dw_sparse_cg.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009, 2010, 2011 Université de Bordeaux 1
  4. * Copyright (C) 2010, 2011 Centre National de la Recherche Scientifique
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. /*
  18. * Conjugate gradients for Sparse matrices
  19. */
  20. #include "dw_sparse_cg.h"
  21. #define FPRINTF(ofile, fmt, args ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ##args); }} while(0)
  22. static struct starpu_task *create_task(starpu_tag_t id)
  23. {
  24. starpu_codelet *cl = calloc(1,sizeof(starpu_codelet));
  25. struct starpu_task *task = starpu_task_create();
  26. task->cl = cl;
  27. task->cl_arg = NULL;
  28. task->use_tag = 1;
  29. task->tag_id = id;
  30. return task;
  31. }
  32. static void create_data(float **_nzvalA, float **_vecb, float **_vecx, uint32_t *_nnz, uint32_t *_nrow, uint32_t **_colind, uint32_t **_rowptr)
  33. {
  34. /* we need a sparse symetric (definite positive ?) matrix and a "dense" vector */
  35. /* example of 3-band matrix */
  36. float *nzval;
  37. uint32_t nnz;
  38. uint32_t *colind;
  39. uint32_t *rowptr;
  40. nnz = 3*size-2;
  41. nzval = malloc(nnz*sizeof(float));
  42. colind = malloc(nnz*sizeof(uint32_t));
  43. rowptr = malloc(size*sizeof(uint32_t));
  44. assert(nzval);
  45. assert(colind);
  46. assert(rowptr);
  47. /* fill the matrix */
  48. unsigned row;
  49. unsigned pos = 0;
  50. for (row = 0; row < size; row++)
  51. {
  52. rowptr[row] = pos;
  53. if (row > 0) {
  54. nzval[pos] = 1.0f;
  55. colind[pos] = row-1;
  56. pos++;
  57. }
  58. nzval[pos] = 5.0f;
  59. colind[pos] = row;
  60. pos++;
  61. if (row < size - 1) {
  62. nzval[pos] = 1.0f;
  63. colind[pos] = row+1;
  64. pos++;
  65. }
  66. }
  67. *_nnz = nnz;
  68. *_nrow = size;
  69. *_nzvalA = nzval;
  70. *_colind = colind;
  71. *_rowptr = rowptr;
  72. STARPU_ASSERT(pos == nnz);
  73. /* initiate the 2 vectors */
  74. float *invec, *outvec;
  75. invec = malloc(size*sizeof(float));
  76. assert(invec);
  77. outvec = malloc(size*sizeof(float));
  78. assert(outvec);
  79. /* fill those */
  80. unsigned ind;
  81. for (ind = 0; ind < size; ind++)
  82. {
  83. invec[ind] = 2.0f;
  84. outvec[ind] = 0.0f;
  85. }
  86. *_vecb = invec;
  87. *_vecx = outvec;
  88. }
  89. void init_problem(void)
  90. {
  91. /* create the sparse input matrix */
  92. float *nzval;
  93. float *vecb;
  94. float *vecx;
  95. uint32_t nnz;
  96. uint32_t nrow;
  97. uint32_t *colind;
  98. uint32_t *rowptr;
  99. create_data(&nzval, &vecb, &vecx, &nnz, &nrow, &colind, &rowptr);
  100. conjugate_gradient(nzval, vecb, vecx, nnz, nrow, colind, rowptr);
  101. }
  102. /*
  103. * cg initialization phase
  104. */
  105. void init_cg(struct cg_problem *problem)
  106. {
  107. problem->i = 0;
  108. /* r = b - A x */
  109. struct starpu_task *task1 = create_task(1UL);
  110. task1->cl->where = STARPU_CPU;
  111. task1->cl->cpu_func = cpu_codelet_func_1;
  112. task1->cl->nbuffers = 4;
  113. task1->buffers[0].handle = problem->ds_matrixA;
  114. task1->buffers[0].mode = STARPU_R;
  115. task1->buffers[1].handle = problem->ds_vecx;
  116. task1->buffers[1].mode = STARPU_R;
  117. task1->buffers[2].handle = problem->ds_vecr;
  118. task1->buffers[2].mode = STARPU_W;
  119. task1->buffers[3].handle = problem->ds_vecb;
  120. task1->buffers[3].mode = STARPU_R;
  121. /* d = r */
  122. struct starpu_task *task2 = create_task(2UL);
  123. task2->cl->where = STARPU_CPU;
  124. task2->cl->cpu_func = cpu_codelet_func_2;
  125. task2->cl->nbuffers = 2;
  126. task2->buffers[0].handle = problem->ds_vecd;
  127. task2->buffers[0].mode = STARPU_W;
  128. task2->buffers[1].handle = problem->ds_vecr;
  129. task2->buffers[1].mode = STARPU_R;
  130. starpu_tag_declare_deps((starpu_tag_t)2UL, 1, (starpu_tag_t)1UL);
  131. /* delta_new = trans(r) r */
  132. struct starpu_task *task3 = create_task(3UL);
  133. task3->cl->where = STARPU_CUDA|STARPU_CPU;
  134. #ifdef STARPU_USE_CUDA
  135. task3->cl->cuda_func = cublas_codelet_func_3;
  136. #endif
  137. task3->cl->cpu_func = cpu_codelet_func_3;
  138. task3->cl_arg = problem;
  139. task3->cl->nbuffers = 1;
  140. task3->buffers[0].handle = problem->ds_vecr;
  141. task3->buffers[0].mode = STARPU_R;
  142. task3->callback_func = iteration_cg;
  143. task3->callback_arg = problem;
  144. /* XXX 3 should only depend on 1 ... */
  145. starpu_tag_declare_deps((starpu_tag_t)3UL, 1, (starpu_tag_t)2UL);
  146. /* launch the computation now */
  147. starpu_task_submit(task1);
  148. starpu_task_submit(task2);
  149. starpu_task_submit(task3);
  150. }
  151. /*
  152. * the inner iteration of the cg algorithm
  153. * the codelet code launcher is its own callback !
  154. */
  155. void launch_new_cg_iteration(struct cg_problem *problem)
  156. {
  157. unsigned iter = problem->i;
  158. unsigned long long maskiter = (iter*1024);
  159. /* q = A d */
  160. struct starpu_task *task4 = create_task(maskiter | 4UL);
  161. task4->cl->where = STARPU_CPU;
  162. task4->cl->cpu_func = cpu_codelet_func_4;
  163. task4->cl->nbuffers = 3;
  164. task4->buffers[0].handle = problem->ds_matrixA;
  165. task4->buffers[0].mode = STARPU_R;
  166. task4->buffers[1].handle = problem->ds_vecd;
  167. task4->buffers[1].mode = STARPU_R;
  168. task4->buffers[2].handle = problem->ds_vecq;
  169. task4->buffers[2].mode = STARPU_W;
  170. /* alpha = delta_new / ( trans(d) q )*/
  171. struct starpu_task *task5 = create_task(maskiter | 5UL);
  172. task5->cl->where = STARPU_CUDA|STARPU_CPU;
  173. #ifdef STARPU_USE_CUDA
  174. task5->cl->cuda_func = cublas_codelet_func_5;
  175. #endif
  176. task5->cl->cpu_func = cpu_codelet_func_5;
  177. task5->cl_arg = problem;
  178. task5->cl->nbuffers = 2;
  179. task5->buffers[0].handle = problem->ds_vecd;
  180. task5->buffers[0].mode = STARPU_R;
  181. task5->buffers[1].handle = problem->ds_vecq;
  182. task5->buffers[1].mode = STARPU_R;
  183. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 5UL), 1, (starpu_tag_t)(maskiter | 4UL));
  184. /* x = x + alpha d */
  185. struct starpu_task *task6 = create_task(maskiter | 6UL);
  186. task6->cl->where = STARPU_CUDA|STARPU_CPU;
  187. #ifdef STARPU_USE_CUDA
  188. task6->cl->cuda_func = cublas_codelet_func_6;
  189. #endif
  190. task6->cl->cpu_func = cpu_codelet_func_6;
  191. task6->cl_arg = problem;
  192. task6->cl->nbuffers = 2;
  193. task6->buffers[0].handle = problem->ds_vecx;
  194. task6->buffers[0].mode = STARPU_RW;
  195. task6->buffers[1].handle = problem->ds_vecd;
  196. task6->buffers[1].mode = STARPU_R;
  197. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 6UL), 1, (starpu_tag_t)(maskiter | 5UL));
  198. /* r = r - alpha q */
  199. struct starpu_task *task7 = create_task(maskiter | 7UL);
  200. task7->cl->where = STARPU_CUDA|STARPU_CPU;
  201. #ifdef STARPU_USE_CUDA
  202. task7->cl->cuda_func = cublas_codelet_func_7;
  203. #endif
  204. task7->cl->cpu_func = cpu_codelet_func_7;
  205. task7->cl_arg = problem;
  206. task7->cl->nbuffers = 2;
  207. task7->buffers[0].handle = problem->ds_vecr;
  208. task7->buffers[0].mode = STARPU_RW;
  209. task7->buffers[1].handle = problem->ds_vecq;
  210. task7->buffers[1].mode = STARPU_R;
  211. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 7UL), 1, (starpu_tag_t)(maskiter | 6UL));
  212. /* update delta_* and compute beta */
  213. struct starpu_task *task8 = create_task(maskiter | 8UL);
  214. task8->cl->where = STARPU_CUDA|STARPU_CPU;
  215. #ifdef STARPU_USE_CUDA
  216. task8->cl->cuda_func = cublas_codelet_func_8;
  217. #endif
  218. task8->cl->cpu_func = cpu_codelet_func_8;
  219. task8->cl_arg = problem;
  220. task8->cl->nbuffers = 1;
  221. task8->buffers[0].handle = problem->ds_vecr;
  222. task8->buffers[0].mode = STARPU_R;
  223. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 8UL), 1, (starpu_tag_t)(maskiter | 7UL));
  224. /* d = r + beta d */
  225. struct starpu_task *task9 = create_task(maskiter | 9UL);
  226. task9->cl->where = STARPU_CUDA|STARPU_CPU;
  227. #ifdef STARPU_USE_CUDA
  228. task9->cl->cuda_func = cublas_codelet_func_9;
  229. #endif
  230. task9->cl->cpu_func = cpu_codelet_func_9;
  231. task9->cl_arg = problem;
  232. task9->cl->nbuffers = 2;
  233. task9->buffers[0].handle = problem->ds_vecd;
  234. task9->buffers[0].mode = STARPU_RW;
  235. task9->buffers[1].handle = problem->ds_vecr;
  236. task9->buffers[1].mode = STARPU_R;
  237. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 9UL), 1, (starpu_tag_t)(maskiter | 8UL));
  238. task9->callback_func = iteration_cg;
  239. task9->callback_arg = problem;
  240. /* launch the computation now */
  241. starpu_task_submit(task4);
  242. starpu_task_submit(task5);
  243. starpu_task_submit(task6);
  244. starpu_task_submit(task7);
  245. starpu_task_submit(task8);
  246. starpu_task_submit(task9);
  247. }
  248. void iteration_cg(void *problem)
  249. {
  250. struct cg_problem *pb = problem;
  251. FPRINTF(stdout, "i : %d (MAX %d)\n\tdelta_new %f (%f)\n", pb->i, MAXITER, pb->delta_new, sqrt(pb->delta_new / pb->size));
  252. if ((pb->i < MAXITER) &&
  253. (pb->delta_new > pb->epsilon) )
  254. {
  255. if (pb->i % 1000 == 0)
  256. FPRINTF(stdout, "i : %d\n\tdelta_new %f (%f)\n", pb->i, pb->delta_new, sqrt(pb->delta_new / pb->size));
  257. pb->i++;
  258. /* we did not reach the stop condition yet */
  259. launch_new_cg_iteration(problem);
  260. }
  261. else {
  262. /* we may stop */
  263. FPRINTF(stdout, "We are done ... after %d iterations \n", pb->i - 1);
  264. FPRINTF(stdout, "i : %d\n\tdelta_new %2.5f\n", pb->i, pb->delta_new);
  265. sem_post(pb->sem);
  266. }
  267. }
  268. /*
  269. * initializing the problem
  270. */
  271. void conjugate_gradient(float *nzvalA, float *vecb, float *vecx, uint32_t nnz,
  272. unsigned nrow, uint32_t *colind, uint32_t *rowptr)
  273. {
  274. /* first register all the data structures to StarPU */
  275. starpu_data_handle ds_matrixA;
  276. starpu_data_handle ds_vecx, ds_vecb;
  277. starpu_data_handle ds_vecr, ds_vecd, ds_vecq;
  278. /* first the user-allocated data */
  279. starpu_csr_data_register(&ds_matrixA, 0, nnz, nrow,
  280. (uintptr_t)nzvalA, colind, rowptr, 0, sizeof(float));
  281. starpu_vector_data_register(&ds_vecx, 0, (uintptr_t)vecx, nrow, sizeof(float));
  282. starpu_vector_data_register(&ds_vecb, 0, (uintptr_t)vecb, nrow, sizeof(float));
  283. /* then allocate the algorithm intern data */
  284. float *ptr_vecr, *ptr_vecd, *ptr_vecq;
  285. unsigned i;
  286. ptr_vecr = malloc(nrow*sizeof(float));
  287. ptr_vecd = malloc(nrow*sizeof(float));
  288. ptr_vecq = malloc(nrow*sizeof(float));
  289. for (i = 0; i < nrow; i++)
  290. {
  291. ptr_vecr[i] = 0.0f;
  292. ptr_vecd[i] = 0.0f;
  293. ptr_vecq[i] = 0.0f;
  294. }
  295. FPRINTF(stdout, "nrow = %d \n", nrow);
  296. /* and register them as well */
  297. starpu_vector_data_register(&ds_vecr, 0, (uintptr_t)ptr_vecr, nrow, sizeof(float));
  298. starpu_vector_data_register(&ds_vecd, 0, (uintptr_t)ptr_vecd, nrow, sizeof(float));
  299. starpu_vector_data_register(&ds_vecq, 0, (uintptr_t)ptr_vecq, nrow, sizeof(float));
  300. /* we now have the complete problem */
  301. struct cg_problem problem;
  302. problem.ds_matrixA = ds_matrixA;
  303. problem.ds_vecx = ds_vecx;
  304. problem.ds_vecb = ds_vecb;
  305. problem.ds_vecr = ds_vecr;
  306. problem.ds_vecd = ds_vecd;
  307. problem.ds_vecq = ds_vecq;
  308. problem.epsilon = EPSILON;
  309. problem.size = nrow;
  310. problem.delta_old = 1.0;
  311. problem.delta_new = 1.0; /* just to make sure we do at least one iteration */
  312. /* we need a semaphore to synchronize with callbacks */
  313. sem_t sem;
  314. sem_init(&sem, 0, 0U);
  315. problem.sem = &sem;
  316. init_cg(&problem);
  317. sem_wait(&sem);
  318. sem_destroy(&sem);
  319. print_results(vecx, nrow);
  320. }
  321. void do_conjugate_gradient(float *nzvalA, float *vecb, float *vecx, uint32_t nnz,
  322. unsigned nrow, uint32_t *colind, uint32_t *rowptr)
  323. {
  324. /* start the runtime */
  325. starpu_init(NULL);
  326. starpu_helper_cublas_init();
  327. conjugate_gradient(nzvalA, vecb, vecx, nnz, nrow, colind, rowptr);
  328. }