| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 | /* dorgr2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dorgr2_(integer *m, integer *n, integer *k, doublereal *	a, integer *lda, doublereal *tau, doublereal *work, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    doublereal d__1;    /* Local variables */    integer i__, j, l, ii;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *), dlarf_(char *, integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DORGR2 generates an m by n real matrix Q with orthonormal rows, *//*  which is defined as the last m rows of a product of k elementary *//*  reflectors of order n *//*        Q  =  H(1) H(2) . . . H(k) *//*  as returned by DGERQF. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix Q. M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix Q. N >= M. *//*  K       (input) INTEGER *//*          The number of elementary reflectors whose product defines the *//*          matrix Q. M >= K >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the (m-k+i)-th row must contain the vector which *//*          defines the elementary reflector H(i), for i = 1,2,...,k, as *//*          returned by DGERQF in the last k rows of its array argument *//*          A. *//*          On exit, the m by n matrix Q. *//*  LDA     (input) INTEGER *//*          The first dimension of the array A. LDA >= max(1,M). *//*  TAU     (input) DOUBLE PRECISION array, dimension (K) *//*          TAU(i) must contain the scalar factor of the elementary *//*          reflector H(i), as returned by DGERQF. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (M) *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument has an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    --work;    /* Function Body */    *info = 0;    if (*m < 0) {	*info = -1;    } else if (*n < *m) {	*info = -2;    } else if (*k < 0 || *k > *m) {	*info = -3;    } else if (*lda < max(1,*m)) {	*info = -5;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DORGR2", &i__1);	return 0;    }/*     Quick return if possible */    if (*m <= 0) {	return 0;    }    if (*k < *m) {/*        Initialise rows 1:m-k to rows of the unit matrix */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    i__2 = *m - *k;	    for (l = 1; l <= i__2; ++l) {		a[l + j * a_dim1] = 0.;/* L10: */	    }	    if (j > *n - *m && j <= *n - *k) {		a[*m - *n + j + j * a_dim1] = 1.;	    }/* L20: */	}    }    i__1 = *k;    for (i__ = 1; i__ <= i__1; ++i__) {	ii = *m - *k + i__;/*        Apply H(i) to A(1:m-k+i,1:n-k+i) from the right */	a[ii + (*n - *m + ii) * a_dim1] = 1.;	i__2 = ii - 1;	i__3 = *n - *m + ii;	dlarf_("Right", &i__2, &i__3, &a[ii + a_dim1], lda, &tau[i__], &a[		a_offset], lda, &work[1]);	i__2 = *n - *m + ii - 1;	d__1 = -tau[i__];	dscal_(&i__2, &d__1, &a[ii + a_dim1], lda);	a[ii + (*n - *m + ii) * a_dim1] = 1. - tau[i__];/*        Set A(m-k+i,n-k+i+1:n) to zero */	i__2 = *n;	for (l = *n - *m + ii + 1; l <= i__2; ++l) {	    a[ii + l * a_dim1] = 0.;/* L30: */	}/* L40: */    }    return 0;/*     End of DORGR2 */} /* dorgr2_ */
 |