| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 | /* dla_syamv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dla_syamv__(integer *uplo, integer *n, doublereal *alpha,	 doublereal *a, integer *lda, doublereal *x, integer *incx, 	doublereal *beta, doublereal *y, integer *incy){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    doublereal d__1;    /* Builtin functions */    double d_sign(doublereal *, doublereal *);    /* Local variables */    integer i__, j;    logical symb_zero__;    integer iy, jx, kx, ky, info;    doublereal temp, safe1;    extern doublereal dlamch_(char *);    extern /* Subroutine */ int xerbla_(char *, integer *);    extern integer ilauplo_(char *);/*     -- LAPACK routine (version 3.2)                                 -- *//*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- *//*     -- Jason Riedy of Univ. of California Berkeley.                 -- *//*     -- November 2008                                                -- *//*     -- LAPACK is a software package provided by Univ. of Tennessee, -- *//*     -- Univ. of California Berkeley and NAG Ltd.                    -- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLA_SYAMV  performs the matrix-vector operation *//*          y := alpha*abs(A)*abs(x) + beta*abs(y), *//*  where alpha and beta are scalars, x and y are vectors and A is an *//*  n by n symmetric matrix. *//*  This function is primarily used in calculating error bounds. *//*  To protect against underflow during evaluation, components in *//*  the resulting vector are perturbed away from zero by (N+1) *//*  times the underflow threshold.  To prevent unnecessarily large *//*  errors for block-structure embedded in general matrices, *//*  "symbolically" zero components are not perturbed.  A zero *//*  entry is considered "symbolic" if all multiplications involved *//*  in computing that entry have at least one zero multiplicand. *//*  Parameters *//*  ========== *//*  UPLO   - INTEGER *//*           On entry, UPLO specifies whether the upper or lower *//*           triangular part of the array A is to be referenced as *//*           follows: *//*              UPLO = BLAS_UPPER   Only the upper triangular part of A *//*                                  is to be referenced. *//*              UPLO = BLAS_LOWER   Only the lower triangular part of A *//*                                  is to be referenced. *//*           Unchanged on exit. *//*  N      - INTEGER. *//*           On entry, N specifies the number of columns of the matrix A. *//*           N must be at least zero. *//*           Unchanged on exit. *//*  ALPHA  - DOUBLE PRECISION   . *//*           On entry, ALPHA specifies the scalar alpha. *//*           Unchanged on exit. *//*  A      - DOUBLE PRECISION   array of DIMENSION ( LDA, n ). *//*           Before entry, the leading m by n part of the array A must *//*           contain the matrix of coefficients. *//*           Unchanged on exit. *//*  LDA    - INTEGER. *//*           On entry, LDA specifies the first dimension of A as declared *//*           in the calling (sub) program. LDA must be at least *//*           max( 1, n ). *//*           Unchanged on exit. *//*  X      - DOUBLE PRECISION   array of DIMENSION at least *//*           ( 1 + ( n - 1 )*abs( INCX ) ) *//*           Before entry, the incremented array X must contain the *//*           vector x. *//*           Unchanged on exit. *//*  INCX   - INTEGER. *//*           On entry, INCX specifies the increment for the elements of *//*           X. INCX must not be zero. *//*           Unchanged on exit. *//*  BETA   - DOUBLE PRECISION   . *//*           On entry, BETA specifies the scalar beta. When BETA is *//*           supplied as zero then Y need not be set on input. *//*           Unchanged on exit. *//*  Y      - DOUBLE PRECISION   array of DIMENSION at least *//*           ( 1 + ( n - 1 )*abs( INCY ) ) *//*           Before entry with BETA non-zero, the incremented array Y *//*           must contain the vector y. On exit, Y is overwritten by the *//*           updated vector y. *//*  INCY   - INTEGER. *//*           On entry, INCY specifies the increment for the elements of *//*           Y. INCY must not be zero. *//*           Unchanged on exit. *//*  Level 2 Blas routine. *//*  -- Written on 22-October-1986. *//*     Jack Dongarra, Argonne National Lab. *//*     Jeremy Du Croz, Nag Central Office. *//*     Sven Hammarling, Nag Central Office. *//*     Richard Hanson, Sandia National Labs. *//*  -- Modified for the absolute-value product, April 2006 *//*     Jason Riedy, UC Berkeley *//*     .. *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --x;    --y;    /* Function Body */    info = 0;    if (*uplo != ilauplo_("U") && *uplo != ilauplo_("L")	    ) {	info = 1;    } else if (*n < 0) {	info = 2;    } else if (*lda < max(1,*n)) {	info = 5;    } else if (*incx == 0) {	info = 7;    } else if (*incy == 0) {	info = 10;    }    if (info != 0) {	xerbla_("DSYMV ", &info);	return 0;    }/*     Quick return if possible. */    if (*n == 0 || *alpha == 0. && *beta == 1.) {	return 0;    }/*     Set up the start points in  X  and  Y. */    if (*incx > 0) {	kx = 1;    } else {	kx = 1 - (*n - 1) * *incx;    }    if (*incy > 0) {	ky = 1;    } else {	ky = 1 - (*n - 1) * *incy;    }/*     Set SAFE1 essentially to be the underflow threshold times the *//*     number of additions in each row. */    safe1 = dlamch_("Safe minimum");    safe1 = (*n + 1) * safe1;/*     Form  y := alpha*abs(A)*abs(x) + beta*abs(y). *//*     The O(N^2) SYMB_ZERO tests could be replaced by O(N) queries to *//*     the inexact flag.  Still doesn't help change the iteration order *//*     to per-column. */    iy = ky;    if (*incx == 1) {	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    if (*beta == 0.) {		symb_zero__ = TRUE_;		y[iy] = 0.;	    } else if (y[iy] == 0.) {		symb_zero__ = TRUE_;	    } else {		symb_zero__ = FALSE_;		y[iy] = *beta * (d__1 = y[iy], abs(d__1));	    }	    if (*alpha != 0.) {		i__2 = *n;		for (j = 1; j <= i__2; ++j) {		    if (*uplo == ilauplo_("U")) {			if (i__ <= j) {			    temp = (d__1 = a[i__ + j * a_dim1], abs(d__1));			} else {			    temp = (d__1 = a[j + i__ * a_dim1], abs(d__1));			}		    } else {			if (i__ >= j) {			    temp = (d__1 = a[i__ + j * a_dim1], abs(d__1));			} else {			    temp = (d__1 = a[j + i__ * a_dim1], abs(d__1));			}		    }		    symb_zero__ = symb_zero__ && (x[j] == 0. || temp == 0.);		    y[iy] += *alpha * (d__1 = x[j], abs(d__1)) * temp;		}	    }	    if (! symb_zero__) {		y[iy] += d_sign(&safe1, &y[iy]);	    }	    iy += *incy;	}    } else {	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    if (*beta == 0.) {		symb_zero__ = TRUE_;		y[iy] = 0.;	    } else if (y[iy] == 0.) {		symb_zero__ = TRUE_;	    } else {		symb_zero__ = FALSE_;		y[iy] = *beta * (d__1 = y[iy], abs(d__1));	    }	    jx = kx;	    if (*alpha != 0.) {		i__2 = *n;		for (j = 1; j <= i__2; ++j) {		    if (*uplo == ilauplo_("U")) {			if (i__ <= j) {			    temp = (d__1 = a[i__ + j * a_dim1], abs(d__1));			} else {			    temp = (d__1 = a[j + i__ * a_dim1], abs(d__1));			}		    } else {			if (i__ >= j) {			    temp = (d__1 = a[i__ + j * a_dim1], abs(d__1));			} else {			    temp = (d__1 = a[j + i__ * a_dim1], abs(d__1));			}		    }		    symb_zero__ = symb_zero__ && (x[j] == 0. || temp == 0.);		    y[iy] += *alpha * (d__1 = x[jx], abs(d__1)) * temp;		    jx += *incx;		}	    }	    if (! symb_zero__) {		y[iy] += d_sign(&safe1, &y[iy]);	    }	    iy += *incy;	}    }    return 0;/*     End of DLA_SYAMV */} /* dla_syamv__ */
 |