starpu.texi 144 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance options:: Performance options worth knowing
  31. * Performance feedback:: Performance debugging tools
  32. * Configuring StarPU:: How to configure StarPU
  33. * StarPU API:: The API to use StarPU
  34. * Advanced Topics:: Advanced use of StarPU
  35. * Full source code for the 'Scaling a Vector' example::
  36. @end menu
  37. @c ---------------------------------------------------------------------
  38. @c Introduction to StarPU
  39. @c ---------------------------------------------------------------------
  40. @node Introduction
  41. @chapter Introduction to StarPU
  42. @menu
  43. * Motivation:: Why StarPU ?
  44. * StarPU in a Nutshell:: The Fundamentals of StarPU
  45. @end menu
  46. @node Motivation
  47. @section Motivation
  48. @c complex machines with heterogeneous cores/devices
  49. The use of specialized hardware such as accelerators or coprocessors offers an
  50. interesting approach to overcome the physical limits encountered by processor
  51. architects. As a result, many machines are now equipped with one or several
  52. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  53. efforts have been devoted to offload computation onto such accelerators, very
  54. little attention as been paid to portability concerns on the one hand, and to the
  55. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  56. StarPU is a runtime system that offers support for heterogeneous multicore
  57. architectures, it not only offers a unified view of the computational resources
  58. (i.e. CPUs and accelerators at the same time), but it also takes care of
  59. efficiently mapping and executing tasks onto an heterogeneous machine while
  60. transparently handling low-level issues such as data transfers in a portable
  61. fashion.
  62. @c this leads to a complicated distributed memory design
  63. @c which is not (easily) manageable by hand
  64. @c added value/benefits of StarPU
  65. @c - portability
  66. @c - scheduling, perf. portability
  67. @node StarPU in a Nutshell
  68. @section StarPU in a Nutshell
  69. @menu
  70. * Codelet and Tasks::
  71. * StarPU Data Management Library::
  72. * Research Papers::
  73. @end menu
  74. From a programming point of view, StarPU is not a new language but a library
  75. that executes tasks explicitly submitted by the application. The data that a
  76. task manipulates are automatically transferred onto the accelerator so that the
  77. programmer does not have to take care of complex data movements. StarPU also
  78. takes particular care of scheduling those tasks efficiently and allows
  79. scheduling experts to implement custom scheduling policies in a portable
  80. fashion.
  81. @c explain the notion of codelet and task (i.e. g(A, B)
  82. @node Codelet and Tasks
  83. @subsection Codelet and Tasks
  84. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  85. computational kernel that can possibly be implemented on multiple architectures
  86. such as a CPU, a CUDA device or a Cell's SPU.
  87. @c TODO insert illustration f : f_spu, f_cpu, ...
  88. Another important data structure is the @b{task}. Executing a StarPU task
  89. consists in applying a codelet on a data set, on one of the architectures on
  90. which the codelet is implemented. In addition to the codelet that a task
  91. useuses, it also describes which data are accessed, and how they are
  92. accessed during the computation (read and/or write).
  93. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  94. operation. The task structure can also specify a @b{callback} function that is
  95. called once StarPU has properly executed the task. It also contains optional
  96. fields that the application may use to give hints to the scheduler (such as
  97. priority levels).
  98. A task may be identified by a unique 64-bit number chosen by the application
  99. which we refer as a @b{tag}.
  100. Task dependencies can be enforced either by the means of callback functions, by
  101. expressing dependencies between explicit tasks or by expressing dependencies
  102. between tags (which can thus correspond to tasks that have not been submitted
  103. yet).
  104. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  105. @c DSM
  106. @node StarPU Data Management Library
  107. @subsection StarPU Data Management Library
  108. Because StarPU schedules tasks at runtime, data transfers have to be
  109. done automatically and ``just-in-time'' between processing units,
  110. relieving the application programmer from explicit data transfers.
  111. Moreover, to avoid unnecessary transfers, StarPU keeps data
  112. where it was last needed, even if was modified there, and it
  113. allows multiple copies of the same data to reside at the same time on
  114. several processing units as long as it is not modified.
  115. @node Research Papers
  116. @subsection Research Papers
  117. Research papers about StarPU can be found at
  118. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  119. Notably a good overview in the research report
  120. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  121. @c ---------------------------------------------------------------------
  122. @c Installing StarPU
  123. @c ---------------------------------------------------------------------
  124. @node Installing StarPU
  125. @chapter Installing StarPU
  126. @menu
  127. * Downloading StarPU::
  128. * Configuration of StarPU::
  129. * Building and Installing StarPU::
  130. @end menu
  131. StarPU can be built and installed by the standard means of the GNU
  132. autotools. The following chapter is intended to briefly remind how these tools
  133. can be used to install StarPU.
  134. @node Downloading StarPU
  135. @section Downloading StarPU
  136. @menu
  137. * Getting Sources::
  138. * Optional dependencies::
  139. @end menu
  140. @node Getting Sources
  141. @subsection Getting Sources
  142. The simplest way to get StarPU sources is to download the latest official
  143. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  144. or the latest nightly snapshot from
  145. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  146. how to get the very latest version from the subversion repository itself, it
  147. should be needed only if you need the very latest changes (i.e. less than a
  148. day!)
  149. The source code is managed by a Subversion server hosted by the
  150. InriaGforge. To get the source code, you need:
  151. @itemize
  152. @item
  153. To install the client side of the software Subversion if it is
  154. not already available on your system. The software can be obtained from
  155. @indicateurl{http://subversion.tigris.org} . If you are running
  156. on Windows, you will probably prefer to use TortoiseSVN from
  157. @indicateurl{http://tortoisesvn.tigris.org/} .
  158. @item
  159. You can check out the project's SVN repository through anonymous
  160. access. This will provide you with a read access to the
  161. repository.
  162. If you need to have write access on the StarPU project, you can also choose to
  163. become a member of the project @code{starpu}. For this, you first need to get
  164. an account to the gForge server. You can then send a request to join the project
  165. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  166. @item
  167. More information on how to get a gForge account, to become a member of
  168. a project, or on any other related task can be obtained from the
  169. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  170. thing is to upload your public SSH key on the gForge server (see the
  171. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  172. instructions).
  173. @end itemize
  174. You can now check out the latest version from the Subversion server:
  175. @itemize
  176. @item
  177. using the anonymous access via svn:
  178. @example
  179. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  180. @end example
  181. @item
  182. using the anonymous access via https:
  183. @example
  184. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  185. @end example
  186. The password is @code{anonsvn}.
  187. @item
  188. using your gForge account
  189. @example
  190. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  191. @end example
  192. @end itemize
  193. These steps require to run autoconf and automake to generate the
  194. @code{./configure} script. This can be done by calling
  195. @code{./autogen.sh}. The required version for autoconf is 2.60 or
  196. higher. You will also need makeinfo.
  197. @example
  198. % ./autogen.sh
  199. @end example
  200. If the autotools are not available on your machine or not recent
  201. enough, you can choose to download the latest nightly tarball, which
  202. is provided with a @code{configure} script.
  203. @example
  204. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  205. @end example
  206. @node Optional dependencies
  207. @subsection Optional dependencies
  208. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  209. but strongly recommended. It allows to increase performance, and to
  210. perform some topology aware scheduling.
  211. @code{hwloc} is available in major distributions and for most OSes and can be
  212. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  213. @node Configuration of StarPU
  214. @section Configuration of StarPU
  215. @menu
  216. * Generating Makefiles and configuration scripts::
  217. * Running the configuration::
  218. @end menu
  219. @node Generating Makefiles and configuration scripts
  220. @subsection Generating Makefiles and configuration scripts
  221. This step is not necessary when using the tarball releases of StarPU. If you
  222. are using the source code from the svn repository, you first need to generate
  223. the configure scripts and the Makefiles.
  224. @example
  225. % ./autogen.sh
  226. @end example
  227. @node Running the configuration
  228. @subsection Running the configuration
  229. @example
  230. % ./configure
  231. @end example
  232. Details about options that are useful to give to @code{./configure} are given in
  233. @ref{Compilation configuration}.
  234. @node Building and Installing StarPU
  235. @section Building and Installing StarPU
  236. @menu
  237. * Building::
  238. * Sanity Checks::
  239. * Installing::
  240. @end menu
  241. @node Building
  242. @subsection Building
  243. @example
  244. % make
  245. @end example
  246. @node Sanity Checks
  247. @subsection Sanity Checks
  248. In order to make sure that StarPU is working properly on the system, it is also
  249. possible to run a test suite.
  250. @example
  251. % make check
  252. @end example
  253. @node Installing
  254. @subsection Installing
  255. In order to install StarPU at the location that was specified during
  256. configuration:
  257. @example
  258. % make install
  259. @end example
  260. @c ---------------------------------------------------------------------
  261. @c Using StarPU
  262. @c ---------------------------------------------------------------------
  263. @node Using StarPU
  264. @chapter Using StarPU
  265. @menu
  266. * Setting flags for compiling and linking applications::
  267. * Running a basic StarPU application::
  268. * Using accelerators::
  269. @end menu
  270. @node Setting flags for compiling and linking applications
  271. @section Setting flags for compiling and linking applications
  272. Compiling and linking an application against StarPU may require to use
  273. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  274. To this end, it is possible to use the @code{pkg-config} tool.
  275. If StarPU was not installed at some standard location, the path of StarPU's
  276. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  277. that @code{pkg-config} can find it. For example if StarPU was installed in
  278. @code{$prefix_dir}:
  279. @example
  280. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  281. @end example
  282. The flags required to compile or link against StarPU are then
  283. accessible with the following commands:
  284. @example
  285. % pkg-config --cflags libstarpu # options for the compiler
  286. % pkg-config --libs libstarpu # options for the linker
  287. @end example
  288. @node Running a basic StarPU application
  289. @section Running a basic StarPU application
  290. Basic examples using StarPU have been built in the directory
  291. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  292. example @code{vector_scal}.
  293. @example
  294. % $prefix_dir/lib/starpu/examples/vector_scal
  295. BEFORE : First element was 1.000000
  296. AFTER First element is 3.140000
  297. %
  298. @end example
  299. When StarPU is used for the first time, the directory
  300. @code{$HOME/.starpu/} is created, performance models will be stored in
  301. that directory.
  302. Please note that buses are benchmarked when StarPU is launched for the
  303. first time. This may take a few minutes, or less if @code{hwloc} is
  304. installed. This step is done only once per user and per machine.
  305. @node Using accelerators
  306. @section Using accelerators
  307. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  308. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  309. This design choice was necessary as OpenCL and CUDA can not run at the
  310. same time on the same NVIDIA GPU, as there is currently no interoperability
  311. between them.
  312. Details on how to specify devices running OpenCL and the ones running
  313. CUDA are given in @ref{Enabling OpenCL}.
  314. @c ---------------------------------------------------------------------
  315. @c Basic Examples
  316. @c ---------------------------------------------------------------------
  317. @node Basic Examples
  318. @chapter Basic Examples
  319. @menu
  320. * Compiling and linking options::
  321. * Hello World:: Submitting Tasks
  322. * Scaling a Vector:: Manipulating Data
  323. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  324. * Task and Worker Profiling::
  325. * Partitioning Data:: Partitioning Data
  326. * Performance model example::
  327. * Theoretical lower bound on execution time::
  328. * More examples:: More examples shipped with StarPU
  329. @end menu
  330. @node Compiling and linking options
  331. @section Compiling and linking options
  332. Let's suppose StarPU has been installed in the directory
  333. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  334. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  335. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  336. libraries at runtime.
  337. @example
  338. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  339. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  340. @end example
  341. The Makefile could for instance contain the following lines to define which
  342. options must be given to the compiler and to the linker:
  343. @cartouche
  344. @example
  345. CFLAGS += $$(pkg-config --cflags libstarpu)
  346. LDFLAGS += $$(pkg-config --libs libstarpu)
  347. @end example
  348. @end cartouche
  349. @node Hello World
  350. @section Hello World
  351. @menu
  352. * Required Headers::
  353. * Defining a Codelet::
  354. * Submitting a Task::
  355. * Execution of Hello World::
  356. @end menu
  357. In this section, we show how to implement a simple program that submits a task to StarPU.
  358. @node Required Headers
  359. @subsection Required Headers
  360. The @code{starpu.h} header should be included in any code using StarPU.
  361. @cartouche
  362. @smallexample
  363. #include <starpu.h>
  364. @end smallexample
  365. @end cartouche
  366. @node Defining a Codelet
  367. @subsection Defining a Codelet
  368. @cartouche
  369. @smallexample
  370. struct params @{
  371. int i;
  372. float f;
  373. @};
  374. void cpu_func(void *buffers[], void *cl_arg)
  375. @{
  376. struct params *params = cl_arg;
  377. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  378. @}
  379. starpu_codelet cl =
  380. @{
  381. .where = STARPU_CPU,
  382. .cpu_func = cpu_func,
  383. .nbuffers = 0
  384. @};
  385. @end smallexample
  386. @end cartouche
  387. A codelet is a structure that represents a computational kernel. Such a codelet
  388. may contain an implementation of the same kernel on different architectures
  389. (e.g. CUDA, Cell's SPU, x86, ...).
  390. The @code{nbuffers} field specifies the number of data buffers that are
  391. manipulated by the codelet: here the codelet does not access or modify any data
  392. that is controlled by our data management library. Note that the argument
  393. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  394. structure) does not count as a buffer since it is not managed by our data
  395. management library, but just contain trivial parameters.
  396. @c TODO need a crossref to the proper description of "where" see bla for more ...
  397. We create a codelet which may only be executed on the CPUs. The @code{where}
  398. field is a bitmask that defines where the codelet may be executed. Here, the
  399. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  400. (@pxref{Codelets and Tasks} for more details on this field).
  401. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  402. which @emph{must} have the following prototype:
  403. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  404. In this example, we can ignore the first argument of this function which gives a
  405. description of the input and output buffers (e.g. the size and the location of
  406. the matrices) since there is none.
  407. The second argument is a pointer to a buffer passed as an
  408. argument to the codelet by the means of the @code{cl_arg} field of the
  409. @code{starpu_task} structure.
  410. @c TODO rewrite so that it is a little clearer ?
  411. Be aware that this may be a pointer to a
  412. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  413. if the codelet modifies this buffer, there is no guarantee that the initial
  414. buffer will be modified as well: this for instance implies that the buffer
  415. cannot be used as a synchronization medium. If synchronization is needed, data
  416. has to be registered to StarPU, see @ref{Scaling a Vector}.
  417. @node Submitting a Task
  418. @subsection Submitting a Task
  419. @cartouche
  420. @smallexample
  421. void callback_func(void *callback_arg)
  422. @{
  423. printf("Callback function (arg %x)\n", callback_arg);
  424. @}
  425. int main(int argc, char **argv)
  426. @{
  427. /* @b{initialize StarPU} */
  428. starpu_init(NULL);
  429. struct starpu_task *task = starpu_task_create();
  430. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  431. struct params params = @{ 1, 2.0f @};
  432. task->cl_arg = &params;
  433. task->cl_arg_size = sizeof(params);
  434. task->callback_func = callback_func;
  435. task->callback_arg = 0x42;
  436. /* @b{starpu_task_submit will be a blocking call} */
  437. task->synchronous = 1;
  438. /* @b{submit the task to StarPU} */
  439. starpu_task_submit(task);
  440. /* @b{terminate StarPU} */
  441. starpu_shutdown();
  442. return 0;
  443. @}
  444. @end smallexample
  445. @end cartouche
  446. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  447. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  448. be submitted after the termination of StarPU by a call to
  449. @code{starpu_shutdown}.
  450. In the example above, a task structure is allocated by a call to
  451. @code{starpu_task_create}. This function only allocates and fills the
  452. corresponding structure with the default settings (@pxref{starpu_task_create}),
  453. but it does not submit the task to StarPU.
  454. @c not really clear ;)
  455. The @code{cl} field is a pointer to the codelet which the task will
  456. execute: in other words, the codelet structure describes which computational
  457. kernel should be offloaded on the different architectures, and the task
  458. structure is a wrapper containing a codelet and the piece of data on which the
  459. codelet should operate.
  460. The optional @code{cl_arg} field is a pointer to a buffer (of size
  461. @code{cl_arg_size}) with some parameters for the kernel
  462. described by the codelet. For instance, if a codelet implements a computational
  463. kernel that multiplies its input vector by a constant, the constant could be
  464. specified by the means of this buffer, instead of registering it as a StarPU
  465. data.
  466. Once a task has been executed, an optional callback function is be called.
  467. While the computational kernel could be offloaded on various architectures, the
  468. callback function is always executed on a CPU. The @code{callback_arg}
  469. pointer is passed as an argument of the callback. The prototype of a callback
  470. function must be:
  471. @code{void (*callback_function)(void *);}
  472. If the @code{synchronous} field is non-zero, task submission will be
  473. synchronous: the @code{starpu_task_submit} function will not return until the
  474. task was executed. Note that the @code{starpu_shutdown} method does not
  475. guarantee that asynchronous tasks have been executed before it returns,
  476. @code{starpu_task_wait_for_all} can be used to that effect..
  477. @node Execution of Hello World
  478. @subsection Execution of Hello World
  479. @smallexample
  480. % make hello_world
  481. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  482. % ./hello_world
  483. Hello world (params = @{1, 2.000000@} )
  484. Callback function (arg 42)
  485. @end smallexample
  486. @node Scaling a Vector
  487. @section Manipulating Data: Scaling a Vector
  488. The previous example has shown how to submit tasks. In this section,
  489. we show how StarPU tasks can manipulate data. The full source code for
  490. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  491. @menu
  492. * Source code of Vector Scaling::
  493. * Execution of Vector Scaling::
  494. @end menu
  495. @node Source code of Vector Scaling
  496. @subsection Source code of Vector Scaling
  497. Programmers can describe the data layout of their application so that StarPU is
  498. responsible for enforcing data coherency and availability across the machine.
  499. Instead of handling complex (and non-portable) mechanisms to perform data
  500. movements, programmers only declare which piece of data is accessed and/or
  501. modified by a task, and StarPU makes sure that when a computational kernel
  502. starts somewhere (e.g. on a GPU), its data are available locally.
  503. Before submitting those tasks, the programmer first needs to declare the
  504. different pieces of data to StarPU using the @code{starpu_*_data_register}
  505. functions. To ease the development of applications for StarPU, it is possible
  506. to describe multiple types of data layout. A type of data layout is called an
  507. @b{interface}. There are different predefined interfaces available in StarPU:
  508. here we will consider the @b{vector interface}.
  509. The following lines show how to declare an array of @code{NX} elements of type
  510. @code{float} using the vector interface:
  511. @cartouche
  512. @smallexample
  513. float vector[NX];
  514. starpu_data_handle vector_handle;
  515. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  516. sizeof(vector[0]));
  517. @end smallexample
  518. @end cartouche
  519. The first argument, called the @b{data handle}, is an opaque pointer which
  520. designates the array in StarPU. This is also the structure which is used to
  521. describe which data is used by a task. The second argument is the node number
  522. where the data originally resides. Here it is 0 since the @code{vector} array is in
  523. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  524. the number of elements in the vector and the size of each element.
  525. The following shows how to construct a StarPU task that will manipulate the
  526. vector and a constant factor.
  527. @cartouche
  528. @smallexample
  529. float factor = 3.14;
  530. struct starpu_task *task = starpu_task_create();
  531. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  532. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  533. task->buffers[0].mode = STARPU_RW;
  534. task->cl_arg = &factor;
  535. task->cl_arg_size = sizeof(factor);
  536. task->synchronous = 1;
  537. starpu_task_submit(task);
  538. @end smallexample
  539. @end cartouche
  540. Since the factor is a mere constant float value parameter,
  541. it does not need a preliminary registration, and
  542. can just be passed through the @code{cl_arg} pointer like in the previous
  543. example. The vector parameter is described by its handle.
  544. There are two fields in each element of the @code{buffers} array.
  545. @code{handle} is the handle of the data, and @code{mode} specifies how the
  546. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  547. write-only and @code{STARPU_RW} for read and write access).
  548. The definition of the codelet can be written as follows:
  549. @cartouche
  550. @smallexample
  551. void scal_cpu_func(void *buffers[], void *cl_arg)
  552. @{
  553. unsigned i;
  554. float *factor = cl_arg;
  555. /* length of the vector */
  556. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  557. /* local copy of the vector pointer */
  558. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  559. for (i = 0; i < n; i++)
  560. val[i] *= *factor;
  561. @}
  562. starpu_codelet cl = @{
  563. .where = STARPU_CPU,
  564. .cpu_func = scal_cpu_func,
  565. .nbuffers = 1
  566. @};
  567. @end smallexample
  568. @end cartouche
  569. The first argument is an array that gives
  570. a description of all the buffers passed in the @code{task->buffers}@ array. The
  571. size of this array is given by the @code{nbuffers} field of the codelet
  572. structure. For the sake of genericity, this array contains pointers to the
  573. different interfaces describing each buffer. In the case of the @b{vector
  574. interface}, the location of the vector (resp. its length) is accessible in the
  575. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  576. read-write fashion, any modification will automatically affect future accesses
  577. to this vector made by other tasks.
  578. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  579. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  580. constant factor from this pointer.
  581. @node Execution of Vector Scaling
  582. @subsection Execution of Vector Scaling
  583. @smallexample
  584. % make vector_scal
  585. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  586. % ./vector_scal
  587. 0.000000 3.000000 6.000000 9.000000 12.000000
  588. @end smallexample
  589. @node Vector Scaling on an Hybrid CPU/GPU Machine
  590. @section Vector Scaling on an Hybrid CPU/GPU Machine
  591. Contrary to the previous examples, the task submitted in this example may not
  592. only be executed by the CPUs, but also by a CUDA device.
  593. @menu
  594. * Definition of the CUDA Kernel::
  595. * Definition of the OpenCL Kernel::
  596. * Definition of the Main Code::
  597. * Execution of Hybrid Vector Scaling::
  598. @end menu
  599. @node Definition of the CUDA Kernel
  600. @subsection Definition of the CUDA Kernel
  601. The CUDA implementation can be written as follows. It needs to be
  602. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  603. driver.
  604. @cartouche
  605. @smallexample
  606. #include <starpu.h>
  607. static __global__ void vector_mult_cuda(float *val, unsigned n,
  608. float factor)
  609. @{
  610. unsigned i;
  611. if (i < n)
  612. val[i] *= factor;
  613. @}
  614. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  615. @{
  616. float *factor = (float *)_args;
  617. /* length of the vector */
  618. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  619. /* local copy of the vector pointer */
  620. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  621. unsigned threads_per_block = 64;
  622. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  623. @i{ vector_mult_cuda<<<nblocks,threads_per_block>>>(val, n, *factor);}
  624. @i{ cudaThreadSynchronize();}
  625. @}
  626. @end smallexample
  627. @end cartouche
  628. @node Definition of the OpenCL Kernel
  629. @subsection Definition of the OpenCL Kernel
  630. The OpenCL implementation can be written as follows. StarPU provides
  631. tools to compile a OpenCL kernel stored in a file.
  632. @cartouche
  633. @smallexample
  634. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  635. @{
  636. const int i = get_global_id(0);
  637. if (i < nx) @{
  638. val[i] *= factor;
  639. @}
  640. @}
  641. @end smallexample
  642. @end cartouche
  643. @cartouche
  644. @smallexample
  645. #include <starpu.h>
  646. @i{#include <starpu_opencl.h>}
  647. @i{extern struct starpu_opencl_program programs;}
  648. void scal_opencl_func(void *buffers[], void *_args)
  649. @{
  650. float *factor = _args;
  651. @i{ int id, devid, err;}
  652. @i{ cl_kernel kernel;}
  653. @i{ cl_command_queue queue;}
  654. /* length of the vector */
  655. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  656. /* local copy of the vector pointer */
  657. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  658. @i{ id = starpu_worker_get_id();}
  659. @i{ devid = starpu_worker_get_devid(id);}
  660. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  661. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  662. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  663. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  664. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  665. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  666. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  667. @i{ @{}
  668. @i{ size_t global=1;}
  669. @i{ size_t local=1;}
  670. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, NULL);}
  671. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  672. @i{ @}}
  673. @i{ clFinish(queue);}
  674. @i{ starpu_opencl_release_kernel(kernel);}
  675. @}
  676. @end smallexample
  677. @end cartouche
  678. @node Definition of the Main Code
  679. @subsection Definition of the Main Code
  680. The CPU implementation is the same as in the previous section.
  681. Here is the source of the main application. You can notice the value of the
  682. field @code{where} for the codelet. We specify
  683. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  684. can be executed either on a CPU or on a CUDA or an OpenCL device.
  685. @cartouche
  686. @smallexample
  687. #include <starpu.h>
  688. #define NX 2048
  689. extern void scal_cuda_func(void *buffers[], void *_args);
  690. extern void scal_cpu_func(void *buffers[], void *_args);
  691. extern void scal_opencl_func(void *buffers[], void *_args);
  692. /* @b{Definition of the codelet} */
  693. static starpu_codelet cl = @{
  694. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  695. /* @b{on a CUDA device, or on an OpenCL device} */
  696. .cuda_func = scal_cuda_func;
  697. .cpu_func = scal_cpu_func;
  698. .opencl_func = scal_opencl_func;
  699. .nbuffers = 1;
  700. @}
  701. #ifdef STARPU_USE_OPENCL
  702. /* @b{The compiled version of the OpenCL program} */
  703. struct starpu_opencl_program programs;
  704. #endif
  705. int main(int argc, char **argv)
  706. @{
  707. float *vector;
  708. int i, ret;
  709. float factor=3.0;
  710. struct starpu_task *task;
  711. starpu_data_handle vector_handle;
  712. starpu_init(NULL); /* @b{Initialising StarPU} */
  713. #ifdef STARPU_USE_OPENCL
  714. starpu_opencl_load_opencl_from_file(
  715. "examples/basic_examples/vector_scal_opencl_codelet.cl", &programs);
  716. #endif
  717. vector = malloc(NX*sizeof(vector[0]));
  718. assert(vector);
  719. for(i=0 ; i<NX ; i++) vector[i] = i;
  720. @end smallexample
  721. @end cartouche
  722. @cartouche
  723. @smallexample
  724. /* @b{Registering data within StarPU} */
  725. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  726. NX, sizeof(vector[0]));
  727. /* @b{Definition of the task} */
  728. task = starpu_task_create();
  729. task->cl = &cl;
  730. task->buffers[0].handle = vector_handle;
  731. task->buffers[0].mode = STARPU_RW;
  732. task->cl_arg = &factor;
  733. task->cl_arg_size = sizeof(factor);
  734. @end smallexample
  735. @end cartouche
  736. @cartouche
  737. @smallexample
  738. /* @b{Submitting the task} */
  739. ret = starpu_task_submit(task);
  740. if (ret == -ENODEV) @{
  741. fprintf(stderr, "No worker may execute this task\n");
  742. return 1;
  743. @}
  744. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  745. /* @b{Waiting for its termination} */
  746. starpu_task_wait_for_all();
  747. /* @b{Update the vector in RAM} */
  748. starpu_data_acquire(vector_handle, STARPU_R);
  749. @end smallexample
  750. @end cartouche
  751. @cartouche
  752. @smallexample
  753. /* @b{Access the data} */
  754. for(i=0 ; i<NX; i++) @{
  755. fprintf(stderr, "%f ", vector[i]);
  756. @}
  757. fprintf(stderr, "\n");
  758. /* @b{Release the data and shutdown StarPU} */
  759. starpu_data_release(vector_handle);
  760. starpu_shutdown();
  761. return 0;
  762. @}
  763. @end smallexample
  764. @end cartouche
  765. @node Execution of Hybrid Vector Scaling
  766. @subsection Execution of Hybrid Vector Scaling
  767. The Makefile given at the beginning of the section must be extended to
  768. give the rules to compile the CUDA source code. Note that the source
  769. file of the OpenCL kernel does not need to be compiled now, it will
  770. be compiled at run-time when calling the function
  771. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  772. @cartouche
  773. @smallexample
  774. CFLAGS += $(shell pkg-config --cflags libstarpu)
  775. LDFLAGS += $(shell pkg-config --libs libstarpu)
  776. CC = gcc
  777. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  778. %.o: %.cu
  779. nvcc $(CFLAGS) $< -c $@
  780. clean:
  781. rm -f vector_scal *.o
  782. @end smallexample
  783. @end cartouche
  784. @smallexample
  785. % make
  786. @end smallexample
  787. and to execute it, with the default configuration:
  788. @smallexample
  789. % ./vector_scal
  790. 0.000000 3.000000 6.000000 9.000000 12.000000
  791. @end smallexample
  792. or for example, by disabling CPU devices:
  793. @smallexample
  794. % STARPU_NCPUS=0 ./vector_scal
  795. 0.000000 3.000000 6.000000 9.000000 12.000000
  796. @end smallexample
  797. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  798. see @ref{Using accelerators}):
  799. @smallexample
  800. % STARPU_NCUDA=0 ./vector_scal
  801. 0.000000 3.000000 6.000000 9.000000 12.000000
  802. @end smallexample
  803. @node Task and Worker Profiling
  804. @section Task and Worker Profiling
  805. A full example showing how to use the profiling API is available in
  806. the StarPU sources in the directory @code{examples/profiling/}.
  807. @cartouche
  808. @smallexample
  809. struct starpu_task *task = starpu_task_create();
  810. task->cl = &cl;
  811. task->synchronous = 1;
  812. /* We will destroy the task structure by hand so that we can
  813. * query the profiling info before the task is destroyed. */
  814. task->destroy = 0;
  815. /* Submit and wait for completion (since synchronous was set to 1) */
  816. starpu_task_submit(task);
  817. /* The task is finished, get profiling information */
  818. struct starpu_task_profiling_info *info = task->profiling_info;
  819. /* How much time did it take before the task started ? */
  820. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  821. /* How long was the task execution ? */
  822. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  823. /* We don't need the task structure anymore */
  824. starpu_task_destroy(task);
  825. @end smallexample
  826. @end cartouche
  827. @cartouche
  828. @smallexample
  829. /* Display the occupancy of all workers during the test */
  830. int worker;
  831. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  832. @{
  833. struct starpu_worker_profiling_info worker_info;
  834. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  835. STARPU_ASSERT(!ret);
  836. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  837. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  838. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  839. float executing_ratio = 100.0*executing_time/total_time;
  840. float sleeping_ratio = 100.0*sleeping_time/total_time;
  841. char workername[128];
  842. starpu_worker_get_name(worker, workername, 128);
  843. fprintf(stderr, "Worker %s:\n", workername);
  844. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  845. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  846. executing_ratio);
  847. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  848. sleeping_ratio);
  849. @}
  850. @end smallexample
  851. @end cartouche
  852. @node Partitioning Data
  853. @section Partitioning Data
  854. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  855. @cartouche
  856. @smallexample
  857. int vector[NX];
  858. starpu_data_handle handle;
  859. /* Declare data to StarPU */
  860. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  861. /* Partition the vector in PARTS sub-vectors */
  862. starpu_filter f =
  863. @{
  864. .filter_func = starpu_block_filter_func_vector,
  865. .nchildren = PARTS,
  866. .get_nchildren = NULL,
  867. .get_child_ops = NULL
  868. @};
  869. starpu_data_partition(handle, &f);
  870. @end smallexample
  871. @end cartouche
  872. @cartouche
  873. @smallexample
  874. /* Submit a task on each sub-vector */
  875. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  876. /* Get subdata number i (there is only 1 dimension) */
  877. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  878. struct starpu_task *task = starpu_task_create();
  879. task->buffers[0].handle = sub_handle;
  880. task->buffers[0].mode = STARPU_RW;
  881. task->cl = &cl;
  882. task->synchronous = 1;
  883. task->cl_arg = &factor;
  884. task->cl_arg_size = sizeof(factor);
  885. starpu_task_submit(task);
  886. @}
  887. @end smallexample
  888. @end cartouche
  889. Partitioning can be applied several times, see
  890. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  891. @node Performance model example
  892. @section Performance model example
  893. To achieve good scheduling, StarPU scheduling policies need to be able to
  894. estimate in advance the duration of a task. This is done by giving to codelets a
  895. performance model. There are several kinds of performance models.
  896. @itemize
  897. @item
  898. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  899. see for instance
  900. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  901. @item
  902. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  903. given set of data input/output sizes, the performance will always be about the
  904. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  905. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  906. few different sets of data input/output sizes. StarPU will then keep record of
  907. the average time of previous executions on the various processing units, and use
  908. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  909. for further executions. The following is a small code example.
  910. @cartouche
  911. @smallexample
  912. static struct starpu_perfmodel_t mult_perf_model = @{
  913. .type = STARPU_HISTORY_BASED,
  914. .symbol = "mult_perf_model"
  915. @};
  916. starpu_codelet cl = @{
  917. .where = STARPU_CPU,
  918. .cpu_func = cpu_mult,
  919. .nbuffers = 3,
  920. /* for the scheduling policy to be able to use performance models */
  921. .model = &mult_perf_model
  922. @};
  923. @end smallexample
  924. @end cartouche
  925. @item
  926. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  927. type). This still assumes performance regularity, but can work with various data
  928. input sizes, by applying a*n^b+c regression over observed execution times.
  929. @end itemize
  930. @node Theoretical lower bound on execution time
  931. @section Theoretical lower bound on execution time
  932. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  933. bound for the execution time of a whole set of tasks. See for
  934. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  935. call @code{starpu_bound_start}, and after complete execution, call
  936. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  937. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  938. problem corresponding to the schedule of your tasks. Run it through
  939. @code{lp_solve} or any other linear programming solver, and that will give you a
  940. lower bound for the total execution time of your tasks. If StarPU was compiled
  941. with the glpk library installed, @code{starpu_bound_compute} can be used to
  942. solve it immediately and get the optimized minimum. Its @code{integer}
  943. parameter allows to decide whether integer resolution should be computed
  944. and returned.
  945. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  946. dependencies into account. It must be understood that the linear programming
  947. problem size is quadratic with the number of tasks and thus the time to solve it
  948. will be very long, it could be minutes for just a few dozen tasks. You should
  949. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  950. problem to MPS format and then use a better solver, @code{glpsol} might be
  951. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  952. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  953. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  954. of @code{lp_solve}. For instance, we often just use
  955. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  956. the @code{-gr} option can also be quite useful.
  957. Setting @code{deps} to 0 will only take into account the actual computations
  958. on processing units. It however still properly takes into account the varying
  959. performances of kernels and processing units, which is quite more accurate than
  960. just comparing StarPU performances with the fastest of the kernels being used.
  961. The @code{prio} parameter tells StarPU whether to simulate taking into account
  962. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  963. tasks before less prioritized tasks, to check to which extend this results
  964. to a less optimal solution. This increases even more computation time.
  965. Note that for simplicity, all this however doesn't take into account data
  966. transfers, which are assumed to be completely overlapped.
  967. @node More examples
  968. @section More examples
  969. More examples are available in the StarPU sources in the @code{examples/}
  970. directory. Simple examples include:
  971. @table @asis
  972. @item @code{incrementer/}:
  973. Trivial incrementation test.
  974. @item @code{basic_examples/}:
  975. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  976. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  977. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  978. interface, and an example using the variable data interface.
  979. @item @code{matvecmult/}:
  980. OpenCL example from NVidia, adapted to StarPU.
  981. @item @code{axpy/}:
  982. AXPY CUBLAS operation adapted to StarPU.
  983. @item @code{fortran/}:
  984. Example of Fortran bindings.
  985. @end table
  986. More advanced examples include:
  987. @table @asis
  988. @item @code{filters/}:
  989. Examples using filters, as shown in @ref{Partitioning Data}.
  990. @item @code{lu/}:
  991. LU matrix factorization.
  992. @end table
  993. @c ---------------------------------------------------------------------
  994. @c Performance feedback
  995. @c ---------------------------------------------------------------------
  996. @node Performance options
  997. @chapter Performance options worth knowing
  998. TODO: explain why execution should be tried with
  999. @code{STARPU_PREFETCH=1 STARPU_SCHED=dmda}, when to use
  1000. @code{STARPU_CALIBRATE=2} to force re-calibration, and how to play with
  1001. @code{STARPU_BETA=2} or more.
  1002. @c ---------------------------------------------------------------------
  1003. @c Performance feedback
  1004. @c ---------------------------------------------------------------------
  1005. @node Performance feedback
  1006. @chapter Performance feedback
  1007. @menu
  1008. * On-line:: On-line performance feedback
  1009. * Off-line:: Off-line performance feedback
  1010. @end menu
  1011. @node On-line
  1012. @section On-line performance feedback
  1013. @menu
  1014. * Enabling monitoring:: Enabling on-line performance monitoring
  1015. * Task feedback:: Per-task feedback
  1016. * Codelet feedback:: Per-codelet feedback
  1017. * Worker feedback:: Per-worker feedback
  1018. * Bus feedback:: Bus-related feedback
  1019. @end menu
  1020. @node Enabling monitoring
  1021. @subsection Enabling on-line performance monitoring
  1022. In order to enable online performance monitoring, the application must call
  1023. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1024. detect whether monitoring is already enabled or not by calling
  1025. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1026. previously collected feedback.
  1027. Likewise, performance monitoring is stopped by calling
  1028. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1029. does not reset the performance counters so that the application may consult
  1030. them later on.
  1031. More details about the performance monitoring API are available in section
  1032. @ref{Profiling API}.
  1033. @node Task feedback
  1034. @subsection Per-task feedback
  1035. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1036. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1037. structure when a task terminates.
  1038. This structure is automatically destroyed when the task structure is destroyed,
  1039. either automatically or by calling @code{starpu_task_destroy}.
  1040. The @code{starpu_task_profiling_info} structure indicates the date when the
  1041. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1042. terminated (@code{end_time}), relative to the initialization of
  1043. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1044. that has executed the task (@code{workerid}).
  1045. These date are stored as @code{timespec} structures which the user may convert
  1046. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1047. function.
  1048. It it worth noting that the application may directly access this structure from
  1049. the callback executed at the end of the task. The @code{starpu_task} structure
  1050. associated to the callback currently being executed is indeed accessible with
  1051. the @code{starpu_get_current_task()} function.
  1052. @node Codelet feedback
  1053. @subsection Per-codelet feedback
  1054. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1055. an array of counters. The i-th entry of the array is incremented every time a
  1056. task implementing the codelet is executed on the i-th worker.
  1057. This array is not reinitialized when profiling is enabled or disabled.
  1058. @node Worker feedback
  1059. @subsection Per-worker feedback
  1060. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1061. function is a @code{starpu_worker_profiling_info} structure that gives
  1062. statistics about the specified worker. This structure specifies when StarPU
  1063. started collecting profiling information for that worker (@code{start_time}),
  1064. the duration of the profiling measurement interval (@code{total_time}), the
  1065. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1066. because there is no task to execute at all (@code{sleeping_time}), and the
  1067. number of tasks that were executed while profiling was enabled.
  1068. These values give an estimation of the proportion of time spent do real work,
  1069. and the time spent either sleeping because there are not enough executable
  1070. tasks or simply wasted in pure StarPU overhead.
  1071. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1072. information associated to a worker.
  1073. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1074. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1075. generate a graphic showing the evolution of these values during the time, for
  1076. the different workers.
  1077. @node Bus feedback
  1078. @subsection Bus-related feedback
  1079. TODO
  1080. @c how to enable/disable performance monitoring
  1081. @c what kind of information do we get ?
  1082. @node Off-line
  1083. @section Off-line performance feedback
  1084. @menu
  1085. * Generating traces:: Generating traces with FxT
  1086. * Gantt diagram:: Creating a Gantt Diagram
  1087. * DAG:: Creating a DAG with graphviz
  1088. * starpu-top:: Monitoring activity
  1089. @end menu
  1090. @node Generating traces
  1091. @subsection Generating traces with FxT
  1092. StarPU can use the FxT library (see
  1093. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1094. with a limited runtime overhead.
  1095. You can either get the FxT library from CVS (autotools are required):
  1096. @example
  1097. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1098. % ./bootstrap
  1099. @end example
  1100. If autotools are not available on your machine, or if you prefer to do so,
  1101. FxT's code is also available as a tarball:
  1102. @example
  1103. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1104. @end example
  1105. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1106. done following the standard procedure:
  1107. @example
  1108. % ./configure --prefix=$FXTDIR
  1109. % make
  1110. % make install
  1111. @end example
  1112. In order to have StarPU to generate traces, StarPU should be configured with
  1113. the @code{--with-fxt} option:
  1114. @example
  1115. $ ./configure --with-fxt=$FXTDIR
  1116. @end example
  1117. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1118. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1119. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1120. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1121. @code{/tmp/} directory by default, or by the directory specified by
  1122. the @code{STARPU_FXT_PREFIX} environment variable.
  1123. @node Gantt diagram
  1124. @subsection Creating a Gantt Diagram
  1125. When the FxT trace file @code{filename} has been generated, it is possible to
  1126. generate a trace in the Paje format by calling:
  1127. @example
  1128. % fxt_tool -i filename
  1129. @end example
  1130. This will create a @code{paje.trace} file in the current directory that can be
  1131. inspected with the ViTE trace visualizing open-source tool. More information
  1132. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1133. possible to open the @code{paje.trace} file with ViTE by using the following
  1134. command:
  1135. @example
  1136. % vite paje.trace
  1137. @end example
  1138. @node DAG
  1139. @subsection Creating a DAG with graphviz
  1140. When the FxT trace file @code{filename} has been generated, it is possible to
  1141. generate a task graph in the DOT format by calling:
  1142. @example
  1143. $ fxt_tool -i filename
  1144. @end example
  1145. This will create a @code{dag.dot} file in the current directory. This file is a
  1146. task graph described using the DOT language. It is possible to get a
  1147. graphical output of the graph by using the graphviz library:
  1148. @example
  1149. $ dot -Tpdf dag.dot -o output.pdf
  1150. @end example
  1151. @node starpu-top
  1152. @subsection Monitoring activity
  1153. When the FxT trace file @code{filename} has been generated, it is possible to
  1154. generate a activity trace by calling:
  1155. @example
  1156. $ fxt_tool -i filename
  1157. @end example
  1158. This will create an @code{activity.data} file in the current
  1159. directory. A profile of the application showing the activity of StarPU
  1160. during the execution of the program can be generated:
  1161. @example
  1162. $ starpu_top.sh activity.data
  1163. @end example
  1164. This will create a file named @code{activity.eps} in the current directory.
  1165. This picture is composed of two parts.
  1166. The first part shows the activity of the different workers. The green sections
  1167. indicate which proportion of the time was spent executed kernels on the
  1168. processing unit. The red sections indicate the proportion of time spent in
  1169. StartPU: an important overhead may indicate that the granularity may be too
  1170. low, and that bigger tasks may be appropriate to use the processing unit more
  1171. efficiently. The black sections indicate that the processing unit was blocked
  1172. because there was no task to process: this may indicate a lack of parallelism
  1173. which may be alleviated by creating more tasks when it is possible.
  1174. The second part of the @code{activity.eps} picture is a graph showing the
  1175. evolution of the number of tasks available in the system during the execution.
  1176. Ready tasks are shown in black, and tasks that are submitted but not
  1177. schedulable yet are shown in grey.
  1178. @c ---------------------------------------------------------------------
  1179. @c Configuration options
  1180. @c ---------------------------------------------------------------------
  1181. @node Configuring StarPU
  1182. @chapter Configuring StarPU
  1183. @menu
  1184. * Compilation configuration::
  1185. * Execution configuration through environment variables::
  1186. @end menu
  1187. @node Compilation configuration
  1188. @section Compilation configuration
  1189. The following arguments can be given to the @code{configure} script.
  1190. @menu
  1191. * Common configuration::
  1192. * Configuring workers::
  1193. * Advanced configuration::
  1194. @end menu
  1195. @node Common configuration
  1196. @subsection Common configuration
  1197. @menu
  1198. * --enable-debug::
  1199. * --enable-fast::
  1200. * --enable-verbose::
  1201. * --enable-coverage::
  1202. @end menu
  1203. @node --enable-debug
  1204. @subsubsection @code{--enable-debug}
  1205. @table @asis
  1206. @item @emph{Description}:
  1207. Enable debugging messages.
  1208. @end table
  1209. @node --enable-fast
  1210. @subsubsection @code{--enable-fast}
  1211. @table @asis
  1212. @item @emph{Description}:
  1213. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1214. @end table
  1215. @node --enable-verbose
  1216. @subsubsection @code{--enable-verbose}
  1217. @table @asis
  1218. @item @emph{Description}:
  1219. Augment the verbosity of the debugging messages.
  1220. @end table
  1221. @node --enable-coverage
  1222. @subsubsection @code{--enable-coverage}
  1223. @table @asis
  1224. @item @emph{Description}:
  1225. Enable flags for the @code{gcov} coverage tool.
  1226. @end table
  1227. @node Configuring workers
  1228. @subsection Configuring workers
  1229. @menu
  1230. * --enable-nmaxcpus::
  1231. * --disable-cpu::
  1232. * --enable-maxcudadev::
  1233. * --disable-cuda::
  1234. * --with-cuda-dir::
  1235. * --with-cuda-include-dir::
  1236. * --with-cuda-lib-dir::
  1237. * --enable-maxopencldev::
  1238. * --disable-opencl::
  1239. * --with-opencl-dir::
  1240. * --with-opencl-include-dir::
  1241. * --with-opencl-lib-dir::
  1242. * --enable-gordon::
  1243. * --with-gordon-dir::
  1244. @end menu
  1245. @node --enable-nmaxcpus
  1246. @subsubsection @code{--enable-nmaxcpus=<number>}
  1247. @table @asis
  1248. @item @emph{Description}:
  1249. Defines the maximum number of CPU cores that StarPU will support, then
  1250. available as the @code{STARPU_NMAXCPUS} macro.
  1251. @end table
  1252. @node --disable-cpu
  1253. @subsubsection @code{--disable-cpu}
  1254. @table @asis
  1255. @item @emph{Description}:
  1256. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1257. @end table
  1258. @node --enable-maxcudadev
  1259. @subsubsection @code{--enable-maxcudadev=<number>}
  1260. @table @asis
  1261. @item @emph{Description}:
  1262. Defines the maximum number of CUDA devices that StarPU will support, then
  1263. available as the @code{STARPU_MAXCUDADEVS} macro.
  1264. @end table
  1265. @node --disable-cuda
  1266. @subsubsection @code{--disable-cuda}
  1267. @table @asis
  1268. @item @emph{Description}:
  1269. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1270. @end table
  1271. @node --with-cuda-dir
  1272. @subsubsection @code{--with-cuda-dir=<path>}
  1273. @table @asis
  1274. @item @emph{Description}:
  1275. Specify the directory where CUDA is installed. This directory should notably contain
  1276. @code{include/cuda.h}.
  1277. @end table
  1278. @node --with-cuda-include-dir
  1279. @subsubsection @code{--with-cuda-include-dir=<path>}
  1280. @table @asis
  1281. @item @emph{Description}:
  1282. Specify the directory where CUDA headers are installed. This directory should
  1283. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1284. value given to @code{--with-cuda-dir}.
  1285. @end table
  1286. @node --with-cuda-lib-dir
  1287. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1288. @table @asis
  1289. @item @emph{Description}:
  1290. Specify the directory where the CUDA library is installed. This directory should
  1291. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1292. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1293. @end table
  1294. @node --enable-maxopencldev
  1295. @subsubsection @code{--enable-maxopencldev=<number>}
  1296. @table @asis
  1297. @item @emph{Description}:
  1298. Defines the maximum number of OpenCL devices that StarPU will support, then
  1299. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1300. @end table
  1301. @node --disable-opencl
  1302. @subsubsection @code{--disable-opencl}
  1303. @table @asis
  1304. @item @emph{Description}:
  1305. Disable the use of OpenCL, even if the SDK is detected.
  1306. @end table
  1307. @node --with-opencl-dir
  1308. @subsubsection @code{--with-opencl-dir=<path>}
  1309. @table @asis
  1310. @item @emph{Description}:
  1311. Specify the location of the OpenCL SDK. This directory should notably contain
  1312. @code{include/CL/cl.h}.
  1313. @end table
  1314. @node --with-opencl-include-dir
  1315. @subsubsection @code{--with-opencl-include-dir=<path>}
  1316. @table @asis
  1317. @item @emph{Description}:
  1318. Specify the location of OpenCL headers. This directory should notably contain
  1319. @code{CL/cl.h}. This defaults to
  1320. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1321. @end table
  1322. @node --with-opencl-lib-dir
  1323. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1324. @table @asis
  1325. @item @emph{Description}:
  1326. Specify the location of the OpenCL library. This directory should notably
  1327. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1328. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1329. @end table
  1330. @node --enable-gordon
  1331. @subsubsection @code{--enable-gordon}
  1332. @table @asis
  1333. @item @emph{Description}:
  1334. Enable the use of the Gordon runtime for Cell SPUs.
  1335. @c TODO: rather default to enabled when detected
  1336. @end table
  1337. @node --with-gordon-dir
  1338. @subsubsection @code{--with-gordon-dir=<path>}
  1339. @table @asis
  1340. @item @emph{Description}:
  1341. Specify the location of the Gordon SDK.
  1342. @end table
  1343. @node Advanced configuration
  1344. @subsection Advanced configuration
  1345. @menu
  1346. * --enable-perf-debug::
  1347. * --enable-model-debug::
  1348. * --enable-stats::
  1349. * --enable-maxbuffers::
  1350. * --enable-allocation-cache::
  1351. * --enable-opengl-render::
  1352. * --enable-blas-lib::
  1353. * --with-magma::
  1354. * --with-fxt::
  1355. * --with-perf-model-dir::
  1356. * --with-mpicc::
  1357. * --with-goto-dir::
  1358. * --with-atlas-dir::
  1359. * --with-mkl-cflags::
  1360. * --with-mkl-ldflags::
  1361. @end menu
  1362. @node --enable-perf-debug
  1363. @subsubsection @code{--enable-perf-debug}
  1364. @table @asis
  1365. @item @emph{Description}:
  1366. Enable performance debugging.
  1367. @end table
  1368. @node --enable-model-debug
  1369. @subsubsection @code{--enable-model-debug}
  1370. @table @asis
  1371. @item @emph{Description}:
  1372. Enable performance model debugging.
  1373. @end table
  1374. @node --enable-stats
  1375. @subsubsection @code{--enable-stats}
  1376. @table @asis
  1377. @item @emph{Description}:
  1378. Enable statistics.
  1379. @end table
  1380. @node --enable-maxbuffers
  1381. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1382. @table @asis
  1383. @item @emph{Description}:
  1384. Define the maximum number of buffers that tasks will be able to take
  1385. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1386. @end table
  1387. @node --enable-allocation-cache
  1388. @subsubsection @code{--enable-allocation-cache}
  1389. @table @asis
  1390. @item @emph{Description}:
  1391. Enable the use of a data allocation cache to avoid the cost of it with
  1392. CUDA. Still experimental.
  1393. @end table
  1394. @node --enable-opengl-render
  1395. @subsubsection @code{--enable-opengl-render}
  1396. @table @asis
  1397. @item @emph{Description}:
  1398. Enable the use of OpenGL for the rendering of some examples.
  1399. @c TODO: rather default to enabled when detected
  1400. @end table
  1401. @node --enable-blas-lib
  1402. @subsubsection @code{--enable-blas-lib=<name>}
  1403. @table @asis
  1404. @item @emph{Description}:
  1405. Specify the blas library to be used by some of the examples. The
  1406. library has to be 'atlas' or 'goto'.
  1407. @end table
  1408. @node --with-magma
  1409. @subsubsection @code{--with-magma=<path>}
  1410. @table @asis
  1411. @item @emph{Description}:
  1412. Specify where magma is installed. This directory should notably contain
  1413. @code{include/magmablas.h}.
  1414. @end table
  1415. @node --with-fxt
  1416. @subsubsection @code{--with-fxt=<path>}
  1417. @table @asis
  1418. @item @emph{Description}:
  1419. Specify the location of FxT (for generating traces and rendering them
  1420. using ViTE). This directory should notably contain
  1421. @code{include/fxt/fxt.h}.
  1422. @c TODO add ref to other section
  1423. @end table
  1424. @node --with-perf-model-dir
  1425. @subsubsection @code{--with-perf-model-dir=<dir>}
  1426. @table @asis
  1427. @item @emph{Description}:
  1428. Specify where performance models should be stored (instead of defaulting to the
  1429. current user's home).
  1430. @end table
  1431. @node --with-mpicc
  1432. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1433. @table @asis
  1434. @item @emph{Description}:
  1435. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1436. @end table
  1437. @node --with-goto-dir
  1438. @subsubsection @code{--with-goto-dir=<dir>}
  1439. @table @asis
  1440. @item @emph{Description}:
  1441. Specify the location of GotoBLAS.
  1442. @end table
  1443. @node --with-atlas-dir
  1444. @subsubsection @code{--with-atlas-dir=<dir>}
  1445. @table @asis
  1446. @item @emph{Description}:
  1447. Specify the location of ATLAS. This directory should notably contain
  1448. @code{include/cblas.h}.
  1449. @end table
  1450. @node --with-mkl-cflags
  1451. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1452. @table @asis
  1453. @item @emph{Description}:
  1454. Specify the compilation flags for the MKL Library.
  1455. @end table
  1456. @node --with-mkl-ldflags
  1457. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1458. @table @asis
  1459. @item @emph{Description}:
  1460. Specify the linking flags for the MKL Library. Note that the
  1461. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1462. website provides a script to determine the linking flags.
  1463. @end table
  1464. @c ---------------------------------------------------------------------
  1465. @c Environment variables
  1466. @c ---------------------------------------------------------------------
  1467. @node Execution configuration through environment variables
  1468. @section Execution configuration through environment variables
  1469. @menu
  1470. * Workers:: Configuring workers
  1471. * Scheduling:: Configuring the Scheduling engine
  1472. * Misc:: Miscellaneous and debug
  1473. @end menu
  1474. Note: the values given in @code{starpu_conf} structure passed when
  1475. calling @code{starpu_init} will override the values of the environment
  1476. variables.
  1477. @node Workers
  1478. @subsection Configuring workers
  1479. @menu
  1480. * STARPU_NCPUS:: Number of CPU workers
  1481. * STARPU_NCUDA:: Number of CUDA workers
  1482. * STARPU_NOPENCL:: Number of OpenCL workers
  1483. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1484. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1485. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1486. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1487. @end menu
  1488. @node STARPU_NCPUS
  1489. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1490. @table @asis
  1491. @item @emph{Description}:
  1492. Specify the number of CPU workers. Note that by default, StarPU will not allocate
  1493. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1494. the accelerators.
  1495. @end table
  1496. @node STARPU_NCUDA
  1497. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1498. @table @asis
  1499. @item @emph{Description}:
  1500. Specify the number of CUDA devices that StarPU can use. If
  1501. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1502. possible to select which CUDA devices should be used by the means of the
  1503. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1504. create as many CUDA workers as there are CUDA devices.
  1505. @end table
  1506. @node STARPU_NOPENCL
  1507. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1508. @table @asis
  1509. @item @emph{Description}:
  1510. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1511. @end table
  1512. @node STARPU_NGORDON
  1513. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1514. @table @asis
  1515. @item @emph{Description}:
  1516. Specify the number of SPUs that StarPU can use.
  1517. @end table
  1518. @node STARPU_WORKERS_CPUID
  1519. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1520. @table @asis
  1521. @item @emph{Description}:
  1522. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1523. specifies on which logical CPU the different workers should be
  1524. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1525. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1526. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1527. determined by the OS, or provided by the @code{hwloc} library in case it is
  1528. available.
  1529. Note that the first workers correspond to the CUDA workers, then come the
  1530. OpenCL and the SPU, and finally the CPU workers. For example if
  1531. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1532. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1533. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1534. the logical CPUs #1 and #3 will be used by the CPU workers.
  1535. If the number of workers is larger than the array given in
  1536. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1537. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1538. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1539. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1540. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1541. @end table
  1542. @node STARPU_WORKERS_CUDAID
  1543. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1544. @table @asis
  1545. @item @emph{Description}:
  1546. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1547. possible to select which CUDA devices should be used by StarPU. On a machine
  1548. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1549. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1550. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1551. the one reported by CUDA).
  1552. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1553. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1554. @end table
  1555. @node STARPU_WORKERS_OPENCLID
  1556. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1557. @table @asis
  1558. @item @emph{Description}:
  1559. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1560. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1561. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1562. @end table
  1563. @node Scheduling
  1564. @subsection Configuring the Scheduling engine
  1565. @menu
  1566. * STARPU_SCHED:: Scheduling policy
  1567. * STARPU_CALIBRATE:: Calibrate performance models
  1568. * STARPU_PREFETCH:: Use data prefetch
  1569. * STARPU_SCHED_ALPHA:: Computation factor
  1570. * STARPU_SCHED_BETA:: Communication factor
  1571. @end menu
  1572. @node STARPU_SCHED
  1573. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1574. @table @asis
  1575. @item @emph{Description}:
  1576. This chooses between the different scheduling policies proposed by StarPU: work
  1577. random, stealing, greedy, with performance models, etc.
  1578. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1579. @end table
  1580. @node STARPU_CALIBRATE
  1581. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1582. @table @asis
  1583. @item @emph{Description}:
  1584. If this variable is set to 1, the performance models are calibrated during
  1585. the execution. If it is set to 2, the previous values are dropped to restart
  1586. calibration from scratch.
  1587. Note: this currently only applies to dm and dmda scheduling policies.
  1588. @end table
  1589. @node STARPU_PREFETCH
  1590. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1591. @table @asis
  1592. @item @emph{Description}:
  1593. This variable indicates whether data prefetching should be enabled (0 means
  1594. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1595. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1596. advance, so that data is already present on the GPU when the task starts. As a
  1597. result, computation and data transfers are overlapped.
  1598. @end table
  1599. @node STARPU_SCHED_ALPHA
  1600. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1601. @table @asis
  1602. @item @emph{Description}:
  1603. To estimate the cost of a task StarPU takes into account the estimated
  1604. computation time (obtained thanks to performance models). The alpha factor is
  1605. the coefficient to be applied to it before adding it to the communication part.
  1606. @end table
  1607. @node STARPU_SCHED_BETA
  1608. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1609. @table @asis
  1610. @item @emph{Description}:
  1611. To estimate the cost of a task StarPU takes into account the estimated
  1612. data transfer time (obtained thanks to performance models). The beta factor is
  1613. the coefficient to be applied to it before adding it to the computation part.
  1614. @end table
  1615. @node Misc
  1616. @subsection Miscellaneous and debug
  1617. @menu
  1618. * STARPU_LOGFILENAME:: Select debug file name
  1619. * STARPU_FXT_PREFIX:: FxT trace location
  1620. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1621. @end menu
  1622. @node STARPU_LOGFILENAME
  1623. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1624. @table @asis
  1625. @item @emph{Description}:
  1626. This variable specifies in which file the debugging output should be saved to.
  1627. @end table
  1628. @node STARPU_FXT_PREFIX
  1629. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1630. @table @asis
  1631. @item @emph{Description}
  1632. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1633. @end table
  1634. @node STARPU_LIMIT_GPU_MEM
  1635. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1636. @table @asis
  1637. @item @emph{Description}
  1638. This variable specifies the maximum number of megabytes that should be
  1639. available to the application on each GPUs. In case this value is smaller than
  1640. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1641. on the device. This variable is intended to be used for experimental purposes
  1642. as it emulates devices that have a limited amount of memory.
  1643. @end table
  1644. @c ---------------------------------------------------------------------
  1645. @c StarPU API
  1646. @c ---------------------------------------------------------------------
  1647. @node StarPU API
  1648. @chapter StarPU API
  1649. @menu
  1650. * Initialization and Termination:: Initialization and Termination methods
  1651. * Workers' Properties:: Methods to enumerate workers' properties
  1652. * Data Library:: Methods to manipulate data
  1653. * Data Interfaces::
  1654. * Data Partition::
  1655. * Codelets and Tasks:: Methods to construct tasks
  1656. * Explicit Dependencies:: Explicit Dependencies
  1657. * Implicit Data Dependencies:: Implicit Data Dependencies
  1658. * Performance Model API::
  1659. * Profiling API:: Profiling API
  1660. * CUDA extensions:: CUDA extensions
  1661. * OpenCL extensions:: OpenCL extensions
  1662. * Cell extensions:: Cell extensions
  1663. * Miscellaneous helpers::
  1664. @end menu
  1665. @node Initialization and Termination
  1666. @section Initialization and Termination
  1667. @menu
  1668. * starpu_init:: Initialize StarPU
  1669. * struct starpu_conf:: StarPU runtime configuration
  1670. * starpu_conf_init:: Initialize starpu_conf structure
  1671. * starpu_shutdown:: Terminate StarPU
  1672. @end menu
  1673. @node starpu_init
  1674. @subsection @code{starpu_init} -- Initialize StarPU
  1675. @table @asis
  1676. @item @emph{Description}:
  1677. This is StarPU initialization method, which must be called prior to any other
  1678. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1679. policy, number of cores, ...) by passing a non-null argument. Default
  1680. configuration is used if the passed argument is @code{NULL}.
  1681. @item @emph{Return value}:
  1682. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1683. indicates that no worker was available (so that StarPU was not initialized).
  1684. @item @emph{Prototype}:
  1685. @code{int starpu_init(struct starpu_conf *conf);}
  1686. @end table
  1687. @node struct starpu_conf
  1688. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1689. @table @asis
  1690. @item @emph{Description}:
  1691. This structure is passed to the @code{starpu_init} function in order
  1692. to configure StarPU.
  1693. When the default value is used, StarPU automatically selects the number
  1694. of processing units and takes the default scheduling policy. This parameter
  1695. overwrites the equivalent environment variables.
  1696. @item @emph{Fields}:
  1697. @table @asis
  1698. @item @code{sched_policy_name} (default = NULL):
  1699. This is the name of the scheduling policy. This can also be specified with the
  1700. @code{STARPU_SCHED} environment variable.
  1701. @item @code{sched_policy} (default = NULL):
  1702. This is the definition of the scheduling policy. This field is ignored
  1703. if @code{sched_policy_name} is set.
  1704. @item @code{ncpus} (default = -1):
  1705. This is the number of CPU cores that StarPU can use. This can also be
  1706. specified with the @code{STARPU_NCPUS} environment variable.
  1707. @item @code{ncuda} (default = -1):
  1708. This is the number of CUDA devices that StarPU can use. This can also be
  1709. specified with the @code{STARPU_NCUDA} environment variable.
  1710. @item @code{nopencl} (default = -1):
  1711. This is the number of OpenCL devices that StarPU can use. This can also be
  1712. specified with the @code{STARPU_NOPENCL} environment variable.
  1713. @item @code{nspus} (default = -1):
  1714. This is the number of Cell SPUs that StarPU can use. This can also be
  1715. specified with the @code{STARPU_NGORDON} environment variable.
  1716. @item @code{use_explicit_workers_bindid} (default = 0)
  1717. If this flag is set, the @code{workers_bindid} array indicates where the
  1718. different workers are bound, otherwise StarPU automatically selects where to
  1719. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1720. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1721. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1722. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1723. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1724. where to bind the different workers. The i-th entry of the
  1725. @code{workers_bindid} indicates the logical identifier of the processor which
  1726. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1727. either determined by the OS, or provided by the @code{hwloc} library in case it
  1728. is available.
  1729. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1730. ignored.
  1731. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1732. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1733. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1734. CUDA devices in a round-robin fashion.
  1735. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1736. ignored.
  1737. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1738. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1739. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1740. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1741. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1742. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1743. OpenCL devices in a round-robin fashion.
  1744. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1745. @item @code{calibrate} (default = 0):
  1746. If this flag is set, StarPU will calibrate the performance models when
  1747. executing tasks. If this value is equal to -1, the default value is used. The
  1748. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1749. variable when it is set.
  1750. @end table
  1751. @end table
  1752. @node starpu_conf_init
  1753. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  1754. @table @asis
  1755. This function initializes the @code{starpu_conf} structure passed as argument with the default values.
  1756. @item @emph{Return value}:
  1757. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1758. indicates that the argument was NULL.
  1759. @item @emph{Prototype}:
  1760. @code{int starpu_conf_init(struct starpu_conf *conf);}
  1761. @end table
  1762. @node starpu_shutdown
  1763. @subsection @code{starpu_shutdown} -- Terminate StarPU
  1764. @table @asis
  1765. @item @emph{Description}:
  1766. This is StarPU termination method. It must be called at the end of the
  1767. application: statistics and other post-mortem debugging information are not
  1768. guaranteed to be available until this method has been called.
  1769. @item @emph{Prototype}:
  1770. @code{void starpu_shutdown(void);}
  1771. @end table
  1772. @node Workers' Properties
  1773. @section Workers' Properties
  1774. @menu
  1775. * starpu_worker_get_count:: Get the number of processing units
  1776. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  1777. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  1778. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  1779. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  1780. * starpu_worker_get_id:: Get the identifier of the current worker
  1781. * starpu_worker_get_devid:: Get the device identifier of a worker
  1782. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  1783. * starpu_worker_get_name:: Get the name of a worker
  1784. * starpu_worker_get_memory_node:: Get the memory node of a worker
  1785. @end menu
  1786. @node starpu_worker_get_count
  1787. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  1788. @table @asis
  1789. @item @emph{Description}:
  1790. This function returns the number of workers (i.e. processing units executing
  1791. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  1792. @item @emph{Prototype}:
  1793. @code{unsigned starpu_worker_get_count(void);}
  1794. @end table
  1795. @node starpu_cpu_worker_get_count
  1796. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  1797. @table @asis
  1798. @item @emph{Description}:
  1799. This function returns the number of CPUs controlled by StarPU. The returned
  1800. value should be at most @code{STARPU_NMAXCPUS}.
  1801. @item @emph{Prototype}:
  1802. @code{unsigned starpu_cpu_worker_get_count(void);}
  1803. @end table
  1804. @node starpu_cuda_worker_get_count
  1805. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  1806. @table @asis
  1807. @item @emph{Description}:
  1808. This function returns the number of CUDA devices controlled by StarPU. The returned
  1809. value should be at most @code{STARPU_MAXCUDADEVS}.
  1810. @item @emph{Prototype}:
  1811. @code{unsigned starpu_cuda_worker_get_count(void);}
  1812. @end table
  1813. @node starpu_opencl_worker_get_count
  1814. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  1815. @table @asis
  1816. @item @emph{Description}:
  1817. This function returns the number of OpenCL devices controlled by StarPU. The returned
  1818. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  1819. @item @emph{Prototype}:
  1820. @code{unsigned starpu_opencl_worker_get_count(void);}
  1821. @end table
  1822. @node starpu_spu_worker_get_count
  1823. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  1824. @table @asis
  1825. @item @emph{Description}:
  1826. This function returns the number of Cell SPUs controlled by StarPU.
  1827. @item @emph{Prototype}:
  1828. @code{unsigned starpu_opencl_worker_get_count(void);}
  1829. @end table
  1830. @node starpu_worker_get_id
  1831. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  1832. @table @asis
  1833. @item @emph{Description}:
  1834. This function returns the identifier of the worker associated to the calling
  1835. thread. The returned value is either -1 if the current context is not a StarPU
  1836. worker (i.e. when called from the application outside a task or a callback), or
  1837. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  1838. @item @emph{Prototype}:
  1839. @code{int starpu_worker_get_id(void);}
  1840. @end table
  1841. @node starpu_worker_get_devid
  1842. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  1843. @table @asis
  1844. @item @emph{Description}:
  1845. This functions returns the device id of the worker associated to an identifier
  1846. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  1847. CUDA worker, this device identifier is the logical device identifier exposed by
  1848. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  1849. identifier of a CPU worker is the logical identifier of the core on which the
  1850. worker was bound; this identifier is either provided by the OS or by the
  1851. @code{hwloc} library in case it is available.
  1852. @item @emph{Prototype}:
  1853. @code{int starpu_worker_get_devid(int id);}
  1854. @end table
  1855. @node starpu_worker_get_type
  1856. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  1857. @table @asis
  1858. @item @emph{Description}:
  1859. This function returns the type of worker associated to an identifier (as
  1860. returned by the @code{starpu_worker_get_id} function). The returned value
  1861. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  1862. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  1863. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  1864. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  1865. identifier is unspecified.
  1866. @item @emph{Prototype}:
  1867. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  1868. @end table
  1869. @node starpu_worker_get_name
  1870. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  1871. @table @asis
  1872. @item @emph{Description}:
  1873. StarPU associates a unique human readable string to each processing unit. This
  1874. function copies at most the @code{maxlen} first bytes of the unique string
  1875. associated to a worker identified by its identifier @code{id} into the
  1876. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  1877. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  1878. function on an invalid identifier results in an unspecified behaviour.
  1879. @item @emph{Prototype}:
  1880. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  1881. @end table
  1882. @node starpu_worker_get_memory_node
  1883. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  1884. @table @asis
  1885. @item @emph{Description}:
  1886. This function returns the identifier of the memory node associated to the
  1887. worker identified by @code{workerid}.
  1888. @item @emph{Prototype}:
  1889. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  1890. @end table
  1891. @node Data Library
  1892. @section Data Library
  1893. This section describes the data management facilities provided by StarPU.
  1894. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  1895. design their own data interfaces if required.
  1896. @menu
  1897. * starpu_access_mode:: starpu_access_mode
  1898. * unsigned memory_node:: Memory node
  1899. * starpu_data_handle:: StarPU opaque data handle
  1900. * void *interface:: StarPU data interface
  1901. * starpu_data_register:: Register a piece of data to StarPU
  1902. * starpu_data_unregister:: Unregister a piece of data from StarPU
  1903. * starpu_data_invalidate:: Invalidate all data replicates
  1904. * starpu_data_acquire:: Access registered data from the application
  1905. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  1906. * starpu_data_release:: Release registered data from the application
  1907. @end menu
  1908. @node starpu_access_mode
  1909. @subsection @code{starpu_access_mode} -- Data access mode
  1910. This datatype describes a data access mode. The different available modes are:
  1911. @table @asis
  1912. @table @asis
  1913. @item @code{STARPU_R} read-only mode.
  1914. @item @code{STARPU_W} write-only mode.
  1915. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  1916. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  1917. @end table
  1918. @end table
  1919. @node unsigned memory_node
  1920. @subsection @code{unsigned memory_node} -- Memory node
  1921. @table @asis
  1922. @item @emph{Description}:
  1923. Every worker is associated to a memory node which is a logical abstraction of
  1924. the address space from which the processing unit gets its data. For instance,
  1925. the memory node associated to the different CPU workers represents main memory
  1926. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  1927. Every memory node is identified by a logical index which is accessible from the
  1928. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  1929. to StarPU, the specified memory node indicates where the piece of data
  1930. initially resides (we also call this memory node the home node of a piece of
  1931. data).
  1932. @end table
  1933. @node starpu_data_handle
  1934. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  1935. @table @asis
  1936. @item @emph{Description}:
  1937. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  1938. data. Once a piece of data has been registered to StarPU, it is associated to a
  1939. @code{starpu_data_handle} which keeps track of the state of the piece of data
  1940. over the entire machine, so that we can maintain data consistency and locate
  1941. data replicates for instance.
  1942. @end table
  1943. @node void *interface
  1944. @subsection @code{void *interface} -- StarPU data interface
  1945. @table @asis
  1946. @item @emph{Description}:
  1947. Data management is done at a high-level in StarPU: rather than accessing a mere
  1948. list of contiguous buffers, the tasks may manipulate data that are described by
  1949. a high-level construct which we call data interface.
  1950. An example of data interface is the "vector" interface which describes a
  1951. contiguous data array on a spefic memory node. This interface is a simple
  1952. structure containing the number of elements in the array, the size of the
  1953. elements, and the address of the array in the appropriate address space (this
  1954. address may be invalid if there is no valid copy of the array in the memory
  1955. node). More informations on the data interfaces provided by StarPU are
  1956. given in @ref{Data Interfaces}.
  1957. When a piece of data managed by StarPU is used by a task, the task
  1958. implementation is given a pointer to an interface describing a valid copy of
  1959. the data that is accessible from the current processing unit.
  1960. @end table
  1961. @node starpu_data_register
  1962. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  1963. @table @asis
  1964. @item @emph{Description}:
  1965. Register a piece of data into the handle located at the @code{handleptr}
  1966. address. The @code{interface} buffer contains the initial description of the
  1967. data in the home node. The @code{ops} argument is a pointer to a structure
  1968. describing the different methods used to manipulate this type of interface. See
  1969. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  1970. If @code{home_node} is -1, StarPU will automatically
  1971. allocate the memory when it is used for the
  1972. first time in write-only mode. Once such data handle has been automatically
  1973. allocated, it is possible to access it using any access mode.
  1974. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  1975. matrix) which can be registered by the means of helper functions (e.g.
  1976. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  1977. @item @emph{Prototype}:
  1978. @code{void starpu_data_register(starpu_data_handle *handleptr,
  1979. uint32_t home_node,
  1980. void *interface,
  1981. struct starpu_data_interface_ops_t *ops);}
  1982. @end table
  1983. @node starpu_data_unregister
  1984. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  1985. @table @asis
  1986. @item @emph{Description}:
  1987. This function unregisters a data handle from StarPU. If the data was
  1988. automatically allocated by StarPU because the home node was -1, all
  1989. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  1990. is put back into the home node in the buffer that was initially registered.
  1991. Using a data handle that has been unregistered from StarPU results in an
  1992. undefined behaviour.
  1993. @item @emph{Prototype}:
  1994. @code{void starpu_data_unregister(starpu_data_handle handle);}
  1995. @end table
  1996. @node starpu_data_invalidate
  1997. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  1998. @table @asis
  1999. @item @emph{Description}:
  2000. Destroy all replicates of the data handle. After data invalidation, the first
  2001. access to the handle must be performed in write-only mode. Accessing an
  2002. invalidated data in read-mode results in undefined behaviour.
  2003. @item @emph{Prototype}:
  2004. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2005. @end table
  2006. @c TODO create a specific sections about user interaction with the DSM ?
  2007. @node starpu_data_acquire
  2008. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2009. @table @asis
  2010. @item @emph{Description}:
  2011. The application must call this function prior to accessing registered data from
  2012. main memory outside tasks. StarPU ensures that the application will get an
  2013. up-to-date copy of the data in main memory located where the data was
  2014. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2015. be consistent with the access mode specified in the @code{mode} argument.
  2016. @code{starpu_data_release} must be called once the application does not need to
  2017. access the piece of data anymore.
  2018. Note that implicit data dependencies are also enforced by
  2019. @code{starpu_data_acquire} in case they are enabled.
  2020. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2021. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2022. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2023. @item @emph{Prototype}:
  2024. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2025. @end table
  2026. @node starpu_data_acquire_cb
  2027. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2028. @table @asis
  2029. @item @emph{Description}:
  2030. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2031. @code{starpu_data_release}. When the data specified in the first argument is
  2032. available in the appropriate access mode, the callback function is executed.
  2033. The application may access the requested data during the execution of this
  2034. callback. The callback function must call @code{starpu_data_release} once the
  2035. application does not need to access the piece of data anymore.
  2036. Note that implicit data dependencies are also enforced by
  2037. @code{starpu_data_acquire_cb} in case they are enabled.
  2038. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2039. be called from task callbacks. Upon successful completion, this function
  2040. returns 0.
  2041. @item @emph{Prototype}:
  2042. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2043. @end table
  2044. @node starpu_data_release
  2045. @subsection @code{starpu_data_release} -- Release registered data from the application
  2046. @table @asis
  2047. @item @emph{Description}:
  2048. This function releases the piece of data acquired by the application either by
  2049. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2050. @item @emph{Prototype}:
  2051. @code{void starpu_data_release(starpu_data_handle handle);}
  2052. @end table
  2053. @node Data Interfaces
  2054. @section Data Interfaces
  2055. @menu
  2056. * Variable Interface::
  2057. * Vector Interface::
  2058. * Matrix Interface::
  2059. * 3D Matrix Interface::
  2060. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2061. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2062. @end menu
  2063. @node Variable Interface
  2064. @subsection Variable Interface
  2065. @table @asis
  2066. @item @emph{Description}:
  2067. This variant of @code{starpu_data_register} uses the variable interface,
  2068. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2069. and @code{elemsize} is the size of the variable.
  2070. @item @emph{Prototype}:
  2071. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2072. uint32_t home_node,
  2073. uintptr_t ptr, size_t elemsize);}
  2074. @item @emph{Example}:
  2075. @cartouche
  2076. @smallexample
  2077. float var;
  2078. starpu_data_handle var_handle;
  2079. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2080. @end smallexample
  2081. @end cartouche
  2082. @end table
  2083. @node Vector Interface
  2084. @subsection Vector Interface
  2085. @table @asis
  2086. @item @emph{Description}:
  2087. This variant of @code{starpu_data_register} uses the vector interface,
  2088. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2089. element in the home node. @code{nx} is the number of elements in the vector.
  2090. @code{elemsize} is the size of each element.
  2091. @item @emph{Prototype}:
  2092. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2093. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2094. @item @emph{Example}:
  2095. @cartouche
  2096. @smallexample
  2097. float vector[NX];
  2098. starpu_data_handle vector_handle;
  2099. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2100. sizeof(vector[0]));
  2101. @end smallexample
  2102. @end cartouche
  2103. @end table
  2104. @node Matrix Interface
  2105. @subsection Matrix Interface
  2106. @table @asis
  2107. @item @emph{Description}:
  2108. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2109. matrices of elements. @code{ptr} is the address of the first element in the home
  2110. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2111. of elements in a row (this can be different from @code{ld} if there are extra
  2112. elements for alignment for instance). @code{ny} is the number of rows.
  2113. @code{elemsize} is the size of each element.
  2114. @item @emph{Prototype}:
  2115. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2116. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2117. uint32_t ny, size_t elemsize);}
  2118. @item @emph{Example}:
  2119. @cartouche
  2120. @smallexample
  2121. float *matrix;
  2122. starpu_data_handle matrix_handle;
  2123. matrix = (float*)malloc(width * height * sizeof(float));
  2124. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2125. width, width, height, sizeof(float));
  2126. @end smallexample
  2127. @end cartouche
  2128. @end table
  2129. @node 3D Matrix Interface
  2130. @subsection 3D Matrix Interface
  2131. @table @asis
  2132. @item @emph{Description}:
  2133. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2134. @code{ptr} is the address of the array of first element in the home node.
  2135. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2136. of rows between z planes. @code{nx} is the number of elements in a row (this
  2137. can be different from @code{ldy} if there are extra elements for alignment
  2138. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2139. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2140. each element.
  2141. @item @emph{Prototype}:
  2142. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2143. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2144. uint32_t ny, uint32_t nz, size_t elemsize);}
  2145. @item @emph{Example}:
  2146. @cartouche
  2147. @smallexample
  2148. float *block;
  2149. starpu_data_handle block_handle;
  2150. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2151. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2152. nx, nx*ny, nx, ny, nz, sizeof(float));
  2153. @end smallexample
  2154. @end cartouche
  2155. @end table
  2156. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2157. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2158. @table @asis
  2159. @item @emph{Description}:
  2160. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2161. TODO
  2162. @item @emph{Prototype}:
  2163. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2164. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2165. @item @emph{Example}:
  2166. @cartouche
  2167. @smallexample
  2168. @end smallexample
  2169. @end cartouche
  2170. @end table
  2171. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2172. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2173. @table @asis
  2174. @item @emph{Description}:
  2175. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2176. TODO
  2177. @item @emph{Prototype}:
  2178. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2179. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2180. @item @emph{Example}:
  2181. @cartouche
  2182. @smallexample
  2183. @end smallexample
  2184. @end cartouche
  2185. @end table
  2186. @node Data Partition
  2187. @section Data Partition
  2188. @menu
  2189. * struct starpu_data_filter:: StarPU filter structure
  2190. * starpu_data_partition:: Partition Data
  2191. * starpu_data_unpartition:: Unpartition Data
  2192. * starpu_data_get_nb_children::
  2193. * starpu_data_get_sub_data::
  2194. * Predefined filter functions::
  2195. @end menu
  2196. @node struct starpu_data_filter
  2197. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2198. @table @asis
  2199. @item @emph{Description}:
  2200. The filter structure describes a data partitioning operation, to be given to the
  2201. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2202. @item @emph{Fields}:
  2203. @table @asis
  2204. @item @code{filter_func}:
  2205. This function fills the @code{child_interface} structure with interface
  2206. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2207. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2208. @item @code{get_nchildren}:
  2209. This returns the number of children.
  2210. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2211. @item @code{get_child_ops}:
  2212. In case the resulting children use a different data interface, this function
  2213. returns which interface is used by child number @code{id}.
  2214. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2215. @item @code{nchildren}:
  2216. This is the number of parts to partition the data into.
  2217. @item @code{filter_arg}:
  2218. Some filters take an addition parameter, but this is usually unused.
  2219. @item @code{filter_arg_ptr}:
  2220. Some filters take an additional array parameter like the sizes of the parts, but
  2221. this is usually unused.
  2222. @end table
  2223. @end table
  2224. @node starpu_data_partition
  2225. @subsection starpu_data_partition -- Partition Data
  2226. @table @asis
  2227. @item @emph{Description}:
  2228. This requests partitioning one StarPU data @code{initial_handle} into several
  2229. subdata according to the filter @code{f}
  2230. @item @emph{Prototype}:
  2231. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2232. @item @emph{Example}:
  2233. @cartouche
  2234. @smallexample
  2235. struct starpu_data_filter f = {
  2236. .filter_func = starpu_vertical_block_filter_func,
  2237. .nchildren = nslicesx,
  2238. .get_nchildren = NULL,
  2239. .get_child_ops = NULL
  2240. };
  2241. starpu_data_partition(A_handle, &f);
  2242. @end smallexample
  2243. @end cartouche
  2244. @end table
  2245. @node starpu_data_unpartition
  2246. @subsection starpu_data_unpartition -- Unpartition data
  2247. @table @asis
  2248. @item @emph{Description}:
  2249. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2250. collected back into one big piece in the @code{gathering_node} (usually 0).
  2251. @item @emph{Prototype}:
  2252. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2253. @item @emph{Example}:
  2254. @cartouche
  2255. @smallexample
  2256. starpu_data_unpartition(A_handle, 0);
  2257. @end smallexample
  2258. @end cartouche
  2259. @end table
  2260. @node starpu_data_get_nb_children
  2261. @subsection starpu_data_get_nb_children
  2262. @table @asis
  2263. @item @emph{Description}:
  2264. This function returns the number of children.
  2265. @item @emph{Return value}:
  2266. The number of children.
  2267. @item @emph{Prototype}:
  2268. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2269. @end table
  2270. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2271. @node starpu_data_get_sub_data
  2272. @subsection starpu_data_get_sub_data
  2273. @table @asis
  2274. @item @emph{Description}:
  2275. After partitioning a StarPU data by applying a filter,
  2276. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2277. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2278. is the number of filters to traverse (in case several filters have been applied,
  2279. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2280. parameters are the indexes.
  2281. @item @emph{Return value}:
  2282. A handle to the subdata.
  2283. @item @emph{Prototype}:
  2284. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2285. @item @emph{Example}:
  2286. @cartouche
  2287. @smallexample
  2288. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2289. @end smallexample
  2290. @end cartouche
  2291. @end table
  2292. @node Predefined filter functions
  2293. @subsection Predefined filter functions
  2294. @menu
  2295. * Partitioning BCSR Data::
  2296. * Partitioning BLAS interface::
  2297. * Partitioning Vector Data::
  2298. * Partitioning Block Data::
  2299. @end menu
  2300. This section gives a partial list of the predefined partitioning functions.
  2301. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2302. list can be found in @code{starpu_data_filters.h} .
  2303. @node Partitioning BCSR Data
  2304. @subsubsection Partitioning BCSR Data
  2305. @table @asis
  2306. @item @emph{Description}:
  2307. TODO
  2308. @item @emph{Prototype}:
  2309. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2310. @end table
  2311. @table @asis
  2312. @item @emph{Description}:
  2313. TODO
  2314. @item @emph{Prototype}:
  2315. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2316. @end table
  2317. @node Partitioning BLAS interface
  2318. @subsubsection Partitioning BLAS interface
  2319. @table @asis
  2320. @item @emph{Description}:
  2321. This partitions a dense Matrix into horizontal blocks.
  2322. @item @emph{Prototype}:
  2323. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2324. @end table
  2325. @table @asis
  2326. @item @emph{Description}:
  2327. This partitions a dense Matrix into vertical blocks.
  2328. @item @emph{Prototype}:
  2329. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2330. @end table
  2331. @node Partitioning Vector Data
  2332. @subsubsection Partitioning Vector Data
  2333. @table @asis
  2334. @item @emph{Description}:
  2335. This partitions a vector into blocks of the same size.
  2336. @item @emph{Prototype}:
  2337. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2338. @end table
  2339. @table @asis
  2340. @item @emph{Description}:
  2341. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2342. @item @emph{Prototype}:
  2343. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2344. @end table
  2345. @table @asis
  2346. @item @emph{Description}:
  2347. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2348. @item @emph{Prototype}:
  2349. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2350. @end table
  2351. @node Partitioning Block Data
  2352. @subsubsection Partitioning Block Data
  2353. @table @asis
  2354. @item @emph{Description}:
  2355. This partitions a 3D matrix along the X axis.
  2356. @item @emph{Prototype}:
  2357. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2358. @end table
  2359. @node Codelets and Tasks
  2360. @section Codelets and Tasks
  2361. @menu
  2362. * struct starpu_codelet:: StarPU codelet structure
  2363. * struct starpu_task:: StarPU task structure
  2364. * starpu_task_init:: Initialize a Task
  2365. * starpu_task_create:: Allocate and Initialize a Task
  2366. * starpu_task_deinit:: Release all the resources used by a Task
  2367. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2368. * starpu_task_wait:: Wait for the termination of a Task
  2369. * starpu_task_submit:: Submit a Task
  2370. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2371. * starpu_get_current_task:: Return the task currently executed by the worker
  2372. * starpu_display_codelet_stats:: Display statistics
  2373. @end menu
  2374. @node struct starpu_codelet
  2375. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2376. @table @asis
  2377. @item @emph{Description}:
  2378. The codelet structure describes a kernel that is possibly implemented on
  2379. various targets.
  2380. @item @emph{Fields}:
  2381. @table @asis
  2382. @item @code{where}:
  2383. Indicates which types of processing units are able to execute the codelet.
  2384. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2385. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2386. indicates that it is only available on Cell SPUs.
  2387. @item @code{cpu_func} (optional):
  2388. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2389. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2390. argument being the array of data managed by the data management library, and
  2391. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2392. field of the @code{starpu_task} structure.
  2393. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2394. the @code{where} field, it must be non-null otherwise.
  2395. @item @code{cuda_func} (optional):
  2396. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2397. must be a host-function written in the CUDA runtime API}. Its prototype must
  2398. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2399. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2400. field, it must be non-null otherwise.
  2401. @item @code{opencl_func} (optional):
  2402. Is a function pointer to the OpenCL implementation of the codelet. Its
  2403. prototype must be:
  2404. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2405. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2406. @code{where} field, it must be non-null otherwise.
  2407. @item @code{gordon_func} (optional):
  2408. This is the index of the Cell SPU implementation within the Gordon library.
  2409. See Gordon documentation for more details on how to register a kernel and
  2410. retrieve its index.
  2411. @item @code{nbuffers}:
  2412. Specifies the number of arguments taken by the codelet. These arguments are
  2413. managed by the DSM and are accessed from the @code{void *buffers[]}
  2414. array. The constant argument passed with the @code{cl_arg} field of the
  2415. @code{starpu_task} structure is not counted in this number. This value should
  2416. not be above @code{STARPU_NMAXBUFS}.
  2417. @item @code{model} (optional):
  2418. This is a pointer to the performance model associated to this codelet. This
  2419. optional field is ignored when set to @code{NULL}. TODO
  2420. @end table
  2421. @end table
  2422. @node struct starpu_task
  2423. @subsection @code{struct starpu_task} -- StarPU task structure
  2424. @table @asis
  2425. @item @emph{Description}:
  2426. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2427. processing units managed by StarPU. It instantiates a codelet. It can either be
  2428. allocated dynamically with the @code{starpu_task_create} method, or declared
  2429. statically. In the latter case, the programmer has to zero the
  2430. @code{starpu_task} structure and to fill the different fields properly. The
  2431. indicated default values correspond to the configuration of a task allocated
  2432. with @code{starpu_task_create}.
  2433. @item @emph{Fields}:
  2434. @table @asis
  2435. @item @code{cl}:
  2436. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2437. describes where the kernel should be executed, and supplies the appropriate
  2438. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2439. such empty tasks can be useful for synchronization purposes.
  2440. @item @code{buffers}:
  2441. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2442. different pieces of data accessed by the task, and how they should be accessed.
  2443. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2444. @code{handle} field specifies the handle of the piece of data, and the
  2445. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2446. of entries in this array must be specified in the @code{nbuffers} field of the
  2447. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2448. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2449. option when configuring StarPU.
  2450. @item @code{cl_arg} (optional) (default = NULL):
  2451. This pointer is passed to the codelet through the second argument
  2452. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2453. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2454. argument.
  2455. @item @code{cl_arg_size} (optional, Cell specific):
  2456. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2457. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2458. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2459. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2460. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2461. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2462. codelets.
  2463. @item @code{callback_func} (optional) (default = @code{NULL}):
  2464. This is a function pointer of prototype @code{void (*f)(void *)} which
  2465. specifies a possible callback. If this pointer is non-null, the callback
  2466. function is executed @emph{on the host} after the execution of the task. The
  2467. callback is passed the value contained in the @code{callback_arg} field. No
  2468. callback is executed if the field is set to @code{NULL}.
  2469. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2470. This is the pointer passed to the callback function. This field is ignored if
  2471. the @code{callback_func} is set to @code{NULL}.
  2472. @item @code{use_tag} (optional) (default = 0):
  2473. If set, this flag indicates that the task should be associated with the tag
  2474. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2475. with the task and to express task dependencies easily.
  2476. @item @code{tag_id}:
  2477. This fields contains the tag associated to the task if the @code{use_tag} field
  2478. was set, it is ignored otherwise.
  2479. @item @code{synchronous}:
  2480. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2481. returns only when the task has been executed (or if no worker is able to
  2482. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2483. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2484. This field indicates a level of priority for the task. This is an integer value
  2485. that must be set between the return values of the
  2486. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2487. and that of the @code{starpu_sched_get_max_priority} for the most important
  2488. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2489. are provided for convenience and respectively returns value of
  2490. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2491. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2492. order to allow static task initialization. Scheduling strategies that take
  2493. priorities into account can use this parameter to take better scheduling
  2494. decisions, but the scheduling policy may also ignore it.
  2495. @item @code{execute_on_a_specific_worker} (default = 0):
  2496. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2497. task to the worker specified by the @code{workerid} field.
  2498. @item @code{workerid} (optional):
  2499. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2500. which is the identifier of the worker that should process this task (as
  2501. returned by @code{starpu_worker_get_id}). This field is ignored if
  2502. @code{execute_on_a_specific_worker} field is set to 0.
  2503. @item @code{detach} (optional) (default = 1):
  2504. If this flag is set, it is not possible to synchronize with the task
  2505. by the means of @code{starpu_task_wait} later on. Internal data structures
  2506. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2507. flag is not set.
  2508. @item @code{destroy} (optional) (default = 1):
  2509. If this flag is set, the task structure will automatically be freed, either
  2510. after the execution of the callback if the task is detached, or during
  2511. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2512. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2513. called explicitly. Setting this flag for a statically allocated task structure
  2514. will result in undefined behaviour.
  2515. @item @code{predicted} (output field):
  2516. Predicted duration of the task. This field is only set if the scheduling
  2517. strategy used performance models.
  2518. @end table
  2519. @end table
  2520. @node starpu_task_init
  2521. @subsection @code{starpu_task_init} -- Initialize a Task
  2522. @table @asis
  2523. @item @emph{Description}:
  2524. Initialize a task structure with default values. This function is implicitly
  2525. called by @code{starpu_task_create}. By default, tasks initialized with
  2526. @code{starpu_task_init} must be deinitialized explicitly with
  2527. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2528. constant @code{STARPU_TASK_INITIALIZER}.
  2529. @item @emph{Prototype}:
  2530. @code{void starpu_task_init(struct starpu_task *task);}
  2531. @end table
  2532. @node starpu_task_create
  2533. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2534. @table @asis
  2535. @item @emph{Description}:
  2536. Allocate a task structure and initialize it with default values. Tasks
  2537. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2538. task is terminated. If the destroy flag is explicitly unset, the resources used
  2539. by the task are freed by calling
  2540. @code{starpu_task_destroy}.
  2541. @item @emph{Prototype}:
  2542. @code{struct starpu_task *starpu_task_create(void);}
  2543. @end table
  2544. @node starpu_task_deinit
  2545. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2546. @table @asis
  2547. @item @emph{Description}:
  2548. Release all the structures automatically allocated to execute the task. This is
  2549. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2550. freed. This should be used for statically allocated tasks for instance.
  2551. @item @emph{Prototype}:
  2552. @code{void starpu_task_deinit(struct starpu_task *task);}
  2553. @end table
  2554. @node starpu_task_destroy
  2555. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2556. @table @asis
  2557. @item @emph{Description}:
  2558. Free the resource allocated during @code{starpu_task_create}. This function can be
  2559. called automatically after the execution of a task by setting the
  2560. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2561. Calling this function on a statically allocated task results in an undefined
  2562. behaviour.
  2563. @item @emph{Prototype}:
  2564. @code{void starpu_task_destroy(struct starpu_task *task);}
  2565. @end table
  2566. @node starpu_task_wait
  2567. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2568. @table @asis
  2569. @item @emph{Description}:
  2570. This function blocks until the task has been executed. It is not possible to
  2571. synchronize with a task more than once. It is not possible to wait for
  2572. synchronous or detached tasks.
  2573. @item @emph{Return value}:
  2574. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2575. indicates that the specified task was either synchronous or detached.
  2576. @item @emph{Prototype}:
  2577. @code{int starpu_task_wait(struct starpu_task *task);}
  2578. @end table
  2579. @node starpu_task_submit
  2580. @subsection @code{starpu_task_submit} -- Submit a Task
  2581. @table @asis
  2582. @item @emph{Description}:
  2583. This function submits a task to StarPU. Calling this function does
  2584. not mean that the task will be executed immediately as there can be data or task
  2585. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2586. scheduling this task with respect to such dependencies.
  2587. This function returns immediately if the @code{synchronous} field of the
  2588. @code{starpu_task} structure was set to 0, and block until the termination of
  2589. the task otherwise. It is also possible to synchronize the application with
  2590. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2591. function for instance.
  2592. @item @emph{Return value}:
  2593. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2594. means that there is no worker able to process this task (e.g. there is no GPU
  2595. available and this task is only implemented for CUDA devices).
  2596. @item @emph{Prototype}:
  2597. @code{int starpu_task_submit(struct starpu_task *task);}
  2598. @end table
  2599. @node starpu_task_wait_for_all
  2600. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2601. @table @asis
  2602. @item @emph{Description}:
  2603. This function blocks until all the tasks that were submitted are terminated.
  2604. @item @emph{Prototype}:
  2605. @code{void starpu_task_wait_for_all(void);}
  2606. @end table
  2607. @node starpu_get_current_task
  2608. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2609. @table @asis
  2610. @item @emph{Description}:
  2611. This function returns the task currently executed by the worker, or
  2612. NULL if it is called either from a thread that is not a task or simply
  2613. because there is no task being executed at the moment.
  2614. @item @emph{Prototype}:
  2615. @code{struct starpu_task *starpu_get_current_task(void);}
  2616. @end table
  2617. @node starpu_display_codelet_stats
  2618. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2619. @table @asis
  2620. @item @emph{Description}:
  2621. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2622. @item @emph{Prototype}:
  2623. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2624. @end table
  2625. @c Callbacks : what can we put in callbacks ?
  2626. @node Explicit Dependencies
  2627. @section Explicit Dependencies
  2628. @menu
  2629. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2630. * starpu_tag_t:: Task logical identifier
  2631. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2632. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2633. * starpu_tag_wait:: Block until a Tag is terminated
  2634. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2635. * starpu_tag_remove:: Destroy a Tag
  2636. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2637. @end menu
  2638. @node starpu_task_declare_deps_array
  2639. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2640. @table @asis
  2641. @item @emph{Description}:
  2642. Declare task dependencies between a @code{task} and an array of tasks of length
  2643. @code{ndeps}. This function must be called prior to the submission of the task,
  2644. but it may called after the submission or the execution of the tasks in the
  2645. array provided the tasks are still valid (ie. they were not automatically
  2646. destroyed). Calling this function on a task that was already submitted or with
  2647. an entry of @code{task_array} that is not a valid task anymore results in an
  2648. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2649. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2650. same task, in this case, the dependencies are added. It is possible to have
  2651. redundancy in the task dependencies.
  2652. @item @emph{Prototype}:
  2653. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2654. @end table
  2655. @node starpu_tag_t
  2656. @subsection @code{starpu_tag_t} -- Task logical identifier
  2657. @table @asis
  2658. @item @emph{Description}:
  2659. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2660. dependencies between tasks by the means of those tags. To do so, fill the
  2661. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2662. be arbitrary) and set the @code{use_tag} field to 1.
  2663. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2664. not be started until the tasks which holds the declared dependency tags are
  2665. completed.
  2666. @end table
  2667. @node starpu_tag_declare_deps
  2668. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2669. @table @asis
  2670. @item @emph{Description}:
  2671. Specify the dependencies of the task identified by tag @code{id}. The first
  2672. argument specifies the tag which is configured, the second argument gives the
  2673. number of tag(s) on which @code{id} depends. The following arguments are the
  2674. tags which have to be terminated to unlock the task.
  2675. This function must be called before the associated task is submitted to StarPU
  2676. with @code{starpu_task_submit}.
  2677. @item @emph{Remark}
  2678. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2679. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2680. typically need to be explicitly casted. Using the
  2681. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2682. @item @emph{Prototype}:
  2683. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2684. @item @emph{Example}:
  2685. @cartouche
  2686. @example
  2687. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2688. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2689. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2690. @end example
  2691. @end cartouche
  2692. @end table
  2693. @node starpu_tag_declare_deps_array
  2694. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2695. @table @asis
  2696. @item @emph{Description}:
  2697. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2698. does not take a variable number of arguments but an array of tags of size
  2699. @code{ndeps}.
  2700. @item @emph{Prototype}:
  2701. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2702. @item @emph{Example}:
  2703. @cartouche
  2704. @example
  2705. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2706. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2707. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2708. @end example
  2709. @end cartouche
  2710. @end table
  2711. @node starpu_tag_wait
  2712. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2713. @table @asis
  2714. @item @emph{Description}:
  2715. This function blocks until the task associated to tag @code{id} has been
  2716. executed. This is a blocking call which must therefore not be called within
  2717. tasks or callbacks, but only from the application directly. It is possible to
  2718. synchronize with the same tag multiple times, as long as the
  2719. @code{starpu_tag_remove} function is not called. Note that it is still
  2720. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2721. data structure was freed (e.g. if the @code{destroy} flag of the
  2722. @code{starpu_task} was enabled).
  2723. @item @emph{Prototype}:
  2724. @code{void starpu_tag_wait(starpu_tag_t id);}
  2725. @end table
  2726. @node starpu_tag_wait_array
  2727. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  2728. @table @asis
  2729. @item @emph{Description}:
  2730. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2731. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  2732. terminated.
  2733. @item @emph{Prototype}:
  2734. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  2735. @end table
  2736. @node starpu_tag_remove
  2737. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  2738. @table @asis
  2739. @item @emph{Description}:
  2740. This function releases the resources associated to tag @code{id}. It can be
  2741. called once the corresponding task has been executed and when there is
  2742. no other tag that depend on this tag anymore.
  2743. @item @emph{Prototype}:
  2744. @code{void starpu_tag_remove(starpu_tag_t id);}
  2745. @end table
  2746. @node starpu_tag_notify_from_apps
  2747. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  2748. @table @asis
  2749. @item @emph{Description}:
  2750. This function explicitly unlocks tag @code{id}. It may be useful in the
  2751. case of applications which execute part of their computation outside StarPU
  2752. tasks (e.g. third-party libraries). It is also provided as a
  2753. convenient tool for the programmer, for instance to entirely construct the task
  2754. DAG before actually giving StarPU the opportunity to execute the tasks.
  2755. @item @emph{Prototype}:
  2756. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  2757. @end table
  2758. @node Implicit Data Dependencies
  2759. @section Implicit Data Dependencies
  2760. @menu
  2761. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  2762. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  2763. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  2764. @end menu
  2765. In this section, we describe how StarPU makes it possible to insert implicit
  2766. task dependencies in order to enforce sequential data consistency. When this
  2767. data consistency is enabled on a specific data handle, any data access will
  2768. appear as sequentially consistent from the application. For instance, if the
  2769. application submits two tasks that access the same piece of data in read-only
  2770. mode, and then a third task that access it in write mode, dependencies will be
  2771. added between the two first tasks and the third one. Implicit data dependencies
  2772. are also inserted in the case of data accesses from the application.
  2773. @node starpu_data_set_default_sequential_consistency_flag
  2774. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  2775. @table @asis
  2776. @item @emph{Description}:
  2777. Set the default sequential consistency flag. If a non-zero value is passed, a
  2778. sequential data consistency will be enforced for all handles registered after
  2779. this function call, otherwise it is disabled. By default, StarPU enables
  2780. sequential data consistency. It is also possible to select the data consistency
  2781. mode of a specific data handle with the
  2782. @code{starpu_data_set_sequential_consistency_flag} function.
  2783. @item @emph{Prototype}:
  2784. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  2785. @end table
  2786. @node starpu_data_get_default_sequential_consistency_flag
  2787. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  2788. @table @asis
  2789. @item @emph{Description}:
  2790. This function returns the current default sequential consistency flag.
  2791. @item @emph{Prototype}:
  2792. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  2793. @end table
  2794. @node starpu_data_set_sequential_consistency_flag
  2795. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  2796. @table @asis
  2797. @item @emph{Description}:
  2798. Select the data consistency mode associated to a data handle. The consistency
  2799. mode set using this function has the priority over the default mode which can
  2800. be set with @code{starpu_data_set_sequential_consistency_flag}.
  2801. @item @emph{Prototype}:
  2802. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  2803. @end table
  2804. @node Performance Model API
  2805. @section Performance Model API
  2806. @menu
  2807. * starpu_load_history_debug::
  2808. * starpu_perfmodel_debugfilepath::
  2809. * starpu_perfmodel_get_arch_name::
  2810. * starpu_force_bus_sampling::
  2811. @end menu
  2812. @node starpu_load_history_debug
  2813. @subsection @code{starpu_load_history_debug}
  2814. @table @asis
  2815. @item @emph{Description}:
  2816. TODO
  2817. @item @emph{Prototype}:
  2818. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  2819. @end table
  2820. @node starpu_perfmodel_debugfilepath
  2821. @subsection @code{starpu_perfmodel_debugfilepath}
  2822. @table @asis
  2823. @item @emph{Description}:
  2824. TODO
  2825. @item @emph{Prototype}:
  2826. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  2827. @end table
  2828. @node starpu_perfmodel_get_arch_name
  2829. @subsection @code{starpu_perfmodel_get_arch_name}
  2830. @table @asis
  2831. @item @emph{Description}:
  2832. TODO
  2833. @item @emph{Prototype}:
  2834. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  2835. @end table
  2836. @node starpu_force_bus_sampling
  2837. @subsection @code{starpu_force_bus_sampling}
  2838. @table @asis
  2839. @item @emph{Description}:
  2840. This forces sampling the bus performance model again.
  2841. @item @emph{Prototype}:
  2842. @code{void starpu_force_bus_sampling(void);}
  2843. @end table
  2844. @node Profiling API
  2845. @section Profiling API
  2846. @menu
  2847. * starpu_profiling_status_set:: starpu_profiling_status_set
  2848. * starpu_profiling_status_get:: starpu_profiling_status_get
  2849. * struct starpu_task_profiling_info:: task profiling information
  2850. * struct starpu_worker_profiling_info:: worker profiling information
  2851. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  2852. * struct starpu_bus_profiling_info:: bus profiling information
  2853. * starpu_bus_get_count::
  2854. * starpu_bus_get_id::
  2855. * starpu_bus_get_src::
  2856. * starpu_bus_get_dst::
  2857. * starpu_timing_timespec_delay_us::
  2858. * starpu_timing_timespec_to_us::
  2859. * starpu_bus_profiling_helper_display_summary::
  2860. @end menu
  2861. @node starpu_profiling_status_set
  2862. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  2863. @table @asis
  2864. @item @emph{Description}:
  2865. Thie function sets the profiling status. Profiling is activated by passing
  2866. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  2867. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  2868. resets all profiling measurements. When profiling is enabled, the
  2869. @code{profiling_info} field of the @code{struct starpu_task} structure points
  2870. to a valid @code{struct starpu_task_profiling_info} structure containing
  2871. information about the execution of the task.
  2872. @item @emph{Return value}:
  2873. Negative return values indicate an error, otherwise the previous status is
  2874. returned.
  2875. @item @emph{Prototype}:
  2876. @code{int starpu_profiling_status_set(int status);}
  2877. @end table
  2878. @node starpu_profiling_status_get
  2879. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  2880. @table @asis
  2881. @item @emph{Description}:
  2882. Return the current profiling status or a negative value in case there was an error.
  2883. @item @emph{Prototype}:
  2884. @code{int starpu_profiling_status_get(void);}
  2885. @end table
  2886. @node struct starpu_task_profiling_info
  2887. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  2888. @table @asis
  2889. @item @emph{Description}:
  2890. This structure contains information about the execution of a task. It is
  2891. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  2892. structure if profiling was enabled.
  2893. @item @emph{Fields}:
  2894. @table @asis
  2895. @item @code{submit_time}:
  2896. Date of task submission (relative to the initialization of StarPU).
  2897. @item @code{start_time}:
  2898. Date of task execution beginning (relative to the initialization of StarPU).
  2899. @item @code{end_time}:
  2900. Date of task execution termination (relative to the initialization of StarPU).
  2901. @item @code{workerid}:
  2902. Identifier of the worker which has executed the task.
  2903. @end table
  2904. @end table
  2905. @node struct starpu_worker_profiling_info
  2906. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  2907. @table @asis
  2908. @item @emph{Description}:
  2909. This structure contains the profiling information associated to a worker.
  2910. @item @emph{Fields}:
  2911. @table @asis
  2912. @item @code{start_time}:
  2913. Starting date for the reported profiling measurements.
  2914. @item @code{total_time}:
  2915. Duration of the profiling measurement interval.
  2916. @item @code{executing_time}:
  2917. Time spent by the worker to execute tasks during the profiling measurement interval.
  2918. @item @code{sleeping_time}:
  2919. Time spent idling by the worker during the profiling measurement interval.
  2920. @item @code{executed_tasks}:
  2921. Number of tasks executed by the worker during the profiling measurement interval.
  2922. @end table
  2923. @end table
  2924. @node starpu_worker_get_profiling_info
  2925. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  2926. @table @asis
  2927. @item @emph{Description}:
  2928. Get the profiling info associated to the worker identified by @code{workerid},
  2929. and reset the profiling measurements. If the @code{worker_info} argument is
  2930. NULL, only reset the counters associated to worker @code{workerid}.
  2931. @item @emph{Return value}:
  2932. Upon successful completion, this function returns 0. Otherwise, a negative
  2933. value is returned.
  2934. @item @emph{Prototype}:
  2935. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  2936. @end table
  2937. @node struct starpu_bus_profiling_info
  2938. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  2939. @table @asis
  2940. @item @emph{Description}:
  2941. TODO
  2942. @item @emph{Fields}:
  2943. @table @asis
  2944. @item @code{start_time}:
  2945. TODO
  2946. @item @code{total_time}:
  2947. TODO
  2948. @item @code{transferred_bytes}:
  2949. TODO
  2950. @item @code{transfer_count}:
  2951. TODO
  2952. @end table
  2953. @end table
  2954. @node starpu_bus_get_count
  2955. @subsection @code{starpu_bus_get_count}
  2956. @table @asis
  2957. @item @emph{Description}:
  2958. TODO
  2959. @item @emph{Prototype}:
  2960. @code{int starpu_bus_get_count(void);}
  2961. @end table
  2962. @node starpu_bus_get_id
  2963. @subsection @code{starpu_bus_get_id}
  2964. @table @asis
  2965. @item @emph{Description}:
  2966. TODO
  2967. @item @emph{Prototype}:
  2968. @code{int starpu_bus_get_id(int src, int dst);}
  2969. @end table
  2970. @node starpu_bus_get_src
  2971. @subsection @code{starpu_bus_get_src}
  2972. @table @asis
  2973. @item @emph{Description}:
  2974. TODO
  2975. @item @emph{Prototype}:
  2976. @code{int starpu_bus_get_src(int busid);}
  2977. @end table
  2978. @node starpu_bus_get_dst
  2979. @subsection @code{starpu_bus_get_dst}
  2980. @table @asis
  2981. @item @emph{Description}:
  2982. TODO
  2983. @item @emph{Prototype}:
  2984. @code{int starpu_bus_get_dst(int busid);}
  2985. @end table
  2986. @node starpu_timing_timespec_delay_us
  2987. @subsection @code{starpu_timing_timespec_delay_us}
  2988. @table @asis
  2989. @item @emph{Description}:
  2990. TODO
  2991. @item @emph{Prototype}:
  2992. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  2993. @end table
  2994. @node starpu_timing_timespec_to_us
  2995. @subsection @code{starpu_timing_timespec_to_us}
  2996. @table @asis
  2997. @item @emph{Description}:
  2998. TODO
  2999. @item @emph{Prototype}:
  3000. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3001. @end table
  3002. @node starpu_bus_profiling_helper_display_summary
  3003. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3004. @table @asis
  3005. @item @emph{Description}:
  3006. TODO
  3007. @item @emph{Prototype}:
  3008. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3009. @end table
  3010. @node CUDA extensions
  3011. @section CUDA extensions
  3012. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  3013. @menu
  3014. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3015. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3016. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3017. @end menu
  3018. @node starpu_cuda_get_local_stream
  3019. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3020. @table @asis
  3021. @item @emph{Description}:
  3022. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3023. function is only provided for convenience so that programmers can easily use
  3024. asynchronous operations within codelets without having to create a stream by
  3025. hand. Note that the application is not forced to use the stream provided by
  3026. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3027. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3028. the likelihood of having all transfers overlapped.
  3029. @item @emph{Prototype}:
  3030. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3031. @end table
  3032. @node starpu_helper_cublas_init
  3033. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3034. @table @asis
  3035. @item @emph{Description}:
  3036. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3037. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3038. controlled by StarPU. This call blocks until CUBLAS has been properly
  3039. initialized on every device.
  3040. @item @emph{Prototype}:
  3041. @code{void starpu_helper_cublas_init(void);}
  3042. @end table
  3043. @node starpu_helper_cublas_shutdown
  3044. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3045. @table @asis
  3046. @item @emph{Description}:
  3047. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3048. @item @emph{Prototype}:
  3049. @code{void starpu_helper_cublas_shutdown(void);}
  3050. @end table
  3051. @node OpenCL extensions
  3052. @section OpenCL extensions
  3053. @menu
  3054. * Enabling OpenCL:: Enabling OpenCL
  3055. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3056. * Loading OpenCL kernels:: Loading OpenCL kernels
  3057. @end menu
  3058. @node Enabling OpenCL
  3059. @subsection Enabling OpenCL
  3060. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3061. enabled by default. To enable OpenCL, you need either to disable CUDA
  3062. when configuring StarPU:
  3063. @example
  3064. % ./configure --disable-cuda
  3065. @end example
  3066. or when running applications:
  3067. @example
  3068. % STARPU_NCUDA=0 ./application
  3069. @end example
  3070. OpenCL will automatically be started on any device not yet used by
  3071. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3072. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3073. so:
  3074. @example
  3075. % STARPU_NCUDA=2 ./application
  3076. @end example
  3077. @node Compiling OpenCL kernels
  3078. @subsection Compiling OpenCL kernels
  3079. Source codes for OpenCL kernels can be stored in a file or in a
  3080. string. StarPU provides functions to build the program executable for
  3081. each available OpenCL device as a @code{cl_program} object. This
  3082. program executable can then be loaded within a specific queue as
  3083. explained in the next section. These are only helpers, Applications
  3084. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3085. use (e.g. different programs on the different OpenCL devices, for
  3086. relocation purpose for instance).
  3087. @menu
  3088. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3089. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3090. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3091. @end menu
  3092. @node starpu_opencl_load_opencl_from_file
  3093. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3094. @table @asis
  3095. @item @emph{Description}:
  3096. TODO
  3097. @item @emph{Prototype}:
  3098. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3099. @end table
  3100. @node starpu_opencl_load_opencl_from_string
  3101. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3102. @table @asis
  3103. @item @emph{Description}:
  3104. TODO
  3105. @item @emph{Prototype}:
  3106. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3107. @end table
  3108. @node starpu_opencl_unload_opencl
  3109. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3110. @table @asis
  3111. @item @emph{Description}:
  3112. TODO
  3113. @item @emph{Prototype}:
  3114. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3115. @end table
  3116. @node Loading OpenCL kernels
  3117. @subsection Loading OpenCL kernels
  3118. @menu
  3119. * starpu_opencl_load_kernel:: Loading a kernel
  3120. * starpu_opencl_relase_kernel:: Releasing a kernel
  3121. @end menu
  3122. @node starpu_opencl_load_kernel
  3123. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3124. @table @asis
  3125. @item @emph{Description}:
  3126. TODO
  3127. @item @emph{Prototype}:
  3128. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3129. }
  3130. @end table
  3131. @node starpu_opencl_relase_kernel
  3132. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3133. @table @asis
  3134. @item @emph{Description}:
  3135. TODO
  3136. @item @emph{Prototype}:
  3137. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3138. @end table
  3139. @node Cell extensions
  3140. @section Cell extensions
  3141. nothing yet.
  3142. @node Miscellaneous helpers
  3143. @section Miscellaneous helpers
  3144. @menu
  3145. * starpu_data_cpy:: Copy a data handle into another data handle
  3146. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3147. @end menu
  3148. @node starpu_data_cpy
  3149. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3150. @table @asis
  3151. @item @emph{Description}:
  3152. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3153. The @code{asynchronous} parameter indicates whether the function should
  3154. block or not. In the case of an asynchronous call, it is possible to
  3155. synchronize with the termination of this operation either by the means of
  3156. implicit dependencies (if enabled) or by calling
  3157. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3158. this callback function is executed after the handle has been copied, and it is
  3159. given the @code{callback_arg} pointer as argument.
  3160. @item @emph{Prototype}:
  3161. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3162. @end table
  3163. @node starpu_execute_on_each_worker
  3164. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3165. @table @asis
  3166. @item @emph{Description}:
  3167. When calling this method, the offloaded function specified by the first argument is
  3168. executed by every StarPU worker that may execute the function.
  3169. The second argument is passed to the offloaded function.
  3170. The last argument specifies on which types of processing units the function
  3171. should be executed. Similarly to the @code{where} field of the
  3172. @code{starpu_codelet} structure, it is possible to specify that the function
  3173. should be executed on every CUDA device and every CPU by passing
  3174. @code{STARPU_CPU|STARPU_CUDA}.
  3175. This function blocks until the function has been executed on every appropriate
  3176. processing units, so that it may not be called from a callback function for
  3177. instance.
  3178. @item @emph{Prototype}:
  3179. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3180. @end table
  3181. @c ---------------------------------------------------------------------
  3182. @c Advanced Topics
  3183. @c ---------------------------------------------------------------------
  3184. @node Advanced Topics
  3185. @chapter Advanced Topics
  3186. @menu
  3187. * Defining a new data interface::
  3188. * Defining a new scheduling policy::
  3189. @end menu
  3190. @node Defining a new data interface
  3191. @section Defining a new data interface
  3192. @menu
  3193. * struct starpu_data_interface_ops_t:: Per-interface methods
  3194. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3195. * An example of data interface:: An example of data interface
  3196. @end menu
  3197. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3198. @node struct starpu_data_interface_ops_t
  3199. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3200. @table @asis
  3201. @item @emph{Description}:
  3202. TODO describe all the different fields
  3203. @end table
  3204. @node struct starpu_data_copy_methods
  3205. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3206. @table @asis
  3207. @item @emph{Description}:
  3208. TODO describe all the different fields
  3209. @end table
  3210. @node An example of data interface
  3211. @subsection An example of data interface
  3212. @table @asis
  3213. TODO
  3214. @end table
  3215. @node Defining a new scheduling policy
  3216. @section Defining a new scheduling policy
  3217. TODO
  3218. A full example showing how to define a new scheduling policy is available in
  3219. the StarPU sources in the directory @code{examples/scheduler/}.
  3220. @menu
  3221. * struct starpu_sched_policy_s::
  3222. * starpu_worker_set_sched_condition::
  3223. * starpu_sched_set_min_priority:: Set the minimum priority level
  3224. * starpu_sched_set_max_priority:: Set the maximum priority level
  3225. * Source code::
  3226. @end menu
  3227. @node struct starpu_sched_policy_s
  3228. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3229. @table @asis
  3230. @item @emph{Description}:
  3231. This structure contains all the methods that implement a scheduling policy. An
  3232. application may specify which scheduling strategy in the @code{sched_policy}
  3233. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3234. function.
  3235. @item @emph{Fields}:
  3236. @table @asis
  3237. @item @code{init_sched}:
  3238. Initialize the scheduling policy.
  3239. @item @code{deinit_sched}:
  3240. Cleanup the scheduling policy.
  3241. @item @code{push_task}:
  3242. Insert a task into the scheduler.
  3243. @item @code{push_prio_task}:
  3244. Insert a priority task into the scheduler.
  3245. @item @code{pop_task}:
  3246. Get a task from the scheduler. The mutex associated to the worker is already
  3247. taken when this method is called.
  3248. @item @code{pop_every_task}:
  3249. Remove all available tasks from the scheduler (tasks are chained by the means
  3250. of the prev and next fields of the starpu_task structure). The mutex associated
  3251. to the worker is already taken when this method is called.
  3252. @item @code{post_exec_hook} (optionnal):
  3253. This method is called every time a task has been executed.
  3254. @item @code{policy_name}:
  3255. Name of the policy (optionnal).
  3256. @item @code{policy_description}:
  3257. Description of the policy (optionnal).
  3258. @end table
  3259. @end table
  3260. @node starpu_worker_set_sched_condition
  3261. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3262. @table @asis
  3263. @item @emph{Description}:
  3264. When there is no available task for a worker, StarPU blocks this worker on a
  3265. condition variable. This function specifies which condition variable (and the
  3266. associated mutex) should be used to block (and to wake up) a worker. Note that
  3267. multiple workers may use the same condition variable. For instance, in the case
  3268. of a scheduling strategy with a single task queue, the same condition variable
  3269. would be used to block and wake up all workers.
  3270. The initialization method of a scheduling strategy (@code{init_sched}) must
  3271. call this function once per worker.
  3272. @item @emph{Prototype}:
  3273. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3274. @end table
  3275. @node starpu_sched_set_min_priority
  3276. @subsection @code{starpu_sched_set_min_priority}
  3277. @table @asis
  3278. @item @emph{Description}:
  3279. Defines the minimum priority level supported by the scheduling policy. The
  3280. default minimum priority level is the same as the default priority level which
  3281. is 0 by convention. The application may access that value by calling the
  3282. @code{starpu_sched_get_min_priority} function. This function should only be
  3283. called from the initialization method of the scheduling policy, and should not
  3284. be used directly from the application.
  3285. @item @emph{Prototype}:
  3286. @code{void starpu_sched_set_min_priority(int min_prio)}
  3287. @end table
  3288. @node starpu_sched_set_max_priority
  3289. @subsection @code{starpu_sched_set_max_priority}
  3290. @table @asis
  3291. @item @emph{Description}:
  3292. Defines the maximum priority level supported by the scheduling policy. The
  3293. default maximum priority level is 1. The application may access that value by
  3294. calling the @code{starpu_sched_get_max_priority} function. This function should
  3295. only be called from the initialization method of the scheduling policy, and
  3296. should not be used directly from the application.
  3297. @item @emph{Prototype}:
  3298. @code{void starpu_sched_set_min_priority(int max_prio)}
  3299. @end table
  3300. @node Source code
  3301. @subsection Source code
  3302. @cartouche
  3303. @smallexample
  3304. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3305. .init_sched = init_dummy_sched,
  3306. .deinit_sched = deinit_dummy_sched,
  3307. .push_task = push_task_dummy,
  3308. .push_prio_task = NULL,
  3309. .pop_task = pop_task_dummy,
  3310. .post_exec_hook = NULL,
  3311. .pop_every_task = NULL,
  3312. .policy_name = "dummy",
  3313. .policy_description = "dummy scheduling strategy"
  3314. @};
  3315. @end smallexample
  3316. @end cartouche
  3317. @c ---------------------------------------------------------------------
  3318. @c Appendices
  3319. @c ---------------------------------------------------------------------
  3320. @c ---------------------------------------------------------------------
  3321. @c Full source code for the 'Scaling a Vector' example
  3322. @c ---------------------------------------------------------------------
  3323. @node Full source code for the 'Scaling a Vector' example
  3324. @appendix Full source code for the 'Scaling a Vector' example
  3325. @menu
  3326. * Main application::
  3327. * CPU Kernel::
  3328. * CUDA Kernel::
  3329. * OpenCL Kernel::
  3330. @end menu
  3331. @node Main application
  3332. @section Main application
  3333. @smallexample
  3334. @include vector_scal_c.texi
  3335. @end smallexample
  3336. @node CPU Kernel
  3337. @section CPU Kernel
  3338. @smallexample
  3339. @include vector_scal_cpu.texi
  3340. @end smallexample
  3341. @node CUDA Kernel
  3342. @section CUDA Kernel
  3343. @smallexample
  3344. @include vector_scal_cuda.texi
  3345. @end smallexample
  3346. @node OpenCL Kernel
  3347. @section OpenCL Kernel
  3348. @menu
  3349. * Invoking the kernel::
  3350. * Source of the kernel::
  3351. @end menu
  3352. @node Invoking the kernel
  3353. @subsection Invoking the kernel
  3354. @smallexample
  3355. @include vector_scal_opencl.texi
  3356. @end smallexample
  3357. @node Source of the kernel
  3358. @subsection Source of the kernel
  3359. @smallexample
  3360. @include vector_scal_opencl_codelet.texi
  3361. @end smallexample
  3362. @bye