starpu_sgemm_gemm.mirage 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. ##################
  2. # Performance Model Version
  3. 45
  4. ####################
  5. # COMBs
  6. # number of combinations
  7. 4
  8. ####################
  9. # COMB_3
  10. # number of types devices
  11. 1
  12. ####################
  13. # DEV_0
  14. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  15. 0
  16. ####################
  17. # DEV_0
  18. # device id
  19. 0
  20. ####################
  21. # DEV_0
  22. # number of cores
  23. 1
  24. ##########
  25. # number of implementations
  26. 1
  27. #####
  28. # Model for cpu0_impl0 (Comb3)
  29. # number of entries
  30. 3
  31. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  32. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  33. # a b c
  34. nan nan nan
  35. # not multiple-regression-base
  36. 0
  37. # hash size flops mean (us) dev (us) sum sum2 n
  38. 0b0b0ce8 3686400 2.621440e+08 1.352609e+04 3.616534e+02 1.082087e+06 1.464687e+10 80
  39. 492beed5 33177600 7.077888e+09 3.550396e+05 8.949994e+03 2.840317e+07 1.009066e+13 80
  40. 4220e23d 14745600 2.097152e+09 1.078112e+05 1.983800e+03 8.624897e+06 9.301755e+11 80
  41. ####################
  42. # COMB_1
  43. # number of types devices
  44. 1
  45. ####################
  46. # DEV_0
  47. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  48. 1
  49. ####################
  50. # DEV_0
  51. # device id
  52. 0
  53. ####################
  54. # DEV_0
  55. # number of cores
  56. 1
  57. ##########
  58. # number of implementations
  59. 1
  60. #####
  61. # Model for cuda0_impl0 (Comb1)
  62. # number of entries
  63. 3
  64. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  65. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  66. # a b c
  67. nan nan nan
  68. # not multiple-regression-base
  69. 0
  70. # hash size flops mean (us) dev (us) sum sum2 n
  71. 0b0b0ce8 3686400 2.621440e+08 6.589631e+02 8.406511e+00 6.787320e+04 4.473321e+07 103
  72. 492beed5 33177600 7.077888e+09 1.151398e+04 9.050114e+01 1.220482e+06 1.405348e+10 106
  73. 4220e23d 14745600 2.097152e+09 5.574713e+03 3.353004e+02 5.909196e+05 3.306125e+09 106
  74. ####################
  75. # COMB_0
  76. # number of types devices
  77. 1
  78. ####################
  79. # DEV_0
  80. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  81. 1
  82. ####################
  83. # DEV_0
  84. # device id
  85. 1
  86. ####################
  87. # DEV_0
  88. # number of cores
  89. 1
  90. ##########
  91. # number of implementations
  92. 1
  93. #####
  94. # Model for cuda1_impl0 (Comb0)
  95. # number of entries
  96. 3
  97. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  98. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  99. # a b c
  100. nan nan nan
  101. # not multiple-regression-base
  102. 0
  103. # hash size flops mean (us) dev (us) sum sum2 n
  104. 0b0b0ce8 3686400 2.621440e+08 6.663664e+02 8.616537e+01 6.796937e+04 4.604980e+07 102
  105. 492beed5 33177600 7.077888e+09 1.150036e+04 8.404527e+01 1.207538e+06 1.388786e+10 105
  106. 4220e23d 14745600 2.097152e+09 5.579034e+03 3.672012e+02 5.857985e+05 3.282348e+09 105
  107. ####################
  108. # COMB_2
  109. # number of types devices
  110. 1
  111. ####################
  112. # DEV_0
  113. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  114. 1
  115. ####################
  116. # DEV_0
  117. # device id
  118. 2
  119. ####################
  120. # DEV_0
  121. # number of cores
  122. 1
  123. ##########
  124. # number of implementations
  125. 1
  126. #####
  127. # Model for cuda2_impl0 (Comb2)
  128. # number of entries
  129. 3
  130. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  131. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  132. # a b c
  133. nan nan nan
  134. # not multiple-regression-base
  135. 0
  136. # hash size flops mean (us) dev (us) sum sum2 n
  137. 0b0b0ce8 3686400 2.621440e+08 6.181769e+02 5.174143e+01 6.181769e+04 3.848198e+07 100
  138. 492beed5 33177600 7.077888e+09 1.148096e+04 7.289415e+01 1.205501e+06 1.384086e+10 105
  139. 4220e23d 14745600 2.097152e+09 5.580581e+03 3.970717e+02 5.859610e+05 3.286558e+09 105