cg_kernels.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010, 2012-2014 Université de Bordeaux 1
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. #include "cg.h"
  17. #include <math.h>
  18. #include <limits.h>
  19. #if 0
  20. static void print_vector_from_descr(unsigned nx, TYPE *v)
  21. {
  22. unsigned i;
  23. for (i = 0; i < nx; i++)
  24. {
  25. fprintf(stderr, "%2.2e ", v[i]);
  26. }
  27. fprintf(stderr, "\n");
  28. }
  29. static void print_matrix_from_descr(unsigned nx, unsigned ny, unsigned ld, TYPE *mat)
  30. {
  31. unsigned i, j;
  32. for (j = 0; j < nx; j++)
  33. {
  34. for (i = 0; i < ny; i++)
  35. {
  36. fprintf(stderr, "%2.2e ", mat[j+i*ld]);
  37. }
  38. fprintf(stderr, "\n");
  39. }
  40. }
  41. #endif
  42. static int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl)
  43. {
  44. enum starpu_worker_archtype type = starpu_worker_get_type(workerid);
  45. if (type == STARPU_CPU_WORKER || type == STARPU_OPENCL_WORKER)
  46. return 1;
  47. #ifdef STARPU_USE_CUDA
  48. /* Cuda device */
  49. const struct cudaDeviceProp *props;
  50. props = starpu_cuda_get_device_properties(workerid);
  51. if (props->major >= 2 || props->minor >= 3)
  52. /* At least compute capability 1.3, supports doubles */
  53. return 1;
  54. #endif
  55. /* Old card, does not support doubles */
  56. return 0;
  57. }
  58. /*
  59. * Reduction accumulation methods
  60. */
  61. #ifdef STARPU_USE_CUDA
  62. static void accumulate_variable_cuda(void *descr[], void *cl_arg)
  63. {
  64. TYPE *v_dst = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  65. TYPE *v_src = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]);
  66. cublasaxpy(1, (TYPE)1.0, v_src, 1, v_dst, 1);
  67. }
  68. #endif
  69. static void accumulate_variable_cpu(void *descr[], void *cl_arg)
  70. {
  71. TYPE *v_dst = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  72. TYPE *v_src = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]);
  73. *v_dst = *v_dst + *v_src;
  74. }
  75. static struct starpu_perfmodel accumulate_variable_model =
  76. {
  77. .type = STARPU_HISTORY_BASED,
  78. .symbol = "accumulate_variable"
  79. };
  80. struct starpu_codelet accumulate_variable_cl =
  81. {
  82. .can_execute = can_execute,
  83. .cpu_funcs = {accumulate_variable_cpu, NULL},
  84. #ifdef STARPU_USE_CUDA
  85. .cuda_funcs = {accumulate_variable_cuda, NULL},
  86. .cuda_flags = {STARPU_CUDA_ASYNC},
  87. #endif
  88. .modes = {STARPU_RW, STARPU_R},
  89. .nbuffers = 2,
  90. .model = &accumulate_variable_model
  91. };
  92. #ifdef STARPU_USE_CUDA
  93. static void accumulate_vector_cuda(void *descr[], void *cl_arg)
  94. {
  95. TYPE *v_dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  96. TYPE *v_src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  97. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  98. cublasaxpy(n, (TYPE)1.0, v_src, 1, v_dst, 1);
  99. }
  100. #endif
  101. static void accumulate_vector_cpu(void *descr[], void *cl_arg)
  102. {
  103. TYPE *v_dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  104. TYPE *v_src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  105. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  106. AXPY(n, (TYPE)1.0, v_src, 1, v_dst, 1);
  107. }
  108. static struct starpu_perfmodel accumulate_vector_model =
  109. {
  110. .type = STARPU_HISTORY_BASED,
  111. .symbol = "accumulate_vector"
  112. };
  113. struct starpu_codelet accumulate_vector_cl =
  114. {
  115. .can_execute = can_execute,
  116. .cpu_funcs = {accumulate_vector_cpu, NULL},
  117. #ifdef STARPU_USE_CUDA
  118. .cuda_funcs = {accumulate_vector_cuda, NULL},
  119. .cuda_flags = {STARPU_CUDA_ASYNC},
  120. #endif
  121. .modes = {STARPU_RW, STARPU_R},
  122. .nbuffers = 2,
  123. .model = &accumulate_vector_model
  124. };
  125. /*
  126. * Reduction initialization methods
  127. */
  128. #ifdef STARPU_USE_CUDA
  129. extern void zero_vector(TYPE *x, unsigned nelems);
  130. static void bzero_variable_cuda(void *descr[], void *cl_arg)
  131. {
  132. TYPE *v = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  133. zero_vector(v, 1);
  134. }
  135. #endif
  136. static void bzero_variable_cpu(void *descr[], void *cl_arg)
  137. {
  138. TYPE *v = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  139. *v = (TYPE)0.0;
  140. }
  141. static struct starpu_perfmodel bzero_variable_model =
  142. {
  143. .type = STARPU_HISTORY_BASED,
  144. .symbol = "bzero_variable"
  145. };
  146. struct starpu_codelet bzero_variable_cl =
  147. {
  148. .can_execute = can_execute,
  149. .cpu_funcs = {bzero_variable_cpu, NULL},
  150. #ifdef STARPU_USE_CUDA
  151. .cuda_funcs = {bzero_variable_cuda, NULL},
  152. .cuda_flags = {STARPU_CUDA_ASYNC},
  153. #endif
  154. .modes = {STARPU_W},
  155. .nbuffers = 1,
  156. .model = &bzero_variable_model
  157. };
  158. #ifdef STARPU_USE_CUDA
  159. static void bzero_vector_cuda(void *descr[], void *cl_arg)
  160. {
  161. TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  162. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  163. zero_vector(v, n);
  164. }
  165. #endif
  166. static void bzero_vector_cpu(void *descr[], void *cl_arg)
  167. {
  168. TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  169. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  170. memset(v, 0, n*sizeof(TYPE));
  171. }
  172. static struct starpu_perfmodel bzero_vector_model =
  173. {
  174. .type = STARPU_HISTORY_BASED,
  175. .symbol = "bzero_vector"
  176. };
  177. struct starpu_codelet bzero_vector_cl =
  178. {
  179. .can_execute = can_execute,
  180. .cpu_funcs = {bzero_vector_cpu, NULL},
  181. #ifdef STARPU_USE_CUDA
  182. .cuda_funcs = {bzero_vector_cuda, NULL},
  183. .cuda_flags = {STARPU_CUDA_ASYNC},
  184. #endif
  185. .modes = {STARPU_W},
  186. .nbuffers = 1,
  187. .model = &bzero_vector_model
  188. };
  189. /*
  190. * DOT kernel : s = dot(v1, v2)
  191. */
  192. #ifdef STARPU_USE_CUDA
  193. extern void dot_host(TYPE *x, TYPE *y, unsigned nelems, TYPE *dot);
  194. static void dot_kernel_cuda(void *descr[], void *cl_arg)
  195. {
  196. TYPE *dot = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  197. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  198. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
  199. unsigned n = STARPU_VECTOR_GET_NX(descr[1]);
  200. /* Contrary to cublasSdot, this function puts its result directly in
  201. * device memory, so that we don't have to transfer that value back and
  202. * forth. */
  203. dot_host(v1, v2, n, dot);
  204. }
  205. #endif
  206. static void dot_kernel_cpu(void *descr[], void *cl_arg)
  207. {
  208. TYPE *dot = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  209. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  210. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
  211. unsigned n = STARPU_VECTOR_GET_NX(descr[1]);
  212. TYPE local_dot = 0.0;
  213. /* Note that we explicitely cast the result of the DOT kernel because
  214. * some BLAS library will return a double for sdot for instance. */
  215. local_dot = (TYPE)DOT(n, v1, 1, v2, 1);
  216. *dot = *dot + local_dot;
  217. }
  218. static struct starpu_perfmodel dot_kernel_model =
  219. {
  220. .type = STARPU_HISTORY_BASED,
  221. .symbol = "dot_kernel"
  222. };
  223. static struct starpu_codelet dot_kernel_cl =
  224. {
  225. .can_execute = can_execute,
  226. .cpu_funcs = {dot_kernel_cpu, NULL},
  227. #ifdef STARPU_USE_CUDA
  228. .cuda_funcs = {dot_kernel_cuda, NULL},
  229. #endif
  230. .nbuffers = 3,
  231. .model = &dot_kernel_model
  232. };
  233. int dot_kernel(starpu_data_handle_t v1,
  234. starpu_data_handle_t v2,
  235. starpu_data_handle_t s,
  236. unsigned nblocks,
  237. int use_reduction)
  238. {
  239. int ret;
  240. /* Blank the accumulation variable */
  241. if (use_reduction)
  242. starpu_data_invalidate_submit(s);
  243. else {
  244. ret = starpu_task_insert(&bzero_variable_cl, STARPU_W, s, 0);
  245. if (ret == -ENODEV) return ret;
  246. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
  247. }
  248. unsigned b;
  249. for (b = 0; b < nblocks; b++)
  250. {
  251. ret = starpu_task_insert(&dot_kernel_cl,
  252. use_reduction?STARPU_REDUX:STARPU_RW, s,
  253. STARPU_R, starpu_data_get_sub_data(v1, 1, b),
  254. STARPU_R, starpu_data_get_sub_data(v2, 1, b),
  255. 0);
  256. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
  257. }
  258. return 0;
  259. }
  260. /*
  261. * SCAL kernel : v1 = p1 v1
  262. */
  263. #ifdef STARPU_USE_CUDA
  264. static void scal_kernel_cuda(void *descr[], void *cl_arg)
  265. {
  266. TYPE p1;
  267. starpu_codelet_unpack_args(cl_arg, &p1);
  268. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  269. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  270. /* v1 = p1 v1 */
  271. TYPE alpha = p1;
  272. cublasscal(n, alpha, v1, 1);
  273. }
  274. #endif
  275. static void scal_kernel_cpu(void *descr[], void *cl_arg)
  276. {
  277. TYPE alpha;
  278. starpu_codelet_unpack_args(cl_arg, &alpha);
  279. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  280. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  281. /* v1 = alpha v1 */
  282. SCAL(n, alpha, v1, 1);
  283. }
  284. static struct starpu_perfmodel scal_kernel_model =
  285. {
  286. .type = STARPU_HISTORY_BASED,
  287. .symbol = "scal_kernel"
  288. };
  289. static struct starpu_codelet scal_kernel_cl =
  290. {
  291. .can_execute = can_execute,
  292. .cpu_funcs = {scal_kernel_cpu, NULL},
  293. #ifdef STARPU_USE_CUDA
  294. .cuda_funcs = {scal_kernel_cuda, NULL},
  295. .cuda_flags = {STARPU_CUDA_ASYNC},
  296. #endif
  297. .nbuffers = 1,
  298. .model = &scal_kernel_model
  299. };
  300. /*
  301. * GEMV kernel : v1 = p1 * v1 + p2 * M v2
  302. */
  303. #ifdef STARPU_USE_CUDA
  304. static void gemv_kernel_cuda(void *descr[], void *cl_arg)
  305. {
  306. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  307. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
  308. TYPE *M = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]);
  309. unsigned ld = STARPU_MATRIX_GET_LD(descr[1]);
  310. unsigned nx = STARPU_MATRIX_GET_NX(descr[1]);
  311. unsigned ny = STARPU_MATRIX_GET_NY(descr[1]);
  312. TYPE alpha, beta;
  313. starpu_codelet_unpack_args(cl_arg, &beta, &alpha);
  314. /* Compute v1 = alpha M v2 + beta v1 */
  315. cublasgemv('N', nx, ny, alpha, M, ld, v2, 1, beta, v1, 1);
  316. }
  317. #endif
  318. static void gemv_kernel_cpu(void *descr[], void *cl_arg)
  319. {
  320. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  321. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
  322. TYPE *M = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]);
  323. unsigned ld = STARPU_MATRIX_GET_LD(descr[1]);
  324. unsigned nx = STARPU_MATRIX_GET_NX(descr[1]);
  325. unsigned ny = STARPU_MATRIX_GET_NY(descr[1]);
  326. TYPE alpha, beta;
  327. starpu_codelet_unpack_args(cl_arg, &beta, &alpha);
  328. int worker_size = starpu_combined_worker_get_size();
  329. if (worker_size > 1)
  330. {
  331. /* Parallel CPU task */
  332. int rank = starpu_combined_worker_get_rank();
  333. int block_size = (ny + worker_size - 1)/worker_size;
  334. int new_nx = STARPU_MIN(nx, block_size*(rank+1)) - block_size*rank;
  335. nx = new_nx;
  336. v1 = &v1[block_size*rank];
  337. M = &M[block_size*rank];
  338. }
  339. /* Compute v1 = alpha M v2 + beta v1 */
  340. GEMV("N", nx, ny, alpha, M, ld, v2, 1, beta, v1, 1);
  341. }
  342. static struct starpu_perfmodel gemv_kernel_model =
  343. {
  344. .type = STARPU_HISTORY_BASED,
  345. .symbol = "gemv_kernel"
  346. };
  347. static struct starpu_codelet gemv_kernel_cl =
  348. {
  349. .can_execute = can_execute,
  350. .type = STARPU_SPMD,
  351. .max_parallelism = INT_MAX,
  352. .cpu_funcs = {gemv_kernel_cpu, NULL},
  353. #ifdef STARPU_USE_CUDA
  354. .cuda_funcs = {gemv_kernel_cuda, NULL},
  355. .cuda_flags = {STARPU_CUDA_ASYNC},
  356. #endif
  357. .nbuffers = 3,
  358. .model = &gemv_kernel_model
  359. };
  360. int gemv_kernel(starpu_data_handle_t v1,
  361. starpu_data_handle_t matrix,
  362. starpu_data_handle_t v2,
  363. TYPE p1, TYPE p2,
  364. unsigned nblocks,
  365. int use_reduction)
  366. {
  367. unsigned b1, b2;
  368. int ret;
  369. for (b2 = 0; b2 < nblocks; b2++)
  370. {
  371. ret = starpu_task_insert(&scal_kernel_cl,
  372. STARPU_RW, starpu_data_get_sub_data(v1, 1, b2),
  373. STARPU_VALUE, &p1, sizeof(p1),
  374. 0);
  375. if (ret == -ENODEV) return ret;
  376. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
  377. }
  378. for (b2 = 0; b2 < nblocks; b2++)
  379. {
  380. for (b1 = 0; b1 < nblocks; b1++)
  381. {
  382. TYPE one = 1.0;
  383. ret = starpu_task_insert(&gemv_kernel_cl,
  384. use_reduction?STARPU_REDUX:STARPU_RW, starpu_data_get_sub_data(v1, 1, b2),
  385. STARPU_R, starpu_data_get_sub_data(matrix, 2, b2, b1),
  386. STARPU_R, starpu_data_get_sub_data(v2, 1, b1),
  387. STARPU_VALUE, &one, sizeof(one),
  388. STARPU_VALUE, &p2, sizeof(p2),
  389. 0);
  390. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
  391. }
  392. }
  393. return 0;
  394. }
  395. /*
  396. * AXPY + SCAL kernel : v1 = p1 * v1 + p2 * v2
  397. */
  398. #ifdef STARPU_USE_CUDA
  399. static void scal_axpy_kernel_cuda(void *descr[], void *cl_arg)
  400. {
  401. TYPE p1, p2;
  402. starpu_codelet_unpack_args(cl_arg, &p1, &p2);
  403. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  404. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  405. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  406. /* Compute v1 = p1 * v1 + p2 * v2.
  407. * v1 = p1 v1
  408. * v1 = v1 + p2 v2
  409. */
  410. cublasscal(n, p1, v1, 1);
  411. cublasaxpy(n, p2, v2, 1, v1, 1);
  412. }
  413. #endif
  414. static void scal_axpy_kernel_cpu(void *descr[], void *cl_arg)
  415. {
  416. TYPE p1, p2;
  417. starpu_codelet_unpack_args(cl_arg, &p1, &p2);
  418. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  419. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  420. unsigned nx = STARPU_VECTOR_GET_NX(descr[0]);
  421. /* Compute v1 = p1 * v1 + p2 * v2.
  422. * v1 = p1 v1
  423. * v1 = v1 + p2 v2
  424. */
  425. SCAL(nx, p1, v1, 1);
  426. AXPY(nx, p2, v2, 1, v1, 1);
  427. }
  428. static struct starpu_perfmodel scal_axpy_kernel_model =
  429. {
  430. .type = STARPU_HISTORY_BASED,
  431. .symbol = "scal_axpy_kernel"
  432. };
  433. static struct starpu_codelet scal_axpy_kernel_cl =
  434. {
  435. .can_execute = can_execute,
  436. .cpu_funcs = {scal_axpy_kernel_cpu, NULL},
  437. #ifdef STARPU_USE_CUDA
  438. .cuda_funcs = {scal_axpy_kernel_cuda, NULL},
  439. .cuda_flags = {STARPU_CUDA_ASYNC},
  440. #endif
  441. .nbuffers = 2,
  442. .model = &scal_axpy_kernel_model
  443. };
  444. int scal_axpy_kernel(starpu_data_handle_t v1, TYPE p1,
  445. starpu_data_handle_t v2, TYPE p2,
  446. unsigned nblocks)
  447. {
  448. int ret;
  449. unsigned b;
  450. for (b = 0; b < nblocks; b++)
  451. {
  452. ret = starpu_task_insert(&scal_axpy_kernel_cl,
  453. STARPU_RW, starpu_data_get_sub_data(v1, 1, b),
  454. STARPU_R, starpu_data_get_sub_data(v2, 1, b),
  455. STARPU_VALUE, &p1, sizeof(p1),
  456. STARPU_VALUE, &p2, sizeof(p2),
  457. 0);
  458. if (ret == -ENODEV) return ret;
  459. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
  460. }
  461. return 0;
  462. }
  463. /*
  464. * AXPY kernel : v1 = v1 + p1 * v2
  465. */
  466. #ifdef STARPU_USE_CUDA
  467. static void axpy_kernel_cuda(void *descr[], void *cl_arg)
  468. {
  469. TYPE p1;
  470. starpu_codelet_unpack_args(cl_arg, &p1);
  471. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  472. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  473. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  474. /* Compute v1 = v1 + p1 * v2.
  475. */
  476. cublasaxpy(n, p1, v2, 1, v1, 1);
  477. }
  478. #endif
  479. static void axpy_kernel_cpu(void *descr[], void *cl_arg)
  480. {
  481. TYPE p1;
  482. starpu_codelet_unpack_args(cl_arg, &p1);
  483. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  484. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  485. unsigned nx = STARPU_VECTOR_GET_NX(descr[0]);
  486. /* Compute v1 = p1 * v1 + p2 * v2.
  487. */
  488. AXPY(nx, p1, v2, 1, v1, 1);
  489. }
  490. static struct starpu_perfmodel axpy_kernel_model =
  491. {
  492. .type = STARPU_HISTORY_BASED,
  493. .symbol = "axpy_kernel"
  494. };
  495. static struct starpu_codelet axpy_kernel_cl =
  496. {
  497. .can_execute = can_execute,
  498. .cpu_funcs = {axpy_kernel_cpu, NULL},
  499. #ifdef STARPU_USE_CUDA
  500. .cuda_funcs = {axpy_kernel_cuda, NULL},
  501. .cuda_flags = {STARPU_CUDA_ASYNC},
  502. #endif
  503. .nbuffers = 2,
  504. .model = &axpy_kernel_model
  505. };
  506. int axpy_kernel(starpu_data_handle_t v1,
  507. starpu_data_handle_t v2, TYPE p1,
  508. unsigned nblocks)
  509. {
  510. int ret;
  511. unsigned b;
  512. for (b = 0; b < nblocks; b++)
  513. {
  514. ret = starpu_task_insert(&axpy_kernel_cl,
  515. STARPU_RW, starpu_data_get_sub_data(v1, 1, b),
  516. STARPU_R, starpu_data_get_sub_data(v2, 1, b),
  517. STARPU_VALUE, &p1, sizeof(p1),
  518. 0);
  519. if (ret == -ENODEV) return ret;
  520. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
  521. }
  522. return 0;
  523. }
  524. int copy_handle(starpu_data_handle_t dst, starpu_data_handle_t src, unsigned nblocks)
  525. {
  526. unsigned b;
  527. for (b = 0; b < nblocks; b++)
  528. starpu_data_cpy(starpu_data_get_sub_data(dst, 1, b), starpu_data_get_sub_data(src, 1, b), 1, NULL, NULL);
  529. return 0;
  530. }