| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 | 
							- /* dorglq.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static integer c__3 = 3;
 
- static integer c__2 = 2;
 
- /* Subroutine */ int dorglq_(integer *m, integer *n, integer *k, doublereal *
 
- 	a, integer *lda, doublereal *tau, doublereal *work, integer *lwork, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3;
 
-     /* Local variables */
 
-     integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo;
 
-     extern /* Subroutine */ int dorgl2_(integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *), 
 
- 	    dlarfb_(char *, char *, char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
 
-     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer ldwork, lwkopt;
 
-     logical lquery;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DORGLQ generates an M-by-N real matrix Q with orthonormal rows, */
 
- /*  which is defined as the first M rows of a product of K elementary */
 
- /*  reflectors of order N */
 
- /*        Q  =  H(k) . . . H(2) H(1) */
 
- /*  as returned by DGELQF. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix Q. M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix Q. N >= M. */
 
- /*  K       (input) INTEGER */
 
- /*          The number of elementary reflectors whose product defines the */
 
- /*          matrix Q. M >= K >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the i-th row must contain the vector which defines */
 
- /*          the elementary reflector H(i), for i = 1,2,...,k, as returned */
 
- /*          by DGELQF in the first k rows of its array argument A. */
 
- /*          On exit, the M-by-N matrix Q. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The first dimension of the array A. LDA >= max(1,M). */
 
- /*  TAU     (input) DOUBLE PRECISION array, dimension (K) */
 
- /*          TAU(i) must contain the scalar factor of the elementary */
 
- /*          reflector H(i), as returned by DGELQF. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. LWORK >= max(1,M). */
 
- /*          For optimum performance LWORK >= M*NB, where NB is */
 
- /*          the optimal blocksize. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument has an illegal value */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input arguments */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --tau;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     nb = ilaenv_(&c__1, "DORGLQ", " ", m, n, k, &c_n1);
 
-     lwkopt = max(1,*m) * nb;
 
-     work[1] = (doublereal) lwkopt;
 
-     lquery = *lwork == -1;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < *m) {
 
- 	*info = -2;
 
-     } else if (*k < 0 || *k > *m) {
 
- 	*info = -3;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -5;
 
-     } else if (*lwork < max(1,*m) && ! lquery) {
 
- 	*info = -8;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DORGLQ", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*m <= 0) {
 
- 	work[1] = 1.;
 
- 	return 0;
 
-     }
 
-     nbmin = 2;
 
-     nx = 0;
 
-     iws = *m;
 
-     if (nb > 1 && nb < *k) {
 
- /*        Determine when to cross over from blocked to unblocked code. */
 
- /* Computing MAX */
 
- 	i__1 = 0, i__2 = ilaenv_(&c__3, "DORGLQ", " ", m, n, k, &c_n1);
 
- 	nx = max(i__1,i__2);
 
- 	if (nx < *k) {
 
- /*           Determine if workspace is large enough for blocked code. */
 
- 	    ldwork = *m;
 
- 	    iws = ldwork * nb;
 
- 	    if (*lwork < iws) {
 
- /*              Not enough workspace to use optimal NB:  reduce NB and */
 
- /*              determine the minimum value of NB. */
 
- 		nb = *lwork / ldwork;
 
- /* Computing MAX */
 
- 		i__1 = 2, i__2 = ilaenv_(&c__2, "DORGLQ", " ", m, n, k, &c_n1);
 
- 		nbmin = max(i__1,i__2);
 
- 	    }
 
- 	}
 
-     }
 
-     if (nb >= nbmin && nb < *k && nx < *k) {
 
- /*        Use blocked code after the last block. */
 
- /*        The first kk rows are handled by the block method. */
 
- 	ki = (*k - nx - 1) / nb * nb;
 
- /* Computing MIN */
 
- 	i__1 = *k, i__2 = ki + nb;
 
- 	kk = min(i__1,i__2);
 
- /*        Set A(kk+1:m,1:kk) to zero. */
 
- 	i__1 = kk;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = *m;
 
- 	    for (i__ = kk + 1; i__ <= i__2; ++i__) {
 
- 		a[i__ + j * a_dim1] = 0.;
 
- /* L10: */
 
- 	    }
 
- /* L20: */
 
- 	}
 
-     } else {
 
- 	kk = 0;
 
-     }
 
- /*     Use unblocked code for the last or only block. */
 
-     if (kk < *m) {
 
- 	i__1 = *m - kk;
 
- 	i__2 = *n - kk;
 
- 	i__3 = *k - kk;
 
- 	dorgl2_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, &
 
- 		tau[kk + 1], &work[1], &iinfo);
 
-     }
 
-     if (kk > 0) {
 
- /*        Use blocked code */
 
- 	i__1 = -nb;
 
- 	for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
 
- /* Computing MIN */
 
- 	    i__2 = nb, i__3 = *k - i__ + 1;
 
- 	    ib = min(i__2,i__3);
 
- 	    if (i__ + ib <= *m) {
 
- /*              Form the triangular factor of the block reflector */
 
- /*              H = H(i) H(i+1) . . . H(i+ib-1) */
 
- 		i__2 = *n - i__ + 1;
 
- 		dlarft_("Forward", "Rowwise", &i__2, &ib, &a[i__ + i__ * 
 
- 			a_dim1], lda, &tau[i__], &work[1], &ldwork);
 
- /*              Apply H' to A(i+ib:m,i:n) from the right */
 
- 		i__2 = *m - i__ - ib + 1;
 
- 		i__3 = *n - i__ + 1;
 
- 		dlarfb_("Right", "Transpose", "Forward", "Rowwise", &i__2, &
 
- 			i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
 
- 			ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib + 
 
- 			1], &ldwork);
 
- 	    }
 
- /*           Apply H' to columns i:n of current block */
 
- 	    i__2 = *n - i__ + 1;
 
- 	    dorgl2_(&ib, &i__2, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
 
- 		    work[1], &iinfo);
 
- /*           Set columns 1:i-1 of current block to zero */
 
- 	    i__2 = i__ - 1;
 
- 	    for (j = 1; j <= i__2; ++j) {
 
- 		i__3 = i__ + ib - 1;
 
- 		for (l = i__; l <= i__3; ++l) {
 
- 		    a[l + j * a_dim1] = 0.;
 
- /* L30: */
 
- 		}
 
- /* L40: */
 
- 	    }
 
- /* L50: */
 
- 	}
 
-     }
 
-     work[1] = (doublereal) iws;
 
-     return 0;
 
- /*     End of DORGLQ */
 
- } /* dorglq_ */
 
 
  |