 0), the matrix */
 
- /*          is singular to working precision.  This condition is */
 
- /*          indicated by a return code of INFO > 0. */
 
- /*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The estimated forward error bound for each solution vector */
 
- /*          X(j) (the j-th column of the solution matrix X). */
 
- /*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
 
- /*          is an estimated upper bound for the magnitude of the largest */
 
- /*          element in (X(j) - XTRUE) divided by the magnitude of the */
 
- /*          largest element in X(j).  The estimate is as reliable as */
 
- /*          the estimate for RCOND, and is almost always a slight */
 
- /*          overestimate of the true error. */
 
- /*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The componentwise relative backward error of each solution */
 
- /*          vector X(j) (i.e., the smallest relative change in */
 
- /*          any element of A or B that makes X(j) an exact solution). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */
 
- /*  IWORK   (workspace) INTEGER array, dimension (N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, and i is */
 
- /*                <= N:  the leading minor of order i of A is */
 
- /*                       not positive definite, so the factorization */
 
- /*                       could not be completed, and the solution has not */
 
- /*                       been computed. RCOND = 0 is returned. */
 
- /*                = N+1: U is nonsingular, but RCOND is less than machine */
 
- /*                       precision, meaning that the matrix is singular */
 
- /*                       to working precision.  Nevertheless, the */
 
- /*                       solution and error bounds are computed because */
 
- /*                       there are a number of situations where the */
 
- /*                       computed solution can be more accurate than the */
 
- /*                       value of RCOND would suggest. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The band storage scheme is illustrated by the following example, when */
 
- /*  N = 6, KD = 2, and UPLO = 'U': */
 
- /*  Two-dimensional storage of the symmetric matrix A: */
 
- /*     a11  a12  a13 */
 
- /*          a22  a23  a24 */
 
- /*               a33  a34  a35 */
 
- /*                    a44  a45  a46 */
 
- /*                         a55  a56 */
 
- /*     (aij=conjg(aji))         a66 */
 
- /*  Band storage of the upper triangle of A: */
 
- /*      *    *   a13  a24  a35  a46 */
 
- /*      *   a12  a23  a34  a45  a56 */
 
- /*     a11  a22  a33  a44  a55  a66 */
 
- /*  Similarly, if UPLO = 'L' the format of A is as follows: */
 
- /*     a11  a22  a33  a44  a55  a66 */
 
- /*     a21  a32  a43  a54  a65   * */
 
- /*     a31  a42  a53  a64   *    * */
 
- /*  Array elements marked * are not used by the routine. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     afb_dim1 = *ldafb;
 
-     afb_offset = 1 + afb_dim1;
 
-     afb -= afb_offset;
 
-     --s;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     x_dim1 = *ldx;
 
-     x_offset = 1 + x_dim1;
 
-     x -= x_offset;
 
-     --ferr;
 
-     --berr;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     nofact = _starpu_lsame_(fact, "N");
 
-     equil = _starpu_lsame_(fact, "E");
 
-     upper = _starpu_lsame_(uplo, "U");
 
-     if (nofact || equil) {
 
- 	*(unsigned char *)equed = 'N';
 
- 	rcequ = FALSE_;
 
-     } else {
 
- 	rcequ = _starpu_lsame_(equed, "Y");
 
- 	smlnum = _starpu_dlamch_("Safe minimum");
 
- 	bignum = 1. / smlnum;
 
-     }
 
- /*     Test the input parameters. */
 
-     if (! nofact && ! equil && ! _starpu_lsame_(fact, "F")) {
 
- 	*info = -1;
 
-     } else if (! upper && ! _starpu_lsame_(uplo, "L")) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*kd < 0) {
 
- 	*info = -4;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -5;
 
-     } else if (*ldab < *kd + 1) {
 
- 	*info = -7;
 
-     } else if (*ldafb < *kd + 1) {
 
- 	*info = -9;
 
-     } else if (_starpu_lsame_(fact, "F") && ! (rcequ || _starpu_lsame_(
 
- 	    equed, "N"))) {
 
- 	*info = -10;
 
-     } else {
 
- 	if (rcequ) {
 
- 	    smin = bignum;
 
- 	    smax = 0.;
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- /* Computing MIN */
 
- 		d__1 = smin, d__2 = s[j];
 
- 		smin = min(d__1,d__2);
 
- /* Computing MAX */
 
- 		d__1 = smax, d__2 = s[j];
 
- 		smax = max(d__1,d__2);
 
- /* L10: */
 
- 	    }
 
- 	    if (smin <= 0.) {
 
- 		*info = -11;
 
- 	    } else if (*n > 0) {
 
- 		scond = max(smin,smlnum) / min(smax,bignum);
 
- 	    } else {
 
- 		scond = 1.;
 
- 	    }
 
- 	}
 
- 	if (*info == 0) {
 
- 	    if (*ldb < max(1,*n)) {
 
- 		*info = -13;
 
- 	    } else if (*ldx < max(1,*n)) {
 
- 		*info = -15;
 
- 	    }
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DPBSVX", &i__1);
 
- 	return 0;
 
-     }
 
-     if (equil) {
 
- /*        Compute row and column scalings to equilibrate the matrix A. */
 
- 	_starpu_dpbequ_(uplo, n, kd, &ab[ab_offset], ldab, &s[1], &scond, &amax, &
 
- 		infequ);
 
- 	if (infequ == 0) {
 
- /*           Equilibrate the matrix. */
 
- 	    _starpu_dlaqsb_(uplo, n, kd, &ab[ab_offset], ldab, &s[1], &scond, &amax, 
 
- 		    equed);
 
- 	    rcequ = _starpu_lsame_(equed, "Y");
 
- 	}
 
-     }
 
- /*     Scale the right-hand side. */
 
-     if (rcequ) {
 
- 	i__1 = *nrhs;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = *n;
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		b[i__ + j * b_dim1] = s[i__] * b[i__ + j * b_dim1];
 
- /* L20: */
 
- 	    }
 
- /* L30: */
 
- 	}
 
-     }
 
-     if (nofact || equil) {
 
- /*        Compute the Cholesky factorization A = U'*U or A = L*L'. */
 
- 	if (upper) {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- /* Computing MAX */
 
- 		i__2 = j - *kd;
 
- 		j1 = max(i__2,1);
 
- 		i__2 = j - j1 + 1;
 
- 		_starpu_dcopy_(&i__2, &ab[*kd + 1 - j + j1 + j * ab_dim1], &c__1, &
 
- 			afb[*kd + 1 - j + j1 + j * afb_dim1], &c__1);
 
- /* L40: */
 
- 	    }
 
- 	} else {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- /* Computing MIN */
 
- 		i__2 = j + *kd;
 
- 		j2 = min(i__2,*n);
 
- 		i__2 = j2 - j + 1;
 
- 		_starpu_dcopy_(&i__2, &ab[j * ab_dim1 + 1], &c__1, &afb[j * afb_dim1 
 
- 			+ 1], &c__1);
 
- /* L50: */
 
- 	    }
 
- 	}
 
- 	_starpu_dpbtrf_(uplo, n, kd, &afb[afb_offset], ldafb, info);
 
- /*        Return if INFO is non-zero. */
 
- 	if (*info > 0) {
 
- 	    *rcond = 0.;
 
- 	    return 0;
 
- 	}
 
-     }
 
- /*     Compute the norm of the matrix A. */
 
-     anorm = _starpu_dlansb_("1", uplo, n, kd, &ab[ab_offset], ldab, &work[1]);
 
- /*     Compute the reciprocal of the condition number of A. */
 
-     _starpu_dpbcon_(uplo, n, kd, &afb[afb_offset], ldafb, &anorm, rcond, &work[1], &
 
- 	    iwork[1], info);
 
- /*     Compute the solution matrix X. */
 
-     _starpu_dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
 
-     _starpu_dpbtrs_(uplo, n, kd, nrhs, &afb[afb_offset], ldafb, &x[x_offset], ldx, 
 
- 	    info);
 
- /*     Use iterative refinement to improve the computed solution and */
 
- /*     compute error bounds and backward error estimates for it. */
 
-     _starpu_dpbrfs_(uplo, n, kd, nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, 
 
- 	    &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1]
 
- , &iwork[1], info);
 
- /*     Transform the solution matrix X to a solution of the original */
 
- /*     system. */
 
-     if (rcequ) {
 
- 	i__1 = *nrhs;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = *n;
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		x[i__ + j * x_dim1] = s[i__] * x[i__ + j * x_dim1];
 
- /* L60: */
 
- 	    }
 
- /* L70: */
 
- 	}
 
- 	i__1 = *nrhs;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    ferr[j] /= scond;
 
- /* L80: */
 
- 	}
 
-     }
 
- /*     Set INFO = N+1 if the matrix is singular to working precision. */
 
-     if (*rcond < _starpu_dlamch_("Epsilon")) {
 
- 	*info = *n + 1;
 
-     }
 
-     return 0;
 
- /*     End of DPBSVX */
 
- } /* _starpu_dpbsvx_ */
 
 
  |