| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 | /* dptts2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dptts2_(integer *n, integer *nrhs, doublereal *d__, 	doublereal *e, doublereal *b, integer *ldb){    /* System generated locals */    integer b_dim1, b_offset, i__1, i__2;    doublereal d__1;    /* Local variables */    integer i__, j;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPTTS2 solves a tridiagonal system of the form *//*     A * X = B *//*  using the L*D*L' factorization of A computed by DPTTRF.  D is a *//*  diagonal matrix specified in the vector D, L is a unit bidiagonal *//*  matrix whose subdiagonal is specified in the vector E, and X and B *//*  are N by NRHS matrices. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the tridiagonal matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  D       (input) DOUBLE PRECISION array, dimension (N) *//*          The n diagonal elements of the diagonal matrix D from the *//*          L*D*L' factorization of A. *//*  E       (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) subdiagonal elements of the unit bidiagonal factor *//*          L from the L*D*L' factorization of A.  E can also be regarded *//*          as the superdiagonal of the unit bidiagonal factor U from the *//*          factorization A = U'*D*U. *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the right hand side vectors B for the system of *//*          linear equations. *//*          On exit, the solution vectors, X. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. *//*     Quick return if possible */    /* Parameter adjustments */    --d__;    --e;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    if (*n <= 1) {	if (*n == 1) {	    d__1 = 1. / d__[1];	    dscal_(nrhs, &d__1, &b[b_offset], ldb);	}	return 0;    }/*     Solve A * X = B using the factorization A = L*D*L', *//*     overwriting each right hand side vector with its solution. */    i__1 = *nrhs;    for (j = 1; j <= i__1; ++j) {/*           Solve L * x = b. */	i__2 = *n;	for (i__ = 2; i__ <= i__2; ++i__) {	    b[i__ + j * b_dim1] -= b[i__ - 1 + j * b_dim1] * e[i__ - 1];/* L10: */	}/*           Solve D * L' * x = b. */	b[*n + j * b_dim1] /= d__[*n];	for (i__ = *n - 1; i__ >= 1; --i__) {	    b[i__ + j * b_dim1] = b[i__ + j * b_dim1] / d__[i__] - b[i__ + 1 		    + j * b_dim1] * e[i__];/* L20: */	}/* L30: */    }    return 0;/*     End of DPTTS2 */} /* dptts2_ */
 |