| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334 | 
							- /* dsyequb.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int dsyequb_(char *uplo, integer *n, doublereal *a, integer *
 
- 	lda, doublereal *s, doublereal *scond, doublereal *amax, doublereal *
 
- 	work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2;
 
-     doublereal d__1, d__2, d__3;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal), log(doublereal), pow_di(doublereal *, integer *);
 
-     /* Local variables */
 
-     doublereal d__;
 
-     integer i__, j;
 
-     doublereal t, u, c0, c1, c2, si;
 
-     logical up;
 
-     doublereal avg, std, tol, base;
 
-     integer iter;
 
-     doublereal smin, smax, scale;
 
-     extern logical lsame_(char *, char *);
 
-     doublereal sumsq;
 
-     extern doublereal dlamch_(char *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     doublereal bignum;
 
-     extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *);
 
-     doublereal smlnum;
 
- /*     -- LAPACK routine (version 3.2)                                 -- */
 
- /*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
 
- /*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
 
- /*     -- November 2008                                                -- */
 
- /*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
 
- /*     -- Univ. of California Berkeley and NAG Ltd.                    -- */
 
- /*     .. */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSYEQUB computes row and column scalings intended to equilibrate a */
 
- /*  symmetric matrix A and reduce its condition number */
 
- /*  (with respect to the two-norm).  S contains the scale factors, */
 
- /*  S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with */
 
- /*  elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This */
 
- /*  choice of S puts the condition number of B within a factor N of the */
 
- /*  smallest possible condition number over all possible diagonal */
 
- /*  scalings. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          The N-by-N symmetric matrix whose scaling */
 
- /*          factors are to be computed.  Only the diagonal elements of A */
 
- /*          are referenced. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  S       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          If INFO = 0, S contains the scale factors for A. */
 
- /*  SCOND   (output) DOUBLE PRECISION */
 
- /*          If INFO = 0, S contains the ratio of the smallest S(i) to */
 
- /*          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too */
 
- /*          large nor too small, it is not worth scaling by S. */
 
- /*  AMAX    (output) DOUBLE PRECISION */
 
- /*          Absolute value of largest matrix element.  If AMAX is very */
 
- /*          close to overflow or very close to underflow, the matrix */
 
- /*          should be scaled. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, the i-th diagonal element is nonpositive. */
 
- /*  Further Details */
 
- /*  ======= ======= */
 
- /*  Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization", */
 
- /*  Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. */
 
- /*  DOI 10.1023/B:NUMA.0000016606.32820.69 */
 
- /*  Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test input parameters. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --s;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (! (lsame_(uplo, "U") || lsame_(uplo, "L"))) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -4;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DSYEQUB", &i__1);
 
- 	return 0;
 
-     }
 
-     up = lsame_(uplo, "U");
 
-     *amax = 0.;
 
- /*     Quick return if possible. */
 
-     if (*n == 0) {
 
- 	*scond = 1.;
 
- 	return 0;
 
-     }
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	s[i__] = 0.;
 
-     }
 
-     *amax = 0.;
 
-     if (up) {
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = j - 1;
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 		d__2 = s[i__], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
 
- 		s[i__] = max(d__2,d__3);
 
- /* Computing MAX */
 
- 		d__2 = s[j], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
 
- 		s[j] = max(d__2,d__3);
 
- /* Computing MAX */
 
- 		d__2 = *amax, d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
 
- 		*amax = max(d__2,d__3);
 
- 	    }
 
- /* Computing MAX */
 
- 	    d__2 = s[j], d__3 = (d__1 = a[j + j * a_dim1], abs(d__1));
 
- 	    s[j] = max(d__2,d__3);
 
- /* Computing MAX */
 
- 	    d__2 = *amax, d__3 = (d__1 = a[j + j * a_dim1], abs(d__1));
 
- 	    *amax = max(d__2,d__3);
 
- 	}
 
-     } else {
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- /* Computing MAX */
 
- 	    d__2 = s[j], d__3 = (d__1 = a[j + j * a_dim1], abs(d__1));
 
- 	    s[j] = max(d__2,d__3);
 
- /* Computing MAX */
 
- 	    d__2 = *amax, d__3 = (d__1 = a[j + j * a_dim1], abs(d__1));
 
- 	    *amax = max(d__2,d__3);
 
- 	    i__2 = *n;
 
- 	    for (i__ = j + 1; i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 		d__2 = s[i__], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
 
- 		s[i__] = max(d__2,d__3);
 
- /* Computing MAX */
 
- 		d__2 = s[j], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
 
- 		s[j] = max(d__2,d__3);
 
- /* Computing MAX */
 
- 		d__2 = *amax, d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
 
- 		*amax = max(d__2,d__3);
 
- 	    }
 
- 	}
 
-     }
 
-     i__1 = *n;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	s[j] = 1. / s[j];
 
-     }
 
-     tol = 1. / sqrt(*n * 2.);
 
-     for (iter = 1; iter <= 100; ++iter) {
 
- 	scale = 0.;
 
- 	sumsq = 0.;
 
- /*       BETA = |A|S */
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    work[i__] = 0.;
 
- 	}
 
- 	if (up) {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = j - 1;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    t = (d__1 = a[i__ + j * a_dim1], abs(d__1));
 
- 		    work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1)) * s[
 
- 			    j];
 
- 		    work[j] += (d__1 = a[i__ + j * a_dim1], abs(d__1)) * s[
 
- 			    i__];
 
- 		}
 
- 		work[j] += (d__1 = a[j + j * a_dim1], abs(d__1)) * s[j];
 
- 	    }
 
- 	} else {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		work[j] += (d__1 = a[j + j * a_dim1], abs(d__1)) * s[j];
 
- 		i__2 = *n;
 
- 		for (i__ = j + 1; i__ <= i__2; ++i__) {
 
- 		    t = (d__1 = a[i__ + j * a_dim1], abs(d__1));
 
- 		    work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1)) * s[
 
- 			    j];
 
- 		    work[j] += (d__1 = a[i__ + j * a_dim1], abs(d__1)) * s[
 
- 			    i__];
 
- 		}
 
- 	    }
 
- 	}
 
- /*       avg = s^T beta / n */
 
- 	avg = 0.;
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    avg += s[i__] * work[i__];
 
- 	}
 
- 	avg /= *n;
 
- 	std = 0.;
 
- 	i__1 = *n * 3;
 
- 	for (i__ = (*n << 1) + 1; i__ <= i__1; ++i__) {
 
- 	    work[i__] = s[i__ - (*n << 1)] * work[i__ - (*n << 1)] - avg;
 
- 	}
 
- 	dlassq_(n, &work[(*n << 1) + 1], &c__1, &scale, &sumsq);
 
- 	std = scale * sqrt(sumsq / *n);
 
- 	if (std < tol * avg) {
 
- 	    goto L999;
 
- 	}
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    t = (d__1 = a[i__ + i__ * a_dim1], abs(d__1));
 
- 	    si = s[i__];
 
- 	    c2 = (*n - 1) * t;
 
- 	    c1 = (*n - 2) * (work[i__] - t * si);
 
- 	    c0 = -(t * si) * si + work[i__] * 2 * si - *n * avg;
 
- 	    d__ = c1 * c1 - c0 * 4 * c2;
 
- 	    if (d__ <= 0.) {
 
- 		*info = -1;
 
- 		return 0;
 
- 	    }
 
- 	    si = c0 * -2 / (c1 + sqrt(d__));
 
- 	    d__ = si - s[i__];
 
- 	    u = 0.;
 
- 	    if (up) {
 
- 		i__2 = i__;
 
- 		for (j = 1; j <= i__2; ++j) {
 
- 		    t = (d__1 = a[j + i__ * a_dim1], abs(d__1));
 
- 		    u += s[j] * t;
 
- 		    work[j] += d__ * t;
 
- 		}
 
- 		i__2 = *n;
 
- 		for (j = i__ + 1; j <= i__2; ++j) {
 
- 		    t = (d__1 = a[i__ + j * a_dim1], abs(d__1));
 
- 		    u += s[j] * t;
 
- 		    work[j] += d__ * t;
 
- 		}
 
- 	    } else {
 
- 		i__2 = i__;
 
- 		for (j = 1; j <= i__2; ++j) {
 
- 		    t = (d__1 = a[i__ + j * a_dim1], abs(d__1));
 
- 		    u += s[j] * t;
 
- 		    work[j] += d__ * t;
 
- 		}
 
- 		i__2 = *n;
 
- 		for (j = i__ + 1; j <= i__2; ++j) {
 
- 		    t = (d__1 = a[j + i__ * a_dim1], abs(d__1));
 
- 		    u += s[j] * t;
 
- 		    work[j] += d__ * t;
 
- 		}
 
- 	    }
 
- 	    avg += (u + work[i__]) * d__ / *n;
 
- 	    s[i__] = si;
 
- 	}
 
-     }
 
- L999:
 
-     smlnum = dlamch_("SAFEMIN");
 
-     bignum = 1. / smlnum;
 
-     smin = bignum;
 
-     smax = 0.;
 
-     t = 1. / sqrt(avg);
 
-     base = dlamch_("B");
 
-     u = 1. / log(base);
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	i__2 = (integer) (u * log(s[i__] * t));
 
- 	s[i__] = pow_di(&base, &i__2);
 
- /* Computing MIN */
 
- 	d__1 = smin, d__2 = s[i__];
 
- 	smin = min(d__1,d__2);
 
- /* Computing MAX */
 
- 	d__1 = smax, d__2 = s[i__];
 
- 	smax = max(d__1,d__2);
 
-     }
 
-     *scond = max(smin,smlnum) / min(smax,bignum);
 
-     return 0;
 
- } /* dsyequb_ */
 
 
  |