| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 | /* dgeqrf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__3 = 3;static integer c__2 = 2;/* Subroutine */ int dgeqrf_(integer *m, integer *n, doublereal *a, integer *	lda, doublereal *tau, doublereal *work, integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;    real r__1;    /* Local variables */    integer i__, j, k, ib, nb, nt, nx, iws;    extern doublereal sceil_(real *);    integer nbmin, iinfo;    extern /* Subroutine */ int dgeqr2_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *), dlarfb_(char *, 	     char *, char *, char *, integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal 	    *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer lbwork, llwork, lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.1) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     March 2008 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGEQRF computes a QR factorization of a real M-by-N matrix A: *//*  A = Q * R. *//*  This is the left-looking Level 3 BLAS version of the algorithm. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M-by-N matrix A. *//*          On exit, the elements on and above the diagonal of the array *//*          contain the min(M,N)-by-N upper trapezoidal matrix R (R is *//*          upper triangular if m >= n); the elements below the diagonal, *//*          with the array TAU, represent the orthogonal matrix Q as a *//*          product of min(m,n) elementary reflectors (see Further *//*          Details). *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The scalar factors of the elementary reflectors (see Further *//*          Details). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. The dimension can be divided into three parts. *//*          1) The part for the triangular factor T. If the very last T is not bigger *//*             than any of the rest, then this part is NB x ceiling(K/NB), otherwise, *//*             NB x (K-NT), where K = min(M,N) and NT is the dimension of the very last T *//*          2) The part for the very last T when T is bigger than any of the rest T. *//*             The size of this part is NT x NT, where NT = K - ceiling ((K-NX)/NB) x NB, *//*             where K = min(M,N), NX is calculated by *//*                   NX = MAX( 0, ILAENV( 3, 'DGEQRF', ' ', M, N, -1, -1 ) ) *//*          3) The part for dlarfb is of size max((N-M)*K, (N-M)*NB, K*NB, NB*NB) *//*          So LWORK = part1 + part2 + part3 *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  Further Details *//*  =============== *//*  The matrix Q is represented as a product of elementary reflectors *//*     Q = H(1) H(2) . . . H(k), where k = min(m,n). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), *//*  and tau in TAU(i). *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    --work;    /* Function Body */    *info = 0;    nbmin = 2;    nx = 0;    iws = *n;    k = min(*m,*n);    nb = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1);    if (nb > 1 && nb < k) {/*        Determine when to cross over from blocked to unblocked code. *//* Computing MAX */	i__1 = 0, i__2 = ilaenv_(&c__3, "DGEQRF", " ", m, n, &c_n1, &c_n1);	nx = max(i__1,i__2);    }/*     Get NT, the size of the very last T, which is the left-over from in-between K-NX and K to K, eg.: *//*            NB=3     2NB=6       K=10 *//*            |        |           | *//*      1--2--3--4--5--6--7--8--9--10 *//*                  |     \________/ *//*               K-NX=5      NT=4 *//*     So here 4 x 4 is the last T stored in the workspace */    r__1 = (real) (k - nx) / (real) nb;    nt = k - sceil_(&r__1) * nb;/*     optimal workspace = space for dlarfb + space for normal T's + space for the last T *//* Computing MAX *//* Computing MAX */    i__3 = (*n - *m) * k, i__4 = (*n - *m) * nb;/* Computing MAX */    i__5 = k * nb, i__6 = nb * nb;    i__1 = max(i__3,i__4), i__2 = max(i__5,i__6);    llwork = max(i__1,i__2);    r__1 = (real) llwork / (real) nb;    llwork = sceil_(&r__1);    if (nt > nb) {	lbwork = k - nt;/*         Optimal workspace for dlarfb = MAX(1,N)*NT */	lwkopt = (lbwork + llwork) * nb;	work[1] = (doublereal) (lwkopt + nt * nt);    } else {	r__1 = (real) k / (real) nb;	lbwork = sceil_(&r__1) * nb;	lwkopt = (lbwork + llwork - nb) * nb;	work[1] = (doublereal) lwkopt;    }/*     Test the input arguments */    lquery = *lwork == -1;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*m)) {	*info = -4;    } else if (*lwork < max(1,*n) && ! lquery) {	*info = -7;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGEQRF", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (k == 0) {	work[1] = 1.;	return 0;    }    if (nb > 1 && nb < k) {	if (nx < k) {/*           Determine if workspace is large enough for blocked code. */	    if (nt <= nb) {		iws = (lbwork + llwork - nb) * nb;	    } else {		iws = (lbwork + llwork) * nb + nt * nt;	    }	    if (*lwork < iws) {/*              Not enough workspace to use optimal NB:  reduce NB and *//*              determine the minimum value of NB. */		if (nt <= nb) {		    nb = *lwork / (llwork + (lbwork - nb));		} else {		    nb = (*lwork - nt * nt) / (lbwork + llwork);		}/* Computing MAX */		i__1 = 2, i__2 = ilaenv_(&c__2, "DGEQRF", " ", m, n, &c_n1, &			c_n1);		nbmin = max(i__1,i__2);	    }	}    }    if (nb >= nbmin && nb < k && nx < k) {/*        Use blocked code initially */	i__1 = k - nx;	i__2 = nb;	for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {/* Computing MIN */	    i__3 = k - i__ + 1;	    ib = min(i__3,nb);/*           Update the current column using old T's */	    i__3 = i__ - nb;	    i__4 = nb;	    for (j = 1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {/*              Apply H' to A(J:M,I:I+IB-1) from the left */		i__5 = *m - j + 1;		dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__5, &			ib, &nb, &a[j + j * a_dim1], lda, &work[j], &lbwork, &			a[j + i__ * a_dim1], lda, &work[lbwork * nb + nt * nt 			+ 1], &ib);/* L20: */	    }/*           Compute the QR factorization of the current block *//*           A(I:M,I:I+IB-1) */	    i__4 = *m - i__ + 1;	    dgeqr2_(&i__4, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[		    lbwork * nb + nt * nt + 1], &iinfo);	    if (i__ + ib <= *n) {/*              Form the triangular factor of the block reflector *//*              H = H(i) H(i+1) . . . H(i+ib-1) */		i__4 = *m - i__ + 1;		dlarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ * 			a_dim1], lda, &tau[i__], &work[i__], &lbwork);	    }/* L10: */	}    } else {	i__ = 1;    }/*     Use unblocked code to factor the last or only block. */    if (i__ <= k) {	if (i__ != 1) {	    i__2 = i__ - nb;	    i__1 = nb;	    for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {/*                Apply H' to A(J:M,I:K) from the left */		i__4 = *m - j + 1;		i__3 = k - i__ + 1;		i__5 = k - i__ + 1;		dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__4, &			i__3, &nb, &a[j + j * a_dim1], lda, &work[j], &lbwork, 			 &a[j + i__ * a_dim1], lda, &work[lbwork * nb + nt * 			nt + 1], &i__5);/* L30: */	    }	    i__1 = *m - i__ + 1;	    i__2 = k - i__ + 1;	    dgeqr2_(&i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &tau[i__], &		    work[lbwork * nb + nt * nt + 1], &iinfo);	} else {/*        Use unblocked code to factor the last or only block. */	    i__1 = *m - i__ + 1;	    i__2 = *n - i__ + 1;	    dgeqr2_(&i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &tau[i__], &		    work[1], &iinfo);	}    }/*     Apply update to the column M+1:N when N > M */    if (*m < *n && i__ != 1) {/*         Form the last triangular factor of the block reflector *//*         H = H(i) H(i+1) . . . H(i+ib-1) */	if (nt <= nb) {	    i__1 = *m - i__ + 1;	    i__2 = k - i__ + 1;	    dlarft_("Forward", "Columnwise", &i__1, &i__2, &a[i__ + i__ * 		    a_dim1], lda, &tau[i__], &work[i__], &lbwork);	} else {	    i__1 = *m - i__ + 1;	    i__2 = k - i__ + 1;	    dlarft_("Forward", "Columnwise", &i__1, &i__2, &a[i__ + i__ * 		    a_dim1], lda, &tau[i__], &work[lbwork * nb + 1], &nt);	}/*         Apply H' to A(1:M,M+1:N) from the left */	i__1 = k - nx;	i__2 = nb;	for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {/* Computing MIN */	    i__4 = k - j + 1;	    ib = min(i__4,nb);	    i__4 = *m - j + 1;	    i__3 = *n - *m;	    i__5 = *n - *m;	    dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__4, &		    i__3, &ib, &a[j + j * a_dim1], lda, &work[j], &lbwork, &a[		    j + (*m + 1) * a_dim1], lda, &work[lbwork * nb + nt * nt 		    + 1], &i__5);/* L40: */	}	if (nt <= nb) {	    i__2 = *m - j + 1;	    i__1 = *n - *m;	    i__4 = k - j + 1;	    i__3 = *n - *m;	    dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__2, &		    i__1, &i__4, &a[j + j * a_dim1], lda, &work[j], &lbwork, &		    a[j + (*m + 1) * a_dim1], lda, &work[lbwork * nb + nt * 		    nt + 1], &i__3);	} else {	    i__2 = *m - j + 1;	    i__1 = *n - *m;	    i__4 = k - j + 1;	    i__3 = *n - *m;	    dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__2, &		    i__1, &i__4, &a[j + j * a_dim1], lda, &work[lbwork * nb + 		    1], &nt, &a[j + (*m + 1) * a_dim1], lda, &work[lbwork * 		    nb + nt * nt + 1], &i__3);	}    }    work[1] = (doublereal) iws;    return 0;/*     End of DGEQRF */} /* dgeqrf_ */
 |