| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160 | 
							- /* dgsvj0.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c__0 = 0;
 
- static doublereal c_b42 = 1.;
 
- /* Subroutine */ int dgsvj0_(char *jobv, integer *m, integer *n, doublereal *
 
- 	a, integer *lda, doublereal *d__, doublereal *sva, integer *mv, 
 
- 	doublereal *v, integer *ldv, doublereal *eps, doublereal *sfmin, 
 
- 	doublereal *tol, integer *nsweep, doublereal *work, integer *lwork, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5, 
 
- 	    i__6;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal), d_sign(doublereal *, doublereal *);
 
-     /* Local variables */
 
-     doublereal bigtheta;
 
-     integer pskipped, i__, p, q;
 
-     doublereal t, rootsfmin, cs, sn;
 
-     integer ir1, jbc;
 
-     doublereal big;
 
-     integer kbl, igl, ibr, jgl, nbl, mvl;
 
-     doublereal aapp, aapq, aaqq;
 
-     extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     integer ierr;
 
-     doublereal aapp0;
 
-     extern doublereal dnrm2_(integer *, doublereal *, integer *);
 
-     doublereal temp1, apoaq, aqoap;
 
-     extern logical lsame_(char *, char *);
 
-     doublereal theta, small;
 
-     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     doublereal fastr[5];
 
-     extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     logical applv, rsvec;
 
-     extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *), drotm_(integer *, doublereal 
 
- 	    *, integer *, doublereal *, integer *, doublereal *);
 
-     logical rotok;
 
-     extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 
- 	    integer *, integer *);
 
-     extern integer idamax_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     integer ijblsk, swband, blskip;
 
-     doublereal mxaapq;
 
-     extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *);
 
-     doublereal thsign, mxsinj;
 
-     integer emptsw, notrot, iswrot, lkahead;
 
-     doublereal rootbig, rooteps;
 
-     integer rowskip;
 
-     doublereal roottol;
 
- /*  -- LAPACK routine (version 3.2)                                    -- */
 
- /*  -- Contributed by Zlatko Drmac of the University of Zagreb and     -- */
 
- /*  -- Kresimir Veselic of the Fernuniversitaet Hagen                  -- */
 
- /*  -- November 2008                                                   -- */
 
- /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 
- /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 
- /* This routine is also part of SIGMA (version 1.23, October 23. 2008.) */
 
- /* SIGMA is a library of algorithms for highly accurate algorithms for */
 
- /* computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the */
 
- /* eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0. */
 
- /*     Scalar Arguments */
 
- /*     Array Arguments */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ~~~~~~~ */
 
- /*  DGSVJ0 is called from DGESVJ as a pre-processor and that is its main */
 
- /*  purpose. It applies Jacobi rotations in the same way as DGESVJ does, but */
 
- /*  it does not check convergence (stopping criterion). Few tuning */
 
- /*  parameters (marked by [TP]) are available for the implementer. */
 
- /*  Further details */
 
- /*  ~~~~~~~~~~~~~~~ */
 
- /*  DGSVJ0 is used just to enable SGESVJ to call a simplified version of */
 
- /*  itself to work on a submatrix of the original matrix. */
 
- /*  Contributors */
 
- /*  ~~~~~~~~~~~~ */
 
- /*  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) */
 
- /*  Bugs, Examples and Comments */
 
- /*  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
 
- /*  Please report all bugs and send interesting test examples and comments to */
 
- /*  drmac@math.hr. Thank you. */
 
- /*  Arguments */
 
- /*  ~~~~~~~~~ */
 
- /*  JOBV    (input) CHARACTER*1 */
 
- /*          Specifies whether the output from this procedure is used */
 
- /*          to compute the matrix V: */
 
- /*          = 'V': the product of the Jacobi rotations is accumulated */
 
- /*                 by postmulyiplying the N-by-N array V. */
 
- /*                (See the description of V.) */
 
- /*          = 'A': the product of the Jacobi rotations is accumulated */
 
- /*                 by postmulyiplying the MV-by-N array V. */
 
- /*                (See the descriptions of MV and V.) */
 
- /*          = 'N': the Jacobi rotations are not accumulated. */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the input matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the input matrix A. */
 
- /*          M >= N >= 0. */
 
- /*  A       (input/output) REAL array, dimension (LDA,N) */
 
- /*          On entry, M-by-N matrix A, such that A*diag(D) represents */
 
- /*          the input matrix. */
 
- /*          On exit, */
 
- /*          A_onexit * D_onexit represents the input matrix A*diag(D) */
 
- /*          post-multiplied by a sequence of Jacobi rotations, where the */
 
- /*          rotation threshold and the total number of sweeps are given in */
 
- /*          TOL and NSWEEP, respectively. */
 
- /*          (See the descriptions of D, TOL and NSWEEP.) */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,M). */
 
- /*  D       (input/workspace/output) REAL array, dimension (N) */
 
- /*          The array D accumulates the scaling factors from the fast scaled */
 
- /*          Jacobi rotations. */
 
- /*          On entry, A*diag(D) represents the input matrix. */
 
- /*          On exit, A_onexit*diag(D_onexit) represents the input matrix */
 
- /*          post-multiplied by a sequence of Jacobi rotations, where the */
 
- /*          rotation threshold and the total number of sweeps are given in */
 
- /*          TOL and NSWEEP, respectively. */
 
- /*          (See the descriptions of A, TOL and NSWEEP.) */
 
- /*  SVA     (input/workspace/output) REAL array, dimension (N) */
 
- /*          On entry, SVA contains the Euclidean norms of the columns of */
 
- /*          the matrix A*diag(D). */
 
- /*          On exit, SVA contains the Euclidean norms of the columns of */
 
- /*          the matrix onexit*diag(D_onexit). */
 
- /*  MV      (input) INTEGER */
 
- /*          If JOBV .EQ. 'A', then MV rows of V are post-multipled by a */
 
- /*                           sequence of Jacobi rotations. */
 
- /*          If JOBV = 'N',   then MV is not referenced. */
 
- /*  V       (input/output) REAL array, dimension (LDV,N) */
 
- /*          If JOBV .EQ. 'V' then N rows of V are post-multipled by a */
 
- /*                           sequence of Jacobi rotations. */
 
- /*          If JOBV .EQ. 'A' then MV rows of V are post-multipled by a */
 
- /*                           sequence of Jacobi rotations. */
 
- /*          If JOBV = 'N',   then V is not referenced. */
 
- /*  LDV     (input) INTEGER */
 
- /*          The leading dimension of the array V,  LDV >= 1. */
 
- /*          If JOBV = 'V', LDV .GE. N. */
 
- /*          If JOBV = 'A', LDV .GE. MV. */
 
- /*  EPS     (input) INTEGER */
 
- /*          EPS = SLAMCH('Epsilon') */
 
- /*  SFMIN   (input) INTEGER */
 
- /*          SFMIN = SLAMCH('Safe Minimum') */
 
- /*  TOL     (input) REAL */
 
- /*          TOL is the threshold for Jacobi rotations. For a pair */
 
- /*          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is */
 
- /*          applied only if DABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL. */
 
- /*  NSWEEP  (input) INTEGER */
 
- /*          NSWEEP is the number of sweeps of Jacobi rotations to be */
 
- /*          performed. */
 
- /*  WORK    (workspace) REAL array, dimension LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          LWORK is the dimension of WORK. LWORK .GE. M. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0 : successful exit. */
 
- /*          < 0 : if INFO = -i, then the i-th argument had an illegal value */
 
- /*     Local Parameters */
 
- /*     Local Scalars */
 
- /*     Local Arrays */
 
- /*     Intrinsic Functions */
 
- /*     External Functions */
 
- /*     External Subroutines */
 
- /*     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| */
 
-     /* Parameter adjustments */
 
-     --sva;
 
-     --d__;
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     v_dim1 = *ldv;
 
-     v_offset = 1 + v_dim1;
 
-     v -= v_offset;
 
-     --work;
 
-     /* Function Body */
 
-     applv = lsame_(jobv, "A");
 
-     rsvec = lsame_(jobv, "V");
 
-     if (! (rsvec || applv || lsame_(jobv, "N"))) {
 
- 	*info = -1;
 
-     } else if (*m < 0) {
 
- 	*info = -2;
 
-     } else if (*n < 0 || *n > *m) {
 
- 	*info = -3;
 
-     } else if (*lda < *m) {
 
- 	*info = -5;
 
-     } else if (*mv < 0) {
 
- 	*info = -8;
 
-     } else if (*ldv < *m) {
 
- 	*info = -10;
 
-     } else if (*tol <= *eps) {
 
- 	*info = -13;
 
-     } else if (*nsweep < 0) {
 
- 	*info = -14;
 
-     } else if (*lwork < *m) {
 
- 	*info = -16;
 
-     } else {
 
- 	*info = 0;
 
-     }
 
- /*     #:( */
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGSVJ0", &i__1);
 
- 	return 0;
 
-     }
 
-     if (rsvec) {
 
- 	mvl = *n;
 
-     } else if (applv) {
 
- 	mvl = *mv;
 
-     }
 
-     rsvec = rsvec || applv;
 
-     rooteps = sqrt(*eps);
 
-     rootsfmin = sqrt(*sfmin);
 
-     small = *sfmin / *eps;
 
-     big = 1. / *sfmin;
 
-     rootbig = 1. / rootsfmin;
 
-     bigtheta = 1. / rooteps;
 
-     roottol = sqrt(*tol);
 
- /*     -#- Row-cyclic Jacobi SVD algorithm with column pivoting -#- */
 
-     emptsw = *n * (*n - 1) / 2;
 
-     notrot = 0;
 
-     fastr[0] = 0.;
 
- /*     -#- Row-cyclic pivot strategy with de Rijk's pivoting -#- */
 
-     swband = 0;
 
- /* [TP] SWBAND is a tuning parameter. It is meaningful and effective */
 
- /*     if SGESVJ is used as a computational routine in the preconditioned */
 
- /*     Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure */
 
- /*     ...... */
 
-     kbl = min(8,*n);
 
- /* [TP] KBL is a tuning parameter that defines the tile size in the */
 
- /*     tiling of the p-q loops of pivot pairs. In general, an optimal */
 
- /*     value of KBL depends on the matrix dimensions and on the */
 
- /*     parameters of the computer's memory. */
 
-     nbl = *n / kbl;
 
-     if (nbl * kbl != *n) {
 
- 	++nbl;
 
-     }
 
- /* Computing 2nd power */
 
-     i__1 = kbl;
 
-     blskip = i__1 * i__1 + 1;
 
- /* [TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. */
 
-     rowskip = min(5,kbl);
 
- /* [TP] ROWSKIP is a tuning parameter. */
 
-     lkahead = 1;
 
- /* [TP] LKAHEAD is a tuning parameter. */
 
-     swband = 0;
 
-     pskipped = 0;
 
-     i__1 = *nsweep;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- /*     .. go go go ... */
 
- 	mxaapq = 0.;
 
- 	mxsinj = 0.;
 
- 	iswrot = 0;
 
- 	notrot = 0;
 
- 	pskipped = 0;
 
- 	i__2 = nbl;
 
- 	for (ibr = 1; ibr <= i__2; ++ibr) {
 
- 	    igl = (ibr - 1) * kbl + 1;
 
- /* Computing MIN */
 
- 	    i__4 = lkahead, i__5 = nbl - ibr;
 
- 	    i__3 = min(i__4,i__5);
 
- 	    for (ir1 = 0; ir1 <= i__3; ++ir1) {
 
- 		igl += ir1 * kbl;
 
- /* Computing MIN */
 
- 		i__5 = igl + kbl - 1, i__6 = *n - 1;
 
- 		i__4 = min(i__5,i__6);
 
- 		for (p = igl; p <= i__4; ++p) {
 
- /*     .. de Rijk's pivoting */
 
- 		    i__5 = *n - p + 1;
 
- 		    q = idamax_(&i__5, &sva[p], &c__1) + p - 1;
 
- 		    if (p != q) {
 
- 			dswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 
 
- 				1], &c__1);
 
- 			if (rsvec) {
 
- 			    dswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * 
 
- 				    v_dim1 + 1], &c__1);
 
- 			}
 
- 			temp1 = sva[p];
 
- 			sva[p] = sva[q];
 
- 			sva[q] = temp1;
 
- 			temp1 = d__[p];
 
- 			d__[p] = d__[q];
 
- 			d__[q] = temp1;
 
- 		    }
 
- 		    if (ir1 == 0) {
 
- /*        Column norms are periodically updated by explicit */
 
- /*        norm computation. */
 
- /*        Caveat: */
 
- /*        Some BLAS implementations compute DNRM2(M,A(1,p),1) */
 
- /*        as DSQRT(DDOT(M,A(1,p),1,A(1,p),1)), which may result in */
 
- /*        overflow for ||A(:,p)||_2 > DSQRT(overflow_threshold), and */
 
- /*        undeflow for ||A(:,p)||_2 < DSQRT(underflow_threshold). */
 
- /*        Hence, DNRM2 cannot be trusted, not even in the case when */
 
- /*        the true norm is far from the under(over)flow boundaries. */
 
- /*        If properly implemented DNRM2 is available, the IF-THEN-ELSE */
 
- /*        below should read "AAPP = DNRM2( M, A(1,p), 1 ) * D(p)". */
 
- 			if (sva[p] < rootbig && sva[p] > rootsfmin) {
 
- 			    sva[p] = dnrm2_(m, &a[p * a_dim1 + 1], &c__1) * 
 
- 				    d__[p];
 
- 			} else {
 
- 			    temp1 = 0.;
 
- 			    aapp = 0.;
 
- 			    dlassq_(m, &a[p * a_dim1 + 1], &c__1, &temp1, &
 
- 				    aapp);
 
- 			    sva[p] = temp1 * sqrt(aapp) * d__[p];
 
- 			}
 
- 			aapp = sva[p];
 
- 		    } else {
 
- 			aapp = sva[p];
 
- 		    }
 
- 		    if (aapp > 0.) {
 
- 			pskipped = 0;
 
- /* Computing MIN */
 
- 			i__6 = igl + kbl - 1;
 
- 			i__5 = min(i__6,*n);
 
- 			for (q = p + 1; q <= i__5; ++q) {
 
- 			    aaqq = sva[q];
 
- 			    if (aaqq > 0.) {
 
- 				aapp0 = aapp;
 
- 				if (aaqq >= 1.) {
 
- 				    rotok = small * aapp <= aaqq;
 
- 				    if (aapp < big / aaqq) {
 
- 					aapq = ddot_(m, &a[p * a_dim1 + 1], &
 
- 						c__1, &a[q * a_dim1 + 1], &
 
- 						c__1) * d__[p] * d__[q] / 
 
- 						aaqq / aapp;
 
- 				    } else {
 
- 					dcopy_(m, &a[p * a_dim1 + 1], &c__1, &
 
- 						work[1], &c__1);
 
- 					dlascl_("G", &c__0, &c__0, &aapp, &
 
- 						d__[p], m, &c__1, &work[1], 
 
- 						lda, &ierr);
 
- 					aapq = ddot_(m, &work[1], &c__1, &a[q 
 
- 						* a_dim1 + 1], &c__1) * d__[q]
 
- 						 / aaqq;
 
- 				    }
 
- 				} else {
 
- 				    rotok = aapp <= aaqq / small;
 
- 				    if (aapp > small / aaqq) {
 
- 					aapq = ddot_(m, &a[p * a_dim1 + 1], &
 
- 						c__1, &a[q * a_dim1 + 1], &
 
- 						c__1) * d__[p] * d__[q] / 
 
- 						aaqq / aapp;
 
- 				    } else {
 
- 					dcopy_(m, &a[q * a_dim1 + 1], &c__1, &
 
- 						work[1], &c__1);
 
- 					dlascl_("G", &c__0, &c__0, &aaqq, &
 
- 						d__[q], m, &c__1, &work[1], 
 
- 						lda, &ierr);
 
- 					aapq = ddot_(m, &work[1], &c__1, &a[p 
 
- 						* a_dim1 + 1], &c__1) * d__[p]
 
- 						 / aapp;
 
- 				    }
 
- 				}
 
- /* Computing MAX */
 
- 				d__1 = mxaapq, d__2 = abs(aapq);
 
- 				mxaapq = max(d__1,d__2);
 
- /*        TO rotate or NOT to rotate, THAT is the question ... */
 
- 				if (abs(aapq) > *tol) {
 
- /*           .. rotate */
 
- /*           ROTATED = ROTATED + ONE */
 
- 				    if (ir1 == 0) {
 
- 					notrot = 0;
 
- 					pskipped = 0;
 
- 					++iswrot;
 
- 				    }
 
- 				    if (rotok) {
 
- 					aqoap = aaqq / aapp;
 
- 					apoaq = aapp / aaqq;
 
- 					theta = (d__1 = aqoap - apoaq, abs(
 
- 						d__1)) * -.5 / aapq;
 
- 					if (abs(theta) > bigtheta) {
 
- 					    t = .5 / theta;
 
- 					    fastr[2] = t * d__[p] / d__[q];
 
- 					    fastr[3] = -t * d__[q] / d__[p];
 
- 					    drotm_(m, &a[p * a_dim1 + 1], &
 
- 						    c__1, &a[q * a_dim1 + 1], 
 
- 						    &c__1, fastr);
 
- 					    if (rsvec) {
 
- 			  drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * 
 
- 				  v_dim1 + 1], &c__1, fastr);
 
- 					    }
 
- /* Computing MAX */
 
- 					    d__1 = 0., d__2 = t * apoaq * 
 
- 						    aapq + 1.;
 
- 					    sva[q] = aaqq * sqrt((max(d__1,
 
- 						    d__2)));
 
- 					    aapp *= sqrt(1. - t * aqoap * 
 
- 						    aapq);
 
- /* Computing MAX */
 
- 					    d__1 = mxsinj, d__2 = abs(t);
 
- 					    mxsinj = max(d__1,d__2);
 
- 					} else {
 
- /*                 .. choose correct signum for THETA and rotate */
 
- 					    thsign = -d_sign(&c_b42, &aapq);
 
- 					    t = 1. / (theta + thsign * sqrt(
 
- 						    theta * theta + 1.));
 
- 					    cs = sqrt(1. / (t * t + 1.));
 
- 					    sn = t * cs;
 
- /* Computing MAX */
 
- 					    d__1 = mxsinj, d__2 = abs(sn);
 
- 					    mxsinj = max(d__1,d__2);
 
- /* Computing MAX */
 
- 					    d__1 = 0., d__2 = t * apoaq * 
 
- 						    aapq + 1.;
 
- 					    sva[q] = aaqq * sqrt((max(d__1,
 
- 						    d__2)));
 
- /* Computing MAX */
 
- 					    d__1 = 0., d__2 = 1. - t * aqoap *
 
- 						     aapq;
 
- 					    aapp *= sqrt((max(d__1,d__2)));
 
- 					    apoaq = d__[p] / d__[q];
 
- 					    aqoap = d__[q] / d__[p];
 
- 					    if (d__[p] >= 1.) {
 
- 			  if (d__[q] >= 1.) {
 
- 			      fastr[2] = t * apoaq;
 
- 			      fastr[3] = -t * aqoap;
 
- 			      d__[p] *= cs;
 
- 			      d__[q] *= cs;
 
- 			      drotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q * 
 
- 				      a_dim1 + 1], &c__1, fastr);
 
- 			      if (rsvec) {
 
- 				  drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[
 
- 					  q * v_dim1 + 1], &c__1, fastr);
 
- 			      }
 
- 			  } else {
 
- 			      d__1 = -t * aqoap;
 
- 			      daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
 
- 				      p * a_dim1 + 1], &c__1);
 
- 			      d__1 = cs * sn * apoaq;
 
- 			      daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
 
- 				      q * a_dim1 + 1], &c__1);
 
- 			      d__[p] *= cs;
 
- 			      d__[q] /= cs;
 
- 			      if (rsvec) {
 
- 				  d__1 = -t * aqoap;
 
- 				  daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
 
- 					  c__1, &v[p * v_dim1 + 1], &c__1);
 
- 				  d__1 = cs * sn * apoaq;
 
- 				  daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
 
- 					  c__1, &v[q * v_dim1 + 1], &c__1);
 
- 			      }
 
- 			  }
 
- 					    } else {
 
- 			  if (d__[q] >= 1.) {
 
- 			      d__1 = t * apoaq;
 
- 			      daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
 
- 				      q * a_dim1 + 1], &c__1);
 
- 			      d__1 = -cs * sn * aqoap;
 
- 			      daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
 
- 				      p * a_dim1 + 1], &c__1);
 
- 			      d__[p] /= cs;
 
- 			      d__[q] *= cs;
 
- 			      if (rsvec) {
 
- 				  d__1 = t * apoaq;
 
- 				  daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
 
- 					  c__1, &v[q * v_dim1 + 1], &c__1);
 
- 				  d__1 = -cs * sn * aqoap;
 
- 				  daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
 
- 					  c__1, &v[p * v_dim1 + 1], &c__1);
 
- 			      }
 
- 			  } else {
 
- 			      if (d__[p] >= d__[q]) {
 
- 				  d__1 = -t * aqoap;
 
- 				  daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, 
 
- 					  &a[p * a_dim1 + 1], &c__1);
 
- 				  d__1 = cs * sn * apoaq;
 
- 				  daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, 
 
- 					  &a[q * a_dim1 + 1], &c__1);
 
- 				  d__[p] *= cs;
 
- 				  d__[q] /= cs;
 
- 				  if (rsvec) {
 
- 				      d__1 = -t * aqoap;
 
- 				      daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], 
 
- 					      &c__1, &v[p * v_dim1 + 1], &
 
- 					      c__1);
 
- 				      d__1 = cs * sn * apoaq;
 
- 				      daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], 
 
- 					      &c__1, &v[q * v_dim1 + 1], &
 
- 					      c__1);
 
- 				  }
 
- 			      } else {
 
- 				  d__1 = t * apoaq;
 
- 				  daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, 
 
- 					  &a[q * a_dim1 + 1], &c__1);
 
- 				  d__1 = -cs * sn * aqoap;
 
- 				  daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, 
 
- 					  &a[p * a_dim1 + 1], &c__1);
 
- 				  d__[p] /= cs;
 
- 				  d__[q] *= cs;
 
- 				  if (rsvec) {
 
- 				      d__1 = t * apoaq;
 
- 				      daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], 
 
- 					      &c__1, &v[q * v_dim1 + 1], &
 
- 					      c__1);
 
- 				      d__1 = -cs * sn * aqoap;
 
- 				      daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], 
 
- 					      &c__1, &v[p * v_dim1 + 1], &
 
- 					      c__1);
 
- 				  }
 
- 			      }
 
- 			  }
 
- 					    }
 
- 					}
 
- 				    } else {
 
- /*              .. have to use modified Gram-Schmidt like transformation */
 
- 					dcopy_(m, &a[p * a_dim1 + 1], &c__1, &
 
- 						work[1], &c__1);
 
- 					dlascl_("G", &c__0, &c__0, &aapp, &
 
- 						c_b42, m, &c__1, &work[1], 
 
- 						lda, &ierr);
 
- 					dlascl_("G", &c__0, &c__0, &aaqq, &
 
- 						c_b42, m, &c__1, &a[q * 
 
- 						a_dim1 + 1], lda, &ierr);
 
- 					temp1 = -aapq * d__[p] / d__[q];
 
- 					daxpy_(m, &temp1, &work[1], &c__1, &a[
 
- 						q * a_dim1 + 1], &c__1);
 
- 					dlascl_("G", &c__0, &c__0, &c_b42, &
 
- 						aaqq, m, &c__1, &a[q * a_dim1 
 
- 						+ 1], lda, &ierr);
 
- /* Computing MAX */
 
- 					d__1 = 0., d__2 = 1. - aapq * aapq;
 
- 					sva[q] = aaqq * sqrt((max(d__1,d__2)))
 
- 						;
 
- 					mxsinj = max(mxsinj,*sfmin);
 
- 				    }
 
- /*           END IF ROTOK THEN ... ELSE */
 
- /*           In the case of cancellation in updating SVA(q), SVA(p) */
 
- /*           recompute SVA(q), SVA(p). */
 
- /* Computing 2nd power */
 
- 				    d__1 = sva[q] / aaqq;
 
- 				    if (d__1 * d__1 <= rooteps) {
 
- 					if (aaqq < rootbig && aaqq > 
 
- 						rootsfmin) {
 
- 					    sva[q] = dnrm2_(m, &a[q * a_dim1 
 
- 						    + 1], &c__1) * d__[q];
 
- 					} else {
 
- 					    t = 0.;
 
- 					    aaqq = 0.;
 
- 					    dlassq_(m, &a[q * a_dim1 + 1], &
 
- 						    c__1, &t, &aaqq);
 
- 					    sva[q] = t * sqrt(aaqq) * d__[q];
 
- 					}
 
- 				    }
 
- 				    if (aapp / aapp0 <= rooteps) {
 
- 					if (aapp < rootbig && aapp > 
 
- 						rootsfmin) {
 
- 					    aapp = dnrm2_(m, &a[p * a_dim1 + 
 
- 						    1], &c__1) * d__[p];
 
- 					} else {
 
- 					    t = 0.;
 
- 					    aapp = 0.;
 
- 					    dlassq_(m, &a[p * a_dim1 + 1], &
 
- 						    c__1, &t, &aapp);
 
- 					    aapp = t * sqrt(aapp) * d__[p];
 
- 					}
 
- 					sva[p] = aapp;
 
- 				    }
 
- 				} else {
 
- /*        A(:,p) and A(:,q) already numerically orthogonal */
 
- 				    if (ir1 == 0) {
 
- 					++notrot;
 
- 				    }
 
- 				    ++pskipped;
 
- 				}
 
- 			    } else {
 
- /*        A(:,q) is zero column */
 
- 				if (ir1 == 0) {
 
- 				    ++notrot;
 
- 				}
 
- 				++pskipped;
 
- 			    }
 
- 			    if (i__ <= swband && pskipped > rowskip) {
 
- 				if (ir1 == 0) {
 
- 				    aapp = -aapp;
 
- 				}
 
- 				notrot = 0;
 
- 				goto L2103;
 
- 			    }
 
- /* L2002: */
 
- 			}
 
- /*     END q-LOOP */
 
- L2103:
 
- /*     bailed out of q-loop */
 
- 			sva[p] = aapp;
 
- 		    } else {
 
- 			sva[p] = aapp;
 
- 			if (ir1 == 0 && aapp == 0.) {
 
- /* Computing MIN */
 
- 			    i__5 = igl + kbl - 1;
 
- 			    notrot = notrot + min(i__5,*n) - p;
 
- 			}
 
- 		    }
 
- /* L2001: */
 
- 		}
 
- /*     end of the p-loop */
 
- /*     end of doing the block ( ibr, ibr ) */
 
- /* L1002: */
 
- 	    }
 
- /*     end of ir1-loop */
 
- /* ........................................................ */
 
- /* ... go to the off diagonal blocks */
 
- 	    igl = (ibr - 1) * kbl + 1;
 
- 	    i__3 = nbl;
 
- 	    for (jbc = ibr + 1; jbc <= i__3; ++jbc) {
 
- 		jgl = (jbc - 1) * kbl + 1;
 
- /*        doing the block at ( ibr, jbc ) */
 
- 		ijblsk = 0;
 
- /* Computing MIN */
 
- 		i__5 = igl + kbl - 1;
 
- 		i__4 = min(i__5,*n);
 
- 		for (p = igl; p <= i__4; ++p) {
 
- 		    aapp = sva[p];
 
- 		    if (aapp > 0.) {
 
- 			pskipped = 0;
 
- /* Computing MIN */
 
- 			i__6 = jgl + kbl - 1;
 
- 			i__5 = min(i__6,*n);
 
- 			for (q = jgl; q <= i__5; ++q) {
 
- 			    aaqq = sva[q];
 
- 			    if (aaqq > 0.) {
 
- 				aapp0 = aapp;
 
- /*     -#- M x 2 Jacobi SVD -#- */
 
- /*        -#- Safe Gram matrix computation -#- */
 
- 				if (aaqq >= 1.) {
 
- 				    if (aapp >= aaqq) {
 
- 					rotok = small * aapp <= aaqq;
 
- 				    } else {
 
- 					rotok = small * aaqq <= aapp;
 
- 				    }
 
- 				    if (aapp < big / aaqq) {
 
- 					aapq = ddot_(m, &a[p * a_dim1 + 1], &
 
- 						c__1, &a[q * a_dim1 + 1], &
 
- 						c__1) * d__[p] * d__[q] / 
 
- 						aaqq / aapp;
 
- 				    } else {
 
- 					dcopy_(m, &a[p * a_dim1 + 1], &c__1, &
 
- 						work[1], &c__1);
 
- 					dlascl_("G", &c__0, &c__0, &aapp, &
 
- 						d__[p], m, &c__1, &work[1], 
 
- 						lda, &ierr);
 
- 					aapq = ddot_(m, &work[1], &c__1, &a[q 
 
- 						* a_dim1 + 1], &c__1) * d__[q]
 
- 						 / aaqq;
 
- 				    }
 
- 				} else {
 
- 				    if (aapp >= aaqq) {
 
- 					rotok = aapp <= aaqq / small;
 
- 				    } else {
 
- 					rotok = aaqq <= aapp / small;
 
- 				    }
 
- 				    if (aapp > small / aaqq) {
 
- 					aapq = ddot_(m, &a[p * a_dim1 + 1], &
 
- 						c__1, &a[q * a_dim1 + 1], &
 
- 						c__1) * d__[p] * d__[q] / 
 
- 						aaqq / aapp;
 
- 				    } else {
 
- 					dcopy_(m, &a[q * a_dim1 + 1], &c__1, &
 
- 						work[1], &c__1);
 
- 					dlascl_("G", &c__0, &c__0, &aaqq, &
 
- 						d__[q], m, &c__1, &work[1], 
 
- 						lda, &ierr);
 
- 					aapq = ddot_(m, &work[1], &c__1, &a[p 
 
- 						* a_dim1 + 1], &c__1) * d__[p]
 
- 						 / aapp;
 
- 				    }
 
- 				}
 
- /* Computing MAX */
 
- 				d__1 = mxaapq, d__2 = abs(aapq);
 
- 				mxaapq = max(d__1,d__2);
 
- /*        TO rotate or NOT to rotate, THAT is the question ... */
 
- 				if (abs(aapq) > *tol) {
 
- 				    notrot = 0;
 
- /*           ROTATED  = ROTATED + 1 */
 
- 				    pskipped = 0;
 
- 				    ++iswrot;
 
- 				    if (rotok) {
 
- 					aqoap = aaqq / aapp;
 
- 					apoaq = aapp / aaqq;
 
- 					theta = (d__1 = aqoap - apoaq, abs(
 
- 						d__1)) * -.5 / aapq;
 
- 					if (aaqq > aapp0) {
 
- 					    theta = -theta;
 
- 					}
 
- 					if (abs(theta) > bigtheta) {
 
- 					    t = .5 / theta;
 
- 					    fastr[2] = t * d__[p] / d__[q];
 
- 					    fastr[3] = -t * d__[q] / d__[p];
 
- 					    drotm_(m, &a[p * a_dim1 + 1], &
 
- 						    c__1, &a[q * a_dim1 + 1], 
 
- 						    &c__1, fastr);
 
- 					    if (rsvec) {
 
- 			  drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * 
 
- 				  v_dim1 + 1], &c__1, fastr);
 
- 					    }
 
- /* Computing MAX */
 
- 					    d__1 = 0., d__2 = t * apoaq * 
 
- 						    aapq + 1.;
 
- 					    sva[q] = aaqq * sqrt((max(d__1,
 
- 						    d__2)));
 
- /* Computing MAX */
 
- 					    d__1 = 0., d__2 = 1. - t * aqoap *
 
- 						     aapq;
 
- 					    aapp *= sqrt((max(d__1,d__2)));
 
- /* Computing MAX */
 
- 					    d__1 = mxsinj, d__2 = abs(t);
 
- 					    mxsinj = max(d__1,d__2);
 
- 					} else {
 
- /*                 .. choose correct signum for THETA and rotate */
 
- 					    thsign = -d_sign(&c_b42, &aapq);
 
- 					    if (aaqq > aapp0) {
 
- 			  thsign = -thsign;
 
- 					    }
 
- 					    t = 1. / (theta + thsign * sqrt(
 
- 						    theta * theta + 1.));
 
- 					    cs = sqrt(1. / (t * t + 1.));
 
- 					    sn = t * cs;
 
- /* Computing MAX */
 
- 					    d__1 = mxsinj, d__2 = abs(sn);
 
- 					    mxsinj = max(d__1,d__2);
 
- /* Computing MAX */
 
- 					    d__1 = 0., d__2 = t * apoaq * 
 
- 						    aapq + 1.;
 
- 					    sva[q] = aaqq * sqrt((max(d__1,
 
- 						    d__2)));
 
- 					    aapp *= sqrt(1. - t * aqoap * 
 
- 						    aapq);
 
- 					    apoaq = d__[p] / d__[q];
 
- 					    aqoap = d__[q] / d__[p];
 
- 					    if (d__[p] >= 1.) {
 
- 			  if (d__[q] >= 1.) {
 
- 			      fastr[2] = t * apoaq;
 
- 			      fastr[3] = -t * aqoap;
 
- 			      d__[p] *= cs;
 
- 			      d__[q] *= cs;
 
- 			      drotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q * 
 
- 				      a_dim1 + 1], &c__1, fastr);
 
- 			      if (rsvec) {
 
- 				  drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[
 
- 					  q * v_dim1 + 1], &c__1, fastr);
 
- 			      }
 
- 			  } else {
 
- 			      d__1 = -t * aqoap;
 
- 			      daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
 
- 				      p * a_dim1 + 1], &c__1);
 
- 			      d__1 = cs * sn * apoaq;
 
- 			      daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
 
- 				      q * a_dim1 + 1], &c__1);
 
- 			      if (rsvec) {
 
- 				  d__1 = -t * aqoap;
 
- 				  daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
 
- 					  c__1, &v[p * v_dim1 + 1], &c__1);
 
- 				  d__1 = cs * sn * apoaq;
 
- 				  daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
 
- 					  c__1, &v[q * v_dim1 + 1], &c__1);
 
- 			      }
 
- 			      d__[p] *= cs;
 
- 			      d__[q] /= cs;
 
- 			  }
 
- 					    } else {
 
- 			  if (d__[q] >= 1.) {
 
- 			      d__1 = t * apoaq;
 
- 			      daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
 
- 				      q * a_dim1 + 1], &c__1);
 
- 			      d__1 = -cs * sn * aqoap;
 
- 			      daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
 
- 				      p * a_dim1 + 1], &c__1);
 
- 			      if (rsvec) {
 
- 				  d__1 = t * apoaq;
 
- 				  daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
 
- 					  c__1, &v[q * v_dim1 + 1], &c__1);
 
- 				  d__1 = -cs * sn * aqoap;
 
- 				  daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
 
- 					  c__1, &v[p * v_dim1 + 1], &c__1);
 
- 			      }
 
- 			      d__[p] /= cs;
 
- 			      d__[q] *= cs;
 
- 			  } else {
 
- 			      if (d__[p] >= d__[q]) {
 
- 				  d__1 = -t * aqoap;
 
- 				  daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, 
 
- 					  &a[p * a_dim1 + 1], &c__1);
 
- 				  d__1 = cs * sn * apoaq;
 
- 				  daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, 
 
- 					  &a[q * a_dim1 + 1], &c__1);
 
- 				  d__[p] *= cs;
 
- 				  d__[q] /= cs;
 
- 				  if (rsvec) {
 
- 				      d__1 = -t * aqoap;
 
- 				      daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], 
 
- 					      &c__1, &v[p * v_dim1 + 1], &
 
- 					      c__1);
 
- 				      d__1 = cs * sn * apoaq;
 
- 				      daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], 
 
- 					      &c__1, &v[q * v_dim1 + 1], &
 
- 					      c__1);
 
- 				  }
 
- 			      } else {
 
- 				  d__1 = t * apoaq;
 
- 				  daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, 
 
- 					  &a[q * a_dim1 + 1], &c__1);
 
- 				  d__1 = -cs * sn * aqoap;
 
- 				  daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, 
 
- 					  &a[p * a_dim1 + 1], &c__1);
 
- 				  d__[p] /= cs;
 
- 				  d__[q] *= cs;
 
- 				  if (rsvec) {
 
- 				      d__1 = t * apoaq;
 
- 				      daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], 
 
- 					      &c__1, &v[q * v_dim1 + 1], &
 
- 					      c__1);
 
- 				      d__1 = -cs * sn * aqoap;
 
- 				      daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], 
 
- 					      &c__1, &v[p * v_dim1 + 1], &
 
- 					      c__1);
 
- 				  }
 
- 			      }
 
- 			  }
 
- 					    }
 
- 					}
 
- 				    } else {
 
- 					if (aapp > aaqq) {
 
- 					    dcopy_(m, &a[p * a_dim1 + 1], &
 
- 						    c__1, &work[1], &c__1);
 
- 					    dlascl_("G", &c__0, &c__0, &aapp, 
 
- 						    &c_b42, m, &c__1, &work[1]
 
- , lda, &ierr);
 
- 					    dlascl_("G", &c__0, &c__0, &aaqq, 
 
- 						    &c_b42, m, &c__1, &a[q * 
 
- 						    a_dim1 + 1], lda, &ierr);
 
- 					    temp1 = -aapq * d__[p] / d__[q];
 
- 					    daxpy_(m, &temp1, &work[1], &c__1, 
 
- 						     &a[q * a_dim1 + 1], &
 
- 						    c__1);
 
- 					    dlascl_("G", &c__0, &c__0, &c_b42, 
 
- 						     &aaqq, m, &c__1, &a[q * 
 
- 						    a_dim1 + 1], lda, &ierr);
 
- /* Computing MAX */
 
- 					    d__1 = 0., d__2 = 1. - aapq * 
 
- 						    aapq;
 
- 					    sva[q] = aaqq * sqrt((max(d__1,
 
- 						    d__2)));
 
- 					    mxsinj = max(mxsinj,*sfmin);
 
- 					} else {
 
- 					    dcopy_(m, &a[q * a_dim1 + 1], &
 
- 						    c__1, &work[1], &c__1);
 
- 					    dlascl_("G", &c__0, &c__0, &aaqq, 
 
- 						    &c_b42, m, &c__1, &work[1]
 
- , lda, &ierr);
 
- 					    dlascl_("G", &c__0, &c__0, &aapp, 
 
- 						    &c_b42, m, &c__1, &a[p * 
 
- 						    a_dim1 + 1], lda, &ierr);
 
- 					    temp1 = -aapq * d__[q] / d__[p];
 
- 					    daxpy_(m, &temp1, &work[1], &c__1, 
 
- 						     &a[p * a_dim1 + 1], &
 
- 						    c__1);
 
- 					    dlascl_("G", &c__0, &c__0, &c_b42, 
 
- 						     &aapp, m, &c__1, &a[p * 
 
- 						    a_dim1 + 1], lda, &ierr);
 
- /* Computing MAX */
 
- 					    d__1 = 0., d__2 = 1. - aapq * 
 
- 						    aapq;
 
- 					    sva[p] = aapp * sqrt((max(d__1,
 
- 						    d__2)));
 
- 					    mxsinj = max(mxsinj,*sfmin);
 
- 					}
 
- 				    }
 
- /*           END IF ROTOK THEN ... ELSE */
 
- /*           In the case of cancellation in updating SVA(q) */
 
- /*           .. recompute SVA(q) */
 
- /* Computing 2nd power */
 
- 				    d__1 = sva[q] / aaqq;
 
- 				    if (d__1 * d__1 <= rooteps) {
 
- 					if (aaqq < rootbig && aaqq > 
 
- 						rootsfmin) {
 
- 					    sva[q] = dnrm2_(m, &a[q * a_dim1 
 
- 						    + 1], &c__1) * d__[q];
 
- 					} else {
 
- 					    t = 0.;
 
- 					    aaqq = 0.;
 
- 					    dlassq_(m, &a[q * a_dim1 + 1], &
 
- 						    c__1, &t, &aaqq);
 
- 					    sva[q] = t * sqrt(aaqq) * d__[q];
 
- 					}
 
- 				    }
 
- /* Computing 2nd power */
 
- 				    d__1 = aapp / aapp0;
 
- 				    if (d__1 * d__1 <= rooteps) {
 
- 					if (aapp < rootbig && aapp > 
 
- 						rootsfmin) {
 
- 					    aapp = dnrm2_(m, &a[p * a_dim1 + 
 
- 						    1], &c__1) * d__[p];
 
- 					} else {
 
- 					    t = 0.;
 
- 					    aapp = 0.;
 
- 					    dlassq_(m, &a[p * a_dim1 + 1], &
 
- 						    c__1, &t, &aapp);
 
- 					    aapp = t * sqrt(aapp) * d__[p];
 
- 					}
 
- 					sva[p] = aapp;
 
- 				    }
 
- /*              end of OK rotation */
 
- 				} else {
 
- 				    ++notrot;
 
- 				    ++pskipped;
 
- 				    ++ijblsk;
 
- 				}
 
- 			    } else {
 
- 				++notrot;
 
- 				++pskipped;
 
- 				++ijblsk;
 
- 			    }
 
- 			    if (i__ <= swband && ijblsk >= blskip) {
 
- 				sva[p] = aapp;
 
- 				notrot = 0;
 
- 				goto L2011;
 
- 			    }
 
- 			    if (i__ <= swband && pskipped > rowskip) {
 
- 				aapp = -aapp;
 
- 				notrot = 0;
 
- 				goto L2203;
 
- 			    }
 
- /* L2200: */
 
- 			}
 
- /*        end of the q-loop */
 
- L2203:
 
- 			sva[p] = aapp;
 
- 		    } else {
 
- 			if (aapp == 0.) {
 
- /* Computing MIN */
 
- 			    i__5 = jgl + kbl - 1;
 
- 			    notrot = notrot + min(i__5,*n) - jgl + 1;
 
- 			}
 
- 			if (aapp < 0.) {
 
- 			    notrot = 0;
 
- 			}
 
- 		    }
 
- /* L2100: */
 
- 		}
 
- /*     end of the p-loop */
 
- /* L2010: */
 
- 	    }
 
- /*     end of the jbc-loop */
 
- L2011:
 
- /* 2011 bailed out of the jbc-loop */
 
- /* Computing MIN */
 
- 	    i__4 = igl + kbl - 1;
 
- 	    i__3 = min(i__4,*n);
 
- 	    for (p = igl; p <= i__3; ++p) {
 
- 		sva[p] = (d__1 = sva[p], abs(d__1));
 
- /* L2012: */
 
- 	    }
 
- /* L2000: */
 
- 	}
 
- /* 2000 :: end of the ibr-loop */
 
- /*     .. update SVA(N) */
 
- 	if (sva[*n] < rootbig && sva[*n] > rootsfmin) {
 
- 	    sva[*n] = dnrm2_(m, &a[*n * a_dim1 + 1], &c__1) * d__[*n];
 
- 	} else {
 
- 	    t = 0.;
 
- 	    aapp = 0.;
 
- 	    dlassq_(m, &a[*n * a_dim1 + 1], &c__1, &t, &aapp);
 
- 	    sva[*n] = t * sqrt(aapp) * d__[*n];
 
- 	}
 
- /*     Additional steering devices */
 
- 	if (i__ < swband && (mxaapq <= roottol || iswrot <= *n)) {
 
- 	    swband = i__;
 
- 	}
 
- 	if (i__ > swband + 1 && mxaapq < (doublereal) (*n) * *tol && (
 
- 		doublereal) (*n) * mxaapq * mxsinj < *tol) {
 
- 	    goto L1994;
 
- 	}
 
- 	if (notrot >= emptsw) {
 
- 	    goto L1994;
 
- 	}
 
- /* L1993: */
 
-     }
 
- /*     end i=1:NSWEEP loop */
 
- /* #:) Reaching this point means that the procedure has comleted the given */
 
- /*     number of iterations. */
 
-     *info = *nsweep - 1;
 
-     goto L1995;
 
- L1994:
 
- /* #:) Reaching this point means that during the i-th sweep all pivots were */
 
- /*     below the given tolerance, causing early exit. */
 
-     *info = 0;
 
- /* #:) INFO = 0 confirms successful iterations. */
 
- L1995:
 
- /*     Sort the vector D. */
 
-     i__1 = *n - 1;
 
-     for (p = 1; p <= i__1; ++p) {
 
- 	i__2 = *n - p + 1;
 
- 	q = idamax_(&i__2, &sva[p], &c__1) + p - 1;
 
- 	if (p != q) {
 
- 	    temp1 = sva[p];
 
- 	    sva[p] = sva[q];
 
- 	    sva[q] = temp1;
 
- 	    temp1 = d__[p];
 
- 	    d__[p] = d__[q];
 
- 	    d__[q] = temp1;
 
- 	    dswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1);
 
- 	    if (rsvec) {
 
- 		dswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &
 
- 			c__1);
 
- 	    }
 
- 	}
 
- /* L5991: */
 
-     }
 
-     return 0;
 
- /*     .. */
 
- /*     .. END OF DGSVJ0 */
 
- /*     .. */
 
- } /* dgsvj0_ */
 
 
  |