| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623 | /* dporfsx.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c_n1 = -1;static integer c__0 = 0;static integer c__1 = 1;/* Subroutine */ int dporfsx_(char *uplo, char *equed, integer *n, integer *	nrhs, doublereal *a, integer *lda, doublereal *af, integer *ldaf, 	doublereal *s, doublereal *b, integer *ldb, doublereal *x, integer *	ldx, doublereal *rcond, doublereal *berr, integer *n_err_bnds__, 	doublereal *err_bnds_norm__, doublereal *err_bnds_comp__, integer *	nparams, doublereal *params, doublereal *work, integer *iwork, 	integer *info){    /* System generated locals */    integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 	    x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 	    err_bnds_comp_dim1, err_bnds_comp_offset, i__1;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal illrcond_thresh__, unstable_thresh__, err_lbnd__;    integer ref_type__, j;    doublereal rcond_tmp__;    integer prec_type__;    extern doublereal dla_porcond__(char *, integer *, doublereal *, integer *	    , doublereal *, integer *, integer *, doublereal *, integer *, 	    doublereal *, integer *, ftnlen);    doublereal cwise_wrong__;    extern /* Subroutine */ int dla_porfsx_extended__(integer *, char *, 	    integer *, integer *, doublereal *, integer *, doublereal *, 	    integer *, logical *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *,	     logical *, integer *, ftnlen);    char norm[1];    logical ignore_cwise__;    extern logical lsame_(char *, char *);    doublereal anorm;    logical rcequ;    extern doublereal dlamch_(char *);    extern /* Subroutine */ int xerbla_(char *, integer *), dpocon_(	    char *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, integer *);    extern doublereal dlansy_(char *, char *, integer *, doublereal *, 	    integer *, doublereal *);    extern integer ilaprec_(char *);    integer ithresh, n_norms__;    doublereal rthresh;/*     -- LAPACK routine (version 3.2.1)                                 -- *//*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- *//*     -- Jason Riedy of Univ. of California Berkeley.                 -- *//*     -- April 2009                                                   -- *//*     -- LAPACK is a software package provided by Univ. of Tennessee, -- *//*     -- Univ. of California Berkeley and NAG Ltd.                    -- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*     Purpose *//*     ======= *//*     DPORFSX improves the computed solution to a system of linear *//*     equations when the coefficient matrix is symmetric positive *//*     definite, and provides error bounds and backward error estimates *//*     for the solution.  In addition to normwise error bound, the code *//*     provides maximum componentwise error bound if possible.  See *//*     comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the *//*     error bounds. *//*     The original system of linear equations may have been equilibrated *//*     before calling this routine, as described by arguments EQUED and S *//*     below. In this case, the solution and error bounds returned are *//*     for the original unequilibrated system. *//*     Arguments *//*     ========= *//*     Some optional parameters are bundled in the PARAMS array.  These *//*     settings determine how refinement is performed, but often the *//*     defaults are acceptable.  If the defaults are acceptable, users *//*     can pass NPARAMS = 0 which prevents the source code from accessing *//*     the PARAMS argument. *//*     UPLO    (input) CHARACTER*1 *//*       = 'U':  Upper triangle of A is stored; *//*       = 'L':  Lower triangle of A is stored. *//*     EQUED   (input) CHARACTER*1 *//*     Specifies the form of equilibration that was done to A *//*     before calling this routine. This is needed to compute *//*     the solution and error bounds correctly. *//*       = 'N':  No equilibration *//*       = 'Y':  Both row and column equilibration, i.e., A has been *//*               replaced by diag(S) * A * diag(S). *//*               The right hand side B has been changed accordingly. *//*     N       (input) INTEGER *//*     The order of the matrix A.  N >= 0. *//*     NRHS    (input) INTEGER *//*     The number of right hand sides, i.e., the number of columns *//*     of the matrices B and X.  NRHS >= 0. *//*     A       (input) DOUBLE PRECISION array, dimension (LDA,N) *//*     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N *//*     upper triangular part of A contains the upper triangular part *//*     of the matrix A, and the strictly lower triangular part of A *//*     is not referenced.  If UPLO = 'L', the leading N-by-N lower *//*     triangular part of A contains the lower triangular part of *//*     the matrix A, and the strictly upper triangular part of A is *//*     not referenced. *//*     LDA     (input) INTEGER *//*     The leading dimension of the array A.  LDA >= max(1,N). *//*     AF      (input) DOUBLE PRECISION array, dimension (LDAF,N) *//*     The triangular factor U or L from the Cholesky factorization *//*     A = U**T*U or A = L*L**T, as computed by DPOTRF. *//*     LDAF    (input) INTEGER *//*     The leading dimension of the array AF.  LDAF >= max(1,N). *//*     S       (input or output) DOUBLE PRECISION array, dimension (N) *//*     The row scale factors for A.  If EQUED = 'Y', A is multiplied on *//*     the left and right by diag(S).  S is an input argument if FACT = *//*     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED *//*     = 'Y', each element of S must be positive.  If S is output, each *//*     element of S is a power of the radix. If S is input, each element *//*     of S should be a power of the radix to ensure a reliable solution *//*     and error estimates. Scaling by powers of the radix does not cause *//*     rounding errors unless the result underflows or overflows. *//*     Rounding errors during scaling lead to refining with a matrix that *//*     is not equivalent to the input matrix, producing error estimates *//*     that may not be reliable. *//*     B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*     The right hand side matrix B. *//*     LDB     (input) INTEGER *//*     The leading dimension of the array B.  LDB >= max(1,N). *//*     X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) *//*     On entry, the solution matrix X, as computed by DGETRS. *//*     On exit, the improved solution matrix X. *//*     LDX     (input) INTEGER *//*     The leading dimension of the array X.  LDX >= max(1,N). *//*     RCOND   (output) DOUBLE PRECISION *//*     Reciprocal scaled condition number.  This is an estimate of the *//*     reciprocal Skeel condition number of the matrix A after *//*     equilibration (if done).  If this is less than the machine *//*     precision (in particular, if it is zero), the matrix is singular *//*     to working precision.  Note that the error may still be small even *//*     if this number is very small and the matrix appears ill- *//*     conditioned. *//*     BERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*     Componentwise relative backward error.  This is the *//*     componentwise relative backward error of each solution vector X(j) *//*     (i.e., the smallest relative change in any element of A or B that *//*     makes X(j) an exact solution). *//*     N_ERR_BNDS (input) INTEGER *//*     Number of error bounds to return for each right hand side *//*     and each type (normwise or componentwise).  See ERR_BNDS_NORM and *//*     ERR_BNDS_COMP below. *//*     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) *//*     For each right-hand side, this array contains information about *//*     various error bounds and condition numbers corresponding to the *//*     normwise relative error, which is defined as follows: *//*     Normwise relative error in the ith solution vector: *//*             max_j (abs(XTRUE(j,i) - X(j,i))) *//*            ------------------------------ *//*                  max_j abs(X(j,i)) *//*     The array is indexed by the type of error information as described *//*     below. There currently are up to three pieces of information *//*     returned. *//*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith *//*     right-hand side. *//*     The second index in ERR_BNDS_NORM(:,err) contains the following *//*     three fields: *//*     err = 1 "Trust/don't trust" boolean. Trust the answer if the *//*              reciprocal condition number is less than the threshold *//*              sqrt(n) * dlamch('Epsilon'). *//*     err = 2 "Guaranteed" error bound: The estimated forward error, *//*              almost certainly within a factor of 10 of the true error *//*              so long as the next entry is greater than the threshold *//*              sqrt(n) * dlamch('Epsilon'). This error bound should only *//*              be trusted if the previous boolean is true. *//*     err = 3  Reciprocal condition number: Estimated normwise *//*              reciprocal condition number.  Compared with the threshold *//*              sqrt(n) * dlamch('Epsilon') to determine if the error *//*              estimate is "guaranteed". These reciprocal condition *//*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some *//*              appropriately scaled matrix Z. *//*              Let Z = S*A, where S scales each row by a power of the *//*              radix so all absolute row sums of Z are approximately 1. *//*     See Lapack Working Note 165 for further details and extra *//*     cautions. *//*     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) *//*     For each right-hand side, this array contains information about *//*     various error bounds and condition numbers corresponding to the *//*     componentwise relative error, which is defined as follows: *//*     Componentwise relative error in the ith solution vector: *//*                    abs(XTRUE(j,i) - X(j,i)) *//*             max_j ---------------------- *//*                         abs(X(j,i)) *//*     The array is indexed by the right-hand side i (on which the *//*     componentwise relative error depends), and the type of error *//*     information as described below. There currently are up to three *//*     pieces of information returned for each right-hand side. If *//*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then *//*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most *//*     the first (:,N_ERR_BNDS) entries are returned. *//*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith *//*     right-hand side. *//*     The second index in ERR_BNDS_COMP(:,err) contains the following *//*     three fields: *//*     err = 1 "Trust/don't trust" boolean. Trust the answer if the *//*              reciprocal condition number is less than the threshold *//*              sqrt(n) * dlamch('Epsilon'). *//*     err = 2 "Guaranteed" error bound: The estimated forward error, *//*              almost certainly within a factor of 10 of the true error *//*              so long as the next entry is greater than the threshold *//*              sqrt(n) * dlamch('Epsilon'). This error bound should only *//*              be trusted if the previous boolean is true. *//*     err = 3  Reciprocal condition number: Estimated componentwise *//*              reciprocal condition number.  Compared with the threshold *//*              sqrt(n) * dlamch('Epsilon') to determine if the error *//*              estimate is "guaranteed". These reciprocal condition *//*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some *//*              appropriately scaled matrix Z. *//*              Let Z = S*(A*diag(x)), where x is the solution for the *//*              current right-hand side and S scales each row of *//*              A*diag(x) by a power of the radix so all absolute row *//*              sums of Z are approximately 1. *//*     See Lapack Working Note 165 for further details and extra *//*     cautions. *//*     NPARAMS (input) INTEGER *//*     Specifies the number of parameters set in PARAMS.  If .LE. 0, the *//*     PARAMS array is never referenced and default values are used. *//*     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS *//*     Specifies algorithm parameters.  If an entry is .LT. 0.0, then *//*     that entry will be filled with default value used for that *//*     parameter.  Only positions up to NPARAMS are accessed; defaults *//*     are used for higher-numbered parameters. *//*       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative *//*            refinement or not. *//*         Default: 1.0D+0 *//*            = 0.0 : No refinement is performed, and no error bounds are *//*                    computed. *//*            = 1.0 : Use the double-precision refinement algorithm, *//*                    possibly with doubled-single computations if the *//*                    compilation environment does not support DOUBLE *//*                    PRECISION. *//*              (other values are reserved for future use) *//*       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual *//*            computations allowed for refinement. *//*         Default: 10 *//*         Aggressive: Set to 100 to permit convergence using approximate *//*                     factorizations or factorizations other than LU. If *//*                     the factorization uses a technique other than *//*                     Gaussian elimination, the guarantees in *//*                     err_bnds_norm and err_bnds_comp may no longer be *//*                     trustworthy. *//*       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code *//*            will attempt to find a solution with small componentwise *//*            relative error in the double-precision algorithm.  Positive *//*            is true, 0.0 is false. *//*         Default: 1.0 (attempt componentwise convergence) *//*     WORK    (workspace) DOUBLE PRECISION array, dimension (4*N) *//*     IWORK   (workspace) INTEGER array, dimension (N) *//*     INFO    (output) INTEGER *//*       = 0:  Successful exit. The solution to every right-hand side is *//*         guaranteed. *//*       < 0:  If INFO = -i, the i-th argument had an illegal value *//*       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization *//*         has been completed, but the factor U is exactly singular, so *//*         the solution and error bounds could not be computed. RCOND = 0 *//*         is returned. *//*       = N+J: The solution corresponding to the Jth right-hand side is *//*         not guaranteed. The solutions corresponding to other right- *//*         hand sides K with K > J may not be guaranteed as well, but *//*         only the first such right-hand side is reported. If a small *//*         componentwise error is not requested (PARAMS(3) = 0.0) then *//*         the Jth right-hand side is the first with a normwise error *//*         bound that is not guaranteed (the smallest J such *//*         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) *//*         the Jth right-hand side is the first with either a normwise or *//*         componentwise error bound that is not guaranteed (the smallest *//*         J such that either ERR_BNDS_NORM(J,1) = 0.0 or *//*         ERR_BNDS_COMP(J,1) = 0.0). See the definition of *//*         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information *//*         about all of the right-hand sides check ERR_BNDS_NORM or *//*         ERR_BNDS_COMP. *//*     ================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Check the input parameters. */    /* Parameter adjustments */    err_bnds_comp_dim1 = *nrhs;    err_bnds_comp_offset = 1 + err_bnds_comp_dim1;    err_bnds_comp__ -= err_bnds_comp_offset;    err_bnds_norm_dim1 = *nrhs;    err_bnds_norm_offset = 1 + err_bnds_norm_dim1;    err_bnds_norm__ -= err_bnds_norm_offset;    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    af_dim1 = *ldaf;    af_offset = 1 + af_dim1;    af -= af_offset;    --s;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    x_dim1 = *ldx;    x_offset = 1 + x_dim1;    x -= x_offset;    --berr;    --params;    --work;    --iwork;    /* Function Body */    *info = 0;    ref_type__ = 1;    if (*nparams >= 1) {	if (params[1] < 0.) {	    params[1] = 1.;	} else {	    ref_type__ = (integer) params[1];	}    }/*     Set default parameters. */    illrcond_thresh__ = (doublereal) (*n) * dlamch_("Epsilon");    ithresh = 10;    rthresh = .5;    unstable_thresh__ = .25;    ignore_cwise__ = FALSE_;    if (*nparams >= 2) {	if (params[2] < 0.) {	    params[2] = (doublereal) ithresh;	} else {	    ithresh = (integer) params[2];	}    }    if (*nparams >= 3) {	if (params[3] < 0.) {	    if (ignore_cwise__) {		params[3] = 0.;	    } else {		params[3] = 1.;	    }	} else {	    ignore_cwise__ = params[3] == 0.;	}    }    if (ref_type__ == 0 || *n_err_bnds__ == 0) {	n_norms__ = 0;    } else if (ignore_cwise__) {	n_norms__ = 1;    } else {	n_norms__ = 2;    }    rcequ = lsame_(equed, "Y");/*     Test input parameters. */    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {	*info = -1;    } else if (! rcequ && ! lsame_(equed, "N")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*nrhs < 0) {	*info = -4;    } else if (*lda < max(1,*n)) {	*info = -6;    } else if (*ldaf < max(1,*n)) {	*info = -8;    } else if (*ldb < max(1,*n)) {	*info = -11;    } else if (*ldx < max(1,*n)) {	*info = -13;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPORFSX", &i__1);	return 0;    }/*     Quick return if possible. */    if (*n == 0 || *nrhs == 0) {	*rcond = 1.;	i__1 = *nrhs;	for (j = 1; j <= i__1; ++j) {	    berr[j] = 0.;	    if (*n_err_bnds__ >= 1) {		err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;		err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;	    } else if (*n_err_bnds__ >= 2) {		err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 0.;		err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 0.;	    } else if (*n_err_bnds__ >= 3) {		err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 1.;		err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 1.;	    }	}	return 0;    }/*     Default to failure. */    *rcond = 0.;    i__1 = *nrhs;    for (j = 1; j <= i__1; ++j) {	berr[j] = 1.;	if (*n_err_bnds__ >= 1) {	    err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;	    err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;	} else if (*n_err_bnds__ >= 2) {	    err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;	    err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;	} else if (*n_err_bnds__ >= 3) {	    err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 0.;	    err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 0.;	}    }/*     Compute the norm of A and the reciprocal of the condition *//*     number of A. */    *(unsigned char *)norm = 'I';    anorm = dlansy_(norm, uplo, n, &a[a_offset], lda, &work[1]);    dpocon_(uplo, n, &af[af_offset], ldaf, &anorm, rcond, &work[1], &iwork[1], 	     info);/*     Perform refinement on each right-hand side */    if (ref_type__ != 0) {	prec_type__ = ilaprec_("E");	dla_porfsx_extended__(&prec_type__, uplo, n, nrhs, &a[a_offset], lda, 		&af[af_offset], ldaf, &rcequ, &s[1], &b[b_offset], ldb, &x[		x_offset], ldx, &berr[1], &n_norms__, &err_bnds_norm__[		err_bnds_norm_offset], &err_bnds_comp__[err_bnds_comp_offset],		 &work[*n + 1], &work[1], &work[(*n << 1) + 1], &work[1], 		rcond, &ithresh, &rthresh, &unstable_thresh__, &		ignore_cwise__, info, (ftnlen)1);    }/* Computing MAX */    d__1 = 10., d__2 = sqrt((doublereal) (*n));    err_lbnd__ = max(d__1,d__2) * dlamch_("Epsilon");    if (*n_err_bnds__ >= 1 && n_norms__ >= 1) {/*     Compute scaled normwise condition number cond(A*C). */	if (rcequ) {	    rcond_tmp__ = dla_porcond__(uplo, n, &a[a_offset], lda, &af[		    af_offset], ldaf, &c_n1, &s[1], info, &work[1], &iwork[1],		     (ftnlen)1);	} else {	    rcond_tmp__ = dla_porcond__(uplo, n, &a[a_offset], lda, &af[		    af_offset], ldaf, &c__0, &s[1], info, &work[1], &iwork[1],		     (ftnlen)1);	}	i__1 = *nrhs;	for (j = 1; j <= i__1; ++j) {/*     Cap the error at 1.0. */	    if (*n_err_bnds__ >= 2 && err_bnds_norm__[j + (err_bnds_norm_dim1 		    << 1)] > 1.) {		err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;	    }/*     Threshold the error (see LAWN). */	    if (rcond_tmp__ < illrcond_thresh__) {		err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;		err_bnds_norm__[j + err_bnds_norm_dim1] = 0.;		if (*info <= *n) {		    *info = *n + j;		}	    } else if (err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] < 		    err_lbnd__) {		err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = err_lbnd__;		err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;	    }/*     Save the condition number. */	    if (*n_err_bnds__ >= 3) {		err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = rcond_tmp__;	    }	}    }    if (*n_err_bnds__ >= 1 && n_norms__ >= 2) {/*     Compute componentwise condition number cond(A*diag(Y(:,J))) for *//*     each right-hand side using the current solution as an estimate of *//*     the true solution.  If the componentwise error estimate is too *//*     large, then the solution is a lousy estimate of truth and the *//*     estimated RCOND may be too optimistic.  To avoid misleading users, *//*     the inverse condition number is set to 0.0 when the estimated *//*     cwise error is at least CWISE_WRONG. */	cwise_wrong__ = sqrt(dlamch_("Epsilon"));	i__1 = *nrhs;	for (j = 1; j <= i__1; ++j) {	    if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < 		    cwise_wrong__) {		rcond_tmp__ = dla_porcond__(uplo, n, &a[a_offset], lda, &af[			af_offset], ldaf, &c__1, &x[j * x_dim1 + 1], info, &			work[1], &iwork[1], (ftnlen)1);	    } else {		rcond_tmp__ = 0.;	    }/*     Cap the error at 1.0. */	    if (*n_err_bnds__ >= 2 && err_bnds_comp__[j + (err_bnds_comp_dim1 		    << 1)] > 1.) {		err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;	    }/*     Threshold the error (see LAWN). */	    if (rcond_tmp__ < illrcond_thresh__) {		err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;		err_bnds_comp__[j + err_bnds_comp_dim1] = 0.;		if (params[3] == 1. && *info < *n + j) {		    *info = *n + j;		}	    } else if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < 		    err_lbnd__) {		err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = err_lbnd__;		err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;	    }/*     Save the condition number. */	    if (*n_err_bnds__ >= 3) {		err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = rcond_tmp__;	    }	}    }    return 0;/*     End of DPORFSX */} /* dporfsx_ */
 |