api.texi 197 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Versioning::
  9. * Initialization and Termination::
  10. * Standard memory library::
  11. * Workers' Properties::
  12. * Data Management::
  13. * Data Interfaces::
  14. * Data Partition::
  15. * Multiformat Data Interface::
  16. * Codelets and Tasks::
  17. * Insert Task::
  18. * Explicit Dependencies::
  19. * Implicit Data Dependencies::
  20. * Performance Model API::
  21. * Profiling API::
  22. * Theoretical lower bound on execution time API::
  23. * CUDA extensions::
  24. * OpenCL extensions::
  25. * MIC extensions::
  26. * SCC extensions::
  27. * Miscellaneous helpers::
  28. * FXT Support::
  29. * FFT Support::
  30. * MPI::
  31. * Task Bundles::
  32. * Task Lists::
  33. * Using Parallel Tasks::
  34. * Scheduling Contexts::
  35. * Scheduling Policy::
  36. * Running drivers::
  37. * Expert mode::
  38. @end menu
  39. @node Versioning
  40. @section Versioning
  41. @defmac STARPU_MAJOR_VERSION
  42. Define the major version of StarPU
  43. @end defmac
  44. @defmac STARPU_MINOR_VERSION
  45. Define the minor version of StarPU
  46. @end defmac
  47. @defmac STARPU_RELEASE_VERSION
  48. Define the release version of StarPU
  49. @end defmac
  50. @deftypefun void starpu_get_version (int *@var{major}, int *@var{minor}, int *@var{release})
  51. Return as 3 integers the release version of StarPU.
  52. @end deftypefun
  53. @node Initialization and Termination
  54. @section Initialization and Termination
  55. @deftp {Data Type} {struct starpu_driver}
  56. @table @asis
  57. @item @code{enum starpu_worker_archtype type}
  58. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  59. STARPU_OPENCL_DRIVER are currently supported.
  60. @item @code{union id} Anonymous union
  61. @table @asis
  62. @item @code{unsigned cpu_id}
  63. Should only be used if type is STARPU_CPU_WORKER.
  64. @item @code{unsigned cuda_id}
  65. Should only be used if type is STARPU_CUDA_WORKER.
  66. @item @code{cl_device_id opencl_id}
  67. Should only be used if type is STARPU_OPENCL_WORKER.
  68. @end table
  69. @end table
  70. @end deftp
  71. @deftp {Data Type} {struct starpu_conf}
  72. This structure is passed to the @code{starpu_init} function in order
  73. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  74. When the default value is used, StarPU automatically selects the number of
  75. processing units and takes the default scheduling policy. The environment
  76. variables overwrite the equivalent parameters.
  77. @table @asis
  78. @item @code{const char *sched_policy_name} (default = NULL)
  79. This is the name of the scheduling policy. This can also be specified
  80. with the @code{STARPU_SCHED} environment variable.
  81. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  82. This is the definition of the scheduling policy. This field is ignored
  83. if @code{sched_policy_name} is set.
  84. @item @code{int ncpus} (default = -1)
  85. This is the number of CPU cores that StarPU can use. This can also be
  86. specified with the @code{STARPU_NCPU} environment variable.
  87. @item @code{int ncuda} (default = -1)
  88. This is the number of CUDA devices that StarPU can use. This can also
  89. be specified with the @code{STARPU_NCUDA} environment variable.
  90. @item @code{int nopencl} (default = -1)
  91. This is the number of OpenCL devices that StarPU can use. This can
  92. also be specified with the @code{STARPU_NOPENCL} environment variable.
  93. @item @code{int nmic} (default = -1)
  94. This is the number of MIC devices that StarPU can use. This can
  95. also be specified with the @code{STARPU_NMIC} environment variable.
  96. @item @code{int nscc} (default = -1)
  97. This is the number of SCC devices that StarPU can use. This can
  98. also be specified with the @code{STARPU_NSCC} environment variable.
  99. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  100. If this flag is set, the @code{workers_bindid} array indicates where the
  101. different workers are bound, otherwise StarPU automatically selects where to
  102. bind the different workers. This can also be specified with the
  103. @code{STARPU_WORKERS_CPUID} environment variable.
  104. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  105. If the @code{use_explicit_workers_bindid} flag is set, this array
  106. indicates where to bind the different workers. The i-th entry of the
  107. @code{workers_bindid} indicates the logical identifier of the
  108. processor which should execute the i-th worker. Note that the logical
  109. ordering of the CPUs is either determined by the OS, or provided by
  110. the @code{hwloc} library in case it is available.
  111. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  112. If this flag is set, the CUDA workers will be attached to the CUDA devices
  113. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  114. CUDA devices in a round-robin fashion. This can also be specified with the
  115. @code{STARPU_WORKERS_CUDAID} environment variable.
  116. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  117. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  118. contains the logical identifiers of the CUDA devices (as used by
  119. @code{cudaGetDevice}).
  120. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  121. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  122. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  123. the OpenCL devices in a round-robin fashion. This can also be specified with
  124. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  125. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  126. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  127. contains the logical identifiers of the OpenCL devices to be used.
  128. @item @code{unsigned use_explicit_workers_mic_gpuid} (default = 0)
  129. If this flag is set, the MIC workers will be attached to the MIC devices
  130. specified in the @code{workers_mic_gpuid} array. Otherwise, StarPU affects
  131. the MIC devices in a round-robin fashion. This can also be specified with
  132. the @code{STARPU_WORKERS_MICID} environment variable.
  133. @item @code{unsigned workers_mic_gpuid[STARPU_NMAXWORKERS]}
  134. If the @code{use_explicit_workers_mic_gpuid} flag is set, this array
  135. contains the logical identifiers of the MIC devices to be used.
  136. @item @code{unsigned use_explicit_workers_scc_gpuid} (default = 0)
  137. If this flag is set, the SCC workers will be attached to the SCC devices
  138. specified in the @code{workers_scc_gpuid} array. Otherwise, StarPU affects
  139. the SCC devices in a round-robin fashion. This can also be specified with
  140. the @code{STARPU_WORKERS_SCCID} environment variable.
  141. @item @code{unsigned workers_scc_gpuid[STARPU_NMAXWORKERS]}
  142. If the @code{use_explicit_workers_scc_gpuid} flag is set, this array
  143. contains the logical identifiers of the SCC devices to be used.
  144. @item @code{int calibrate} (default = 0)
  145. If this flag is set, StarPU will calibrate the performance models when
  146. executing tasks. If this value is equal to @code{-1}, the default value is
  147. used. If the value is equal to @code{1}, it will force continuing
  148. calibration. If the value is equal to @code{2}, the existing performance
  149. models will be overwritten. This can also be specified with the
  150. @code{STARPU_CALIBRATE} environment variable.
  151. @item @code{int bus_calibrate} (default = 0)
  152. If this flag is set, StarPU will recalibrate the bus. If this value is equal
  153. to @code{-1}, the default value is used. This can also be specified with the
  154. @code{STARPU_BUS_CALIBRATE} environment variable.
  155. @item @code{int single_combined_worker} (default = 0)
  156. By default, StarPU executes parallel tasks concurrently.
  157. Some parallel libraries (e.g. most OpenMP implementations) however do
  158. not support concurrent calls to parallel code. In such case, setting this flag
  159. makes StarPU only start one parallel task at a time (but other
  160. CPU and GPU tasks are not affected and can be run concurrently). The parallel
  161. task scheduler will however still however still try varying combined worker
  162. sizes to look for the most efficient ones.
  163. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  164. @item @code{mic_sink_program_path} (default = NULL)
  165. Path to the program to execute on the MIC device, compiled for MIC
  166. architecture. When set to NULL, StarPU automatically looks next to the host
  167. program location.
  168. @item @code{int disable_asynchronous_copy} (default = 0)
  169. This flag should be set to 1 to disable asynchronous copies between
  170. CPUs and all accelerators. This can also be specified with the
  171. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  172. The AMD implementation of OpenCL is known to
  173. fail when copying data asynchronously. When using this implementation,
  174. it is therefore necessary to disable asynchronous data transfers.
  175. This can also be specified at compilation time by giving to the
  176. configure script the option @code{--disable-asynchronous-copy}.
  177. @item @code{int disable_asynchronous_cuda_copy} (default = 0)
  178. This flag should be set to 1 to disable asynchronous copies between
  179. CPUs and CUDA accelerators. This can also be specified with the
  180. @code{STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY} environment variable.
  181. This can also be specified at compilation time by giving to the
  182. configure script the option @code{--disable-asynchronous-cuda-copy}.
  183. @item @code{int disable_asynchronous_opencl_copy} (default = 0)
  184. This flag should be set to 1 to disable asynchronous copies between
  185. CPUs and OpenCL accelerators. This can also be specified with the
  186. @code{STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY} environment variable.
  187. The AMD implementation of OpenCL is known to
  188. fail when copying data asynchronously. When using this implementation,
  189. it is therefore necessary to disable asynchronous data transfers.
  190. This can also be specified at compilation time by giving to the
  191. configure script the option @code{--disable-asynchronous-opencl-copy}.
  192. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  193. This can be set to an array of CUDA device identifiers for which
  194. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  195. size is specified by the @code{n_cuda_opengl_interoperability} field below
  196. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  197. This has to be set to the size of the array pointed to by the
  198. @code{cuda_opengl_interoperability} field.
  199. @item @code{struct starpu_driver *not_launched_drivers}
  200. The drivers that should not be launched by StarPU.
  201. @item @code{unsigned n_not_launched_drivers}
  202. The number of StarPU drivers that should not be launched by StarPU.
  203. @item @code{trace_buffer_size}
  204. Specifies the buffer size used for FxT tracing. Starting from FxT version
  205. 0.2.12, the buffer will automatically be flushed when it fills in, but it may
  206. still be interesting to specify a bigger value to avoid any flushing (which
  207. would disturb the trace).
  208. @end table
  209. @end deftp
  210. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  211. This is StarPU initialization method, which must be called prior to any other
  212. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  213. policy, number of cores, ...) by passing a non-null argument. Default
  214. configuration is used if the passed argument is @code{NULL}.
  215. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  216. indicates that no worker was available (so that StarPU was not initialized).
  217. @end deftypefun
  218. @deftypefun int starpu_initialize ({struct starpu_conf *}@var{conf}, int @var{argc}, {char ***}@var{argv})
  219. This is the same as @code{starpu_init}, but also takes the @code{argc} and
  220. @code{argv} as gotten by the application. This is needed for MIC and SCC
  221. execution so that instances of StarPU can know whether they are slaves or masters.
  222. @end deftypefun
  223. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  224. This function initializes the @var{conf} structure passed as argument
  225. with the default values. In case some configuration parameters are already
  226. specified through environment variables, @code{starpu_conf_init} initializes
  227. the fields of the structure according to the environment variables. For
  228. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  229. @code{.calibrate} field of the structure passed as argument.
  230. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  231. indicates that the argument was NULL.
  232. @end deftypefun
  233. @deftypefun void starpu_shutdown (void)
  234. This is StarPU termination method. It must be called at the end of the
  235. application: statistics and other post-mortem debugging information are not
  236. guaranteed to be available until this method has been called.
  237. @end deftypefun
  238. @deftypefun int starpu_asynchronous_copy_disabled (void)
  239. Return 1 if asynchronous data transfers between CPU and accelerators
  240. are disabled.
  241. @end deftypefun
  242. @deftypefun int starpu_asynchronous_cuda_copy_disabled (void)
  243. Return 1 if asynchronous data transfers between CPU and CUDA accelerators
  244. are disabled.
  245. @end deftypefun
  246. @deftypefun int starpu_asynchronous_opencl_copy_disabled (void)
  247. Return 1 if asynchronous data transfers between CPU and OpenCL accelerators
  248. are disabled.
  249. @end deftypefun
  250. @node Standard memory library
  251. @section Standard memory library
  252. @defmac STARPU_MALLOC_PINNED
  253. Value passed to the function @code{starpu_malloc_flags} to
  254. indicate the memory allocation should be pinned.
  255. @end defmac
  256. @defmac STARPU_MALLOC_COUNT
  257. Value passed to the function @code{starpu_malloc_flags} to
  258. indicate the memory allocation should be in the limit defined by
  259. the environment variables @code{STARPU_LIMIT_CUDA_devid_MEM},
  260. @code{STARPU_LIMIT_CUDA_MEM}, @code{STARPU_LIMIT_OPENCL_devid_MEM},
  261. @code{STARPU_LIMIT_OPENCL_MEM} and @code{STARPU_LIMIT_CPU_MEM}
  262. (@pxref{Limit memory}). If no memory is available, it tries to reclaim
  263. memory from StarPU. Memory allocated this way needs to be freed by
  264. calling the @code{starpu_free_flags} function with the same flag.
  265. @end defmac
  266. @deftypefun int starpu_malloc_flags (void **@var{A}, size_t @var{dim}, int @var{flags})
  267. Performs a memory allocation based on the constraints defined by the
  268. given @var{flag}.
  269. @end deftypefun
  270. @deftypefun void starpu_malloc_set_align (size_t @var{align})
  271. This functions sets an alignment constraints for @code{starpu_malloc}
  272. allocations. @var{align} must be a power of two. This is for instance called
  273. automatically by the OpenCL driver to specify its own alignment constraints.
  274. @end deftypefun
  275. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  276. This function allocates data of the given size in main memory. It will also try to pin it in
  277. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  278. thus permit data transfer and computation overlapping. The allocated buffer must
  279. be freed thanks to the @code{starpu_free} function.
  280. @end deftypefun
  281. @deftypefun int starpu_free (void *@var{A})
  282. This function frees memory which has previously been allocated with
  283. @code{starpu_malloc}.
  284. @end deftypefun
  285. @deftypefun int starpu_free_flags (void *@var{A}, size_t @var{dim}, int @var{flags})
  286. This function frees memory by specifying its size. The given
  287. @var{flags} should be consistent with the ones given to
  288. @code{starpu_malloc_flags} when allocating the memory.
  289. @end deftypefun
  290. @deftypefun ssize_t starpu_memory_get_available (unsigned @var{node})
  291. If a memory limit is defined on the given node (@pxref{Limit memory}),
  292. return the amount of available memory on the node. Otherwise return
  293. @code{-1}.
  294. @end deftypefun
  295. @node Workers' Properties
  296. @section Workers' Properties
  297. @deftp {Data Type} {enum starpu_worker_archtype}
  298. The different values are:
  299. @table @asis
  300. @item @code{STARPU_CPU_WORKER}
  301. @item @code{STARPU_CUDA_WORKER}
  302. @item @code{STARPU_OPENCL_WORKER}
  303. @item @code{STARPU_MIC_WORKER}
  304. @item @code{STARPU_SCC_WORKER}
  305. @end table
  306. @end deftp
  307. @deftypefun unsigned starpu_worker_get_count (void)
  308. This function returns the number of workers (i.e. processing units executing
  309. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  310. @end deftypefun
  311. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_worker_archtype} @var{type})
  312. Returns the number of workers of the given @var{type}. A positive
  313. (or @code{NULL}) value is returned in case of success, @code{-EINVAL} indicates that
  314. the type is not valid otherwise.
  315. @end deftypefun
  316. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  317. This function returns the number of CPUs controlled by StarPU. The returned
  318. value should be at most @code{STARPU_MAXCPUS}.
  319. @end deftypefun
  320. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  321. This function returns the number of CUDA devices controlled by StarPU. The returned
  322. value should be at most @code{STARPU_MAXCUDADEVS}.
  323. @end deftypefun
  324. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  325. This function returns the number of OpenCL devices controlled by StarPU. The returned
  326. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  327. @end deftypefun
  328. @deftypefun unsigned starpu_mic_worker_get_count (void)
  329. This function returns the number of MIC workers controlled by StarPU.
  330. @end deftypefun
  331. @deftypefun unsigned starpu_mic_device_get_count (void)
  332. This function returns the number of MIC devices controlled by StarPU. The returned
  333. value should be at most @code{STARPU_MAXMICDEVS}.
  334. @end deftypefun
  335. @deftypefun unsigned starpu_scc_worker_get_count (void)
  336. This function returns the number of SCC devices controlled by StarPU. The returned
  337. value should be at most @code{STARPU_MAXSCCDEVS}.
  338. @end deftypefun
  339. @deftypefun int starpu_worker_get_id (void)
  340. This function returns the identifier of the current worker, i.e the one associated to the calling
  341. thread. The returned value is either -1 if the current context is not a StarPU
  342. worker (i.e. when called from the application outside a task or a callback), or
  343. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  344. @end deftypefun
  345. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_worker_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  346. This function gets the list of identifiers of workers with the given
  347. type. It fills the workerids array with the identifiers of the workers that have the type
  348. indicated in the first argument. The maxsize argument indicates the size of the
  349. workids array. The returned value gives the number of identifiers that were put
  350. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  351. workers with the appropriate type: in that case, the array is filled with the
  352. maxsize first elements. To avoid such overflows, the value of maxsize can be
  353. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  354. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  355. @end deftypefun
  356. @deftypefun int starpu_worker_get_by_type ({enum starpu_worker_archtype} @var{type}, int @var{num})
  357. This returns the identifier of the @var{num}-th worker that has the specified type
  358. @var{type}. If there are no such worker, -1 is returned.
  359. @end deftypefun
  360. @deftypefun int starpu_worker_get_by_devid ({enum starpu_worker_archtype} @var{type}, int @var{devid})
  361. This returns the identifier of the worker that has the specified type
  362. @var{type} and devid @var{devid} (which may not be the n-th, if some devices are
  363. skipped for instance). If there are no such worker, -1 is returned.
  364. @end deftypefun
  365. @deftypefun int starpu_worker_get_devid (int @var{id})
  366. This functions returns the device id of the given worker. The worker
  367. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  368. CUDA worker, this device identifier is the logical device identifier exposed by
  369. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  370. identifier of a CPU worker is the logical identifier of the core on which the
  371. worker was bound; this identifier is either provided by the OS or by the
  372. @code{hwloc} library in case it is available.
  373. @end deftypefun
  374. @deftypefun {enum starpu_worker_archtype} starpu_worker_get_type (int @var{id})
  375. This function returns the type of processing unit associated to a
  376. worker. The worker identifier is a value returned by the
  377. @code{starpu_worker_get_id} function). The returned value
  378. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  379. core, @code{STARPU_CUDA_WORKER} for a CUDA device, and
  380. @code{STARPU_OPENCL_WORKER} for a OpenCL device. The value returned for an invalid
  381. identifier is unspecified.
  382. @end deftypefun
  383. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  384. This function allows to get the name of a given worker.
  385. StarPU associates a unique human readable string to each processing unit. This
  386. function copies at most the @var{maxlen} first bytes of the unique string
  387. associated to a worker identified by its identifier @var{id} into the
  388. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  389. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  390. function on an invalid identifier results in an unspecified behaviour.
  391. @end deftypefun
  392. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  393. This function returns the identifier of the memory node associated to the
  394. worker identified by @var{workerid}.
  395. @end deftypefun
  396. @deftp {Data Type} {enum starpu_node_kind}
  397. todo
  398. @table @asis
  399. @item @code{STARPU_UNUSED}
  400. @item @code{STARPU_CPU_RAM}
  401. @item @code{STARPU_CUDA_RAM}
  402. @item @code{STARPU_OPENCL_RAM}
  403. @item @code{STARPU_MIC_RAM}
  404. @item @code{STARPU_SCC_RAM}
  405. @item @code{STARPU_SCC_SHM}
  406. @end table
  407. @end deftp
  408. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (unsigned @var{node})
  409. Returns the type of the given node as defined by @code{enum
  410. starpu_node_kind}. For example, when defining a new data interface,
  411. this function should be used in the allocation function to determine
  412. on which device the memory needs to be allocated.
  413. @end deftypefun
  414. @node Data Management
  415. @section Data Management
  416. @menu
  417. * Introduction to Data Management::
  418. * Basic Data Management API::
  419. * Access registered data from the application::
  420. @end menu
  421. This section describes the data management facilities provided by StarPU.
  422. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  423. design their own data interfaces if required.
  424. @node Introduction to Data Management
  425. @subsection Introduction
  426. Data management is done at a high-level in StarPU: rather than accessing a mere
  427. list of contiguous buffers, the tasks may manipulate data that are described by
  428. a high-level construct which we call data interface.
  429. An example of data interface is the "vector" interface which describes a
  430. contiguous data array on a spefic memory node. This interface is a simple
  431. structure containing the number of elements in the array, the size of the
  432. elements, and the address of the array in the appropriate address space (this
  433. address may be invalid if there is no valid copy of the array in the memory
  434. node). More informations on the data interfaces provided by StarPU are
  435. given in @ref{Data Interfaces}.
  436. When a piece of data managed by StarPU is used by a task, the task
  437. implementation is given a pointer to an interface describing a valid copy of
  438. the data that is accessible from the current processing unit.
  439. Every worker is associated to a memory node which is a logical abstraction of
  440. the address space from which the processing unit gets its data. For instance,
  441. the memory node associated to the different CPU workers represents main memory
  442. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  443. Every memory node is identified by a logical index which is accessible from the
  444. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  445. to StarPU, the specified memory node indicates where the piece of data
  446. initially resides (we also call this memory node the home node of a piece of
  447. data).
  448. @node Basic Data Management API
  449. @subsection Basic Data Management API
  450. @deftp {Data Type} {enum starpu_data_access_mode}
  451. This datatype describes a data access mode. The different available modes are:
  452. @table @asis
  453. @item @code{STARPU_R}: read-only mode.
  454. @item @code{STARPU_W}: write-only mode.
  455. @item @code{STARPU_RW}: read-write mode.
  456. This is equivalent to @code{STARPU_R|STARPU_W}.
  457. @item @code{STARPU_SCRATCH}: scratch memory.
  458. A temporary buffer is allocated for the task, but StarPU does not
  459. enforce data consistency---i.e. each device has its own buffer,
  460. independently from each other (even for CPUs), and no data transfer is
  461. ever performed. This is useful for temporary variables to avoid
  462. allocating/freeing buffers inside each task.
  463. Currently, no behavior is defined concerning the relation with the
  464. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  465. registration---i.e., the value of the scratch buffer is undefined at
  466. entry of the codelet function. It is being considered for future
  467. extensions at least to define the initial value. For now, data to be
  468. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  469. a @code{NULL} pointer, since the value of the provided buffer is simply
  470. ignored for now.
  471. @item @code{STARPU_REDUX}: reduction mode. TODO!
  472. @end table
  473. @end deftp
  474. @deftp {Data Type} {starpu_data_handle_t}
  475. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  476. data. Once a piece of data has been registered to StarPU, it is associated to a
  477. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  478. over the entire machine, so that we can maintain data consistency and locate
  479. data replicates for instance.
  480. @end deftp
  481. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  482. Register a piece of data into the handle located at the @var{handleptr}
  483. address. The @var{data_interface} buffer contains the initial description of the
  484. data in the home node. The @var{ops} argument is a pointer to a structure
  485. describing the different methods used to manipulate this type of interface. See
  486. @ref{struct starpu_data_interface_ops} for more details on this structure.
  487. If @code{home_node} is -1, StarPU will automatically
  488. allocate the memory when it is used for the
  489. first time in write-only mode. Once such data handle has been automatically
  490. allocated, it is possible to access it using any access mode.
  491. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  492. matrix) which can be registered by the means of helper functions (e.g.
  493. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  494. @end deftypefun
  495. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  496. Register a new piece of data into the handle @var{handledst} with the
  497. same interface as the handle @var{handlesrc}.
  498. @end deftypefun
  499. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  500. This function unregisters a data handle from StarPU. If the data was
  501. automatically allocated by StarPU because the home node was -1, all
  502. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  503. is put back into the home node in the buffer that was initially registered.
  504. Using a data handle that has been unregistered from StarPU results in an
  505. undefined behaviour.
  506. @end deftypefun
  507. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  508. This is the same as starpu_data_unregister, except that StarPU does not put back
  509. a valid copy into the home node, in the buffer that was initially registered.
  510. @end deftypefun
  511. @deftypefun void starpu_data_unregister_submit (starpu_data_handle_t @var{handle})
  512. Destroy the data handle once it is not needed anymore by any submitted
  513. task. No coherency is assumed.
  514. @end deftypefun
  515. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  516. Destroy all replicates of the data handle immediately. After data invalidation,
  517. the first access to the handle must be performed in write-only mode.
  518. Accessing an invalidated data in read-mode results in undefined
  519. behaviour.
  520. @end deftypefun
  521. @deftypefun void starpu_data_invalidate_submit (starpu_data_handle_t @var{handle})
  522. Submits invalidation of the data handle after completion of previously submitted tasks.
  523. @end deftypefun
  524. @c TODO create a specific sections about user interaction with the DSM ?
  525. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  526. This function sets the write-through mask of a given data, i.e. a bitmask of
  527. nodes where the data should be always replicated after modification. It also
  528. prevents the data from being evicted from these nodes when memory gets scarse.
  529. @end deftypefun
  530. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  531. Issue a prefetch request for a given data to a given node, i.e.
  532. requests that the data be replicated to the given node, so that it is available
  533. there for tasks. If the @var{async} parameter is 0, the call will block until
  534. the transfer is achieved, else the call will return as soon as the request is
  535. scheduled (which may however have to wait for a task completion).
  536. @end deftypefun
  537. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  538. Return the handle corresponding to the data pointed to by the @var{ptr}
  539. host pointer.
  540. @end deftypefun
  541. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, unsigned @var{node})
  542. Explicitly ask StarPU to allocate room for a piece of data on the specified
  543. memory node.
  544. @end deftypefun
  545. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  546. Query the status of the handle on the specified memory node.
  547. @end deftypefun
  548. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  549. This function allows to specify that a piece of data can be discarded
  550. without impacting the application.
  551. @end deftypefun
  552. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  553. This sets the codelets to be used for the @var{handle} when it is accessed in
  554. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  555. codelet, and reduction between per-worker buffers will be done with the
  556. @var{redux_cl} codelet.
  557. @end deftypefun
  558. @deftypefun struct starpu_data_interface_ops* starpu_data_get_interface_ops (starpu_data_handle_t @var{handle})
  559. Get a pointer to the structure describing the different methods used
  560. to manipulate the given data. See @ref{struct starpu_data_interface_ops} for more details on this structure.
  561. @end deftypefun
  562. @deftypefun unsigned starpu_data_get_sequential_consistency_flag (starpu_data_handle_t @var{handle})
  563. Return the sequential consistency flag of the given data.
  564. @end deftypefun
  565. @node Access registered data from the application
  566. @subsection Access registered data from the application
  567. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_data_access_mode} @var{mode})
  568. The application must call this function prior to accessing registered data from
  569. main memory outside tasks. StarPU ensures that the application will get an
  570. up-to-date copy of the data in main memory located where the data was
  571. originally registered, and that all concurrent accesses (e.g. from tasks) will
  572. be consistent with the access mode specified in the @var{mode} argument.
  573. @code{starpu_data_release} must be called once the application does not need to
  574. access the piece of data anymore. Note that implicit data
  575. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  576. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  577. the data, unless they have been disabled explictly by calling
  578. @code{starpu_data_set_default_sequential_consistency_flag} or
  579. @code{starpu_data_set_sequential_consistency_flag}.
  580. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  581. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  582. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  583. @end deftypefun
  584. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_data_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  585. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  586. @code{starpu_data_acquire}. When the data specified in the first argument is
  587. available in the appropriate access mode, the callback function is executed.
  588. The application may access the requested data during the execution of this
  589. callback. The callback function must call @code{starpu_data_release} once the
  590. application does not need to access the piece of data anymore.
  591. Note that implicit data dependencies are also enforced by
  592. @code{starpu_data_acquire_cb} in case they are not disabled.
  593. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  594. be called from task callbacks. Upon successful completion, this function
  595. returns 0.
  596. @end deftypefun
  597. @deftypefun int starpu_data_acquire_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_data_access_mode} @var{mode})
  598. This is the same as @code{starpu_data_acquire}, except that the data will be
  599. available on the given memory node instead of main memory.
  600. @end deftypefun
  601. @deftypefun int starpu_data_acquire_on_node_cb (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_data_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  602. This is the same as @code{starpu_data_acquire_cb}, except that the data will be
  603. available on the given memory node instead of main memory.
  604. @end deftypefun
  605. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_data_access_mode} @var{mode}, code)
  606. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  607. except that the code to be executed in a callback is directly provided as a
  608. macro parameter, and the data handle is automatically released after it. This
  609. permits to easily execute code which depends on the value of some registered
  610. data. This is non-blocking too and may be called from task callbacks.
  611. @end defmac
  612. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  613. This function releases the piece of data acquired by the application either by
  614. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  615. @end deftypefun
  616. @deftypefun void starpu_data_release_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node})
  617. This is the same as @code{starpu_data_release}, except that the data will be
  618. available on the given memory node instead of main memory.
  619. @end deftypefun
  620. @node Data Interfaces
  621. @section Data Interfaces
  622. @menu
  623. * Registering Data::
  624. * Accessing Data Interfaces::
  625. * Defining Interface::
  626. @end menu
  627. @node Registering Data
  628. @subsection Registering Data
  629. There are several ways to register a memory region so that it can be managed by
  630. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  631. matrices as well as BCSR and CSR sparse matrices.
  632. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  633. Register a void interface. There is no data really associated to that
  634. interface, but it may be used as a synchronization mechanism. It also
  635. permits to express an abstract piece of data that is managed by the
  636. application internally: this makes it possible to forbid the
  637. concurrent execution of different tasks accessing the same "void" data
  638. in read-write concurrently.
  639. @end deftypefun
  640. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  641. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  642. typically a scalar, and initialize @var{handle} to represent this data
  643. item.
  644. @cartouche
  645. @smallexample
  646. float var;
  647. starpu_data_handle_t var_handle;
  648. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  649. @end smallexample
  650. @end cartouche
  651. @end deftypefun
  652. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  653. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  654. @var{ptr} and initialize @var{handle} to represent it.
  655. @cartouche
  656. @smallexample
  657. float vector[NX];
  658. starpu_data_handle_t vector_handle;
  659. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  660. sizeof(vector[0]));
  661. @end smallexample
  662. @end cartouche
  663. @end deftypefun
  664. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  665. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  666. pointed by @var{ptr} and initialize @var{handle} to represent it.
  667. @var{ld} specifies the number of elements between rows.
  668. a value greater than @var{nx} adds padding, which can be useful for
  669. alignment purposes.
  670. @cartouche
  671. @smallexample
  672. float *matrix;
  673. starpu_data_handle_t matrix_handle;
  674. matrix = (float*)malloc(width * height * sizeof(float));
  675. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  676. width, width, height, sizeof(float));
  677. @end smallexample
  678. @end cartouche
  679. @end deftypefun
  680. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  681. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  682. elements pointed by @var{ptr} and initialize @var{handle} to represent
  683. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  684. between rows and between z planes.
  685. @cartouche
  686. @smallexample
  687. float *block;
  688. starpu_data_handle_t block_handle;
  689. block = (float*)malloc(nx*ny*nz*sizeof(float));
  690. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  691. nx, nx*ny, nx, ny, nz, sizeof(float));
  692. @end smallexample
  693. @end cartouche
  694. @end deftypefun
  695. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  696. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  697. Compressed Sparse Row Representation) sparse matrix interface.
  698. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  699. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  700. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  701. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  702. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  703. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  704. or 1).
  705. @end deftypefun
  706. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  707. This variant of @code{starpu_data_register} uses the CSR (Compressed
  708. Sparse Row Representation) sparse matrix interface.
  709. TODO
  710. @end deftypefun
  711. @deftypefun void starpu_coo_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{n_values}, uint32_t *@var{columns}, uint32_t *@var{rows}, uintptr_t @var{values}, size_t @var{elemsize});
  712. Register the @var{nx}x@var{ny} 2D matrix given in the COO format, using the
  713. @var{columns}, @var{rows}, @var{values} arrays, which must have @var{n_values}
  714. elements of size @var{elemsize}. Initialize @var{handleptr}.
  715. @end deftypefun
  716. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  717. Return the interface associated with @var{handle} on @var{memory_node}.
  718. @end deftypefun
  719. @node Accessing Data Interfaces
  720. @subsection Accessing Data Interfaces
  721. Each data interface is provided with a set of field access functions.
  722. The ones using a @code{void *} parameter aimed to be used in codelet
  723. implementations (see for example the code in @ref{Vector Scaling Using StarPU's API}).
  724. @deftp {Data Type} {enum starpu_data_interface_id}
  725. The different values are:
  726. @table @asis
  727. @item @code{STARPU_MATRIX_INTERFACE_ID}
  728. @item @code{STARPU_BLOCK_INTERFACE_ID}
  729. @item @code{STARPU_VECTOR_INTERFACE_ID}
  730. @item @code{STARPU_CSR_INTERFACE_ID}
  731. @item @code{STARPU_BCSR_INTERFACE_ID}
  732. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  733. @item @code{STARPU_VOID_INTERFACE_ID}
  734. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  735. @item @code{STARPU_COO_INTERCACE_ID}
  736. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  737. @end table
  738. @end deftp
  739. @menu
  740. * Accessing Handle::
  741. * Accessing Variable Data Interfaces::
  742. * Accessing Vector Data Interfaces::
  743. * Accessing Matrix Data Interfaces::
  744. * Accessing Block Data Interfaces::
  745. * Accessing BCSR Data Interfaces::
  746. * Accessing CSR Data Interfaces::
  747. * Accessing COO Data Interfaces::
  748. @end menu
  749. @node Accessing Handle
  750. @subsubsection Handle
  751. @deftypefun {void *} starpu_data_handle_to_pointer (starpu_data_handle_t @var{handle}, unsigned @var{node})
  752. Return the pointer associated with @var{handle} on node @var{node} or
  753. @code{NULL} if @var{handle}'s interface does not support this
  754. operation or data for this handle is not allocated on that node.
  755. @end deftypefun
  756. @deftypefun {void *} starpu_data_get_local_ptr (starpu_data_handle_t @var{handle})
  757. Return the local pointer associated with @var{handle} or @code{NULL}
  758. if @var{handle}'s interface does not have data allocated locally
  759. @end deftypefun
  760. @deftypefun {enum starpu_data_interface_id} starpu_data_get_interface_id (starpu_data_handle_t @var{handle})
  761. Return the unique identifier of the interface associated with the given @var{handle}.
  762. @end deftypefun
  763. @deftypefun size_t starpu_data_get_size (starpu_data_handle_t @var{handle})
  764. Return the size of the data associated with @var{handle}
  765. @end deftypefun
  766. @deftypefun int starpu_data_pack (starpu_data_handle_t @var{handle}, {void **}@var{ptr}, {starpu_ssize_t *}@var{count})
  767. Execute the packing operation of the interface of the data registered
  768. at @var{handle} (@pxref{struct starpu_data_interface_ops}). This
  769. packing operation must allocate a buffer large enough at @var{ptr} and
  770. copy into the newly allocated buffer the data associated to
  771. @var{handle}. @var{count} will be set to the size of the allocated
  772. buffer.
  773. If @var{ptr} is @code{NULL}, the function should not copy the data in the
  774. buffer but just set @var{count} to the size of the buffer which
  775. would have been allocated. The special value @code{-1} indicates the
  776. size is yet unknown.
  777. @end deftypefun
  778. @deftypefun int starpu_data_unpack (starpu_data_handle_t @var{handle}, {void *}@var{ptr}, size_t @var{count})
  779. Unpack in @var{handle} the data located at @var{ptr} of size
  780. @var{count} as described by the interface of the data. The interface
  781. registered at @var{handle} must define a unpacking operation
  782. (@pxref{struct starpu_data_interface_ops}). The memory at the address @code{ptr}
  783. is freed after calling the data unpacking operation.
  784. @end deftypefun
  785. @node Accessing Variable Data Interfaces
  786. @subsubsection Variable Data Interfaces
  787. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  788. Return the size of the variable designated by @var{handle}.
  789. @end deftypefun
  790. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  791. Return a pointer to the variable designated by @var{handle}.
  792. @end deftypefun
  793. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  794. Return a pointer to the variable designated by @var{interface}.
  795. @end defmac
  796. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  797. Return the size of the variable designated by @var{interface}.
  798. @end defmac
  799. @defmac STARPU_VARIABLE_GET_DEV_HANDLE ({void *}@var{interface})
  800. Return a device handle for the variable designated by @var{interface}, to be
  801. used on OpenCL. The offset documented below has to be used in addition to this.
  802. @end defmac
  803. @defmac STARPU_VARIABLE_GET_OFFSET ({void *}@var{interface})
  804. Return the offset in the variable designated by @var{interface}, to be used
  805. with the device handle.
  806. @end defmac
  807. @node Accessing Vector Data Interfaces
  808. @subsubsection Vector Data Interfaces
  809. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  810. Return the number of elements registered into the array designated by @var{handle}.
  811. @end deftypefun
  812. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  813. Return the size of each element of the array designated by @var{handle}.
  814. @end deftypefun
  815. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  816. Return the local pointer associated with @var{handle}.
  817. @end deftypefun
  818. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  819. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  820. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  821. @end defmac
  822. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  823. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  824. documented below has to be used in addition to this.
  825. @end defmac
  826. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  827. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  828. @end defmac
  829. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  830. Return the number of elements registered into the array designated by @var{interface}.
  831. @end defmac
  832. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  833. Return the size of each element of the array designated by @var{interface}.
  834. @end defmac
  835. @node Accessing Matrix Data Interfaces
  836. @subsubsection Matrix Data Interfaces
  837. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  838. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  839. @end deftypefun
  840. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  841. Return the number of elements on the y-axis of the matrix designated by
  842. @var{handle}.
  843. @end deftypefun
  844. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  845. Return the number of elements between each row of the matrix designated by
  846. @var{handle}. Maybe be equal to nx when there is no padding.
  847. @end deftypefun
  848. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  849. Return the local pointer associated with @var{handle}.
  850. @end deftypefun
  851. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  852. Return the size of the elements registered into the matrix designated by
  853. @var{handle}.
  854. @end deftypefun
  855. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  856. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  857. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  858. used instead.
  859. @end defmac
  860. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  861. Return a device handle for the matrix designated by @var{interface}, to be used
  862. on OpenCL. The offset documented below has to be used in addition to this.
  863. @end defmac
  864. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  865. Return the offset in the matrix designated by @var{interface}, to be used with
  866. the device handle.
  867. @end defmac
  868. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  869. Return the number of elements on the x-axis of the matrix designated by
  870. @var{interface}.
  871. @end defmac
  872. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  873. Return the number of elements on the y-axis of the matrix designated by
  874. @var{interface}.
  875. @end defmac
  876. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  877. Return the number of elements between each row of the matrix designated by
  878. @var{interface}. May be equal to nx when there is no padding.
  879. @end defmac
  880. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  881. Return the size of the elements registered into the matrix designated by
  882. @var{interface}.
  883. @end defmac
  884. @node Accessing Block Data Interfaces
  885. @subsubsection Block Data Interfaces
  886. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  887. Return the number of elements on the x-axis of the block designated by @var{handle}.
  888. @end deftypefun
  889. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  890. Return the number of elements on the y-axis of the block designated by @var{handle}.
  891. @end deftypefun
  892. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  893. Return the number of elements on the z-axis of the block designated by @var{handle}.
  894. @end deftypefun
  895. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  896. Return the number of elements between each row of the block designated by
  897. @var{handle}, in the format of the current memory node.
  898. @end deftypefun
  899. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  900. Return the number of elements between each z plane of the block designated by
  901. @var{handle}, in the format of the current memory node.
  902. @end deftypefun
  903. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  904. Return the local pointer associated with @var{handle}.
  905. @end deftypefun
  906. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  907. Return the size of the elements of the block designated by @var{handle}.
  908. @end deftypefun
  909. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  910. Return a pointer to the block designated by @var{interface}.
  911. @end defmac
  912. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  913. Return a device handle for the block designated by @var{interface}, to be used
  914. on OpenCL. The offset document below has to be used in addition to this.
  915. @end defmac
  916. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  917. Return the offset in the block designated by @var{interface}, to be used with
  918. the device handle.
  919. @end defmac
  920. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  921. Return the number of elements on the x-axis of the block designated by @var{handle}.
  922. @end defmac
  923. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  924. Return the number of elements on the y-axis of the block designated by @var{handle}.
  925. @end defmac
  926. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  927. Return the number of elements on the z-axis of the block designated by @var{handle}.
  928. @end defmac
  929. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  930. Return the number of elements between each row of the block designated by
  931. @var{interface}. May be equal to nx when there is no padding.
  932. @end defmac
  933. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  934. Return the number of elements between each z plane of the block designated by
  935. @var{interface}. May be equal to nx*ny when there is no padding.
  936. @end defmac
  937. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  938. Return the size of the elements of the matrix designated by @var{interface}.
  939. @end defmac
  940. @node Accessing BCSR Data Interfaces
  941. @subsubsection BCSR Data Interfaces
  942. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  943. Return the number of non-zero elements in the matrix designated by @var{handle}.
  944. @end deftypefun
  945. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  946. Return the number of rows (in terms of blocks of size r*c) in the matrix
  947. designated by @var{handle}.
  948. @end deftypefun
  949. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  950. Return the index at which all arrays (the column indexes, the row pointers...)
  951. of the matrix desginated by @var{handle} start.
  952. @end deftypefun
  953. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  954. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  955. @end deftypefun
  956. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  957. Return a pointer to the column index, which holds the positions of the non-zero
  958. entries in the matrix designated by @var{handle}.
  959. @end deftypefun
  960. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  961. Return the row pointer array of the matrix designated by @var{handle}.
  962. @end deftypefun
  963. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  964. Return the number of rows in a block.
  965. @end deftypefun
  966. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  967. Return the numberof columns in a block.
  968. @end deftypefun
  969. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  970. Return the size of the elements in the matrix designated by @var{handle}.
  971. @end deftypefun
  972. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  973. Return the number of non-zero values in the matrix designated by @var{interface}.
  974. @end defmac
  975. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  976. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  977. @end defmac
  978. @defmac STARPU_BCSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  979. Return a device handle for the array of non-zero values in the matrix designated
  980. by @var{interface}. The offset documented below has to be used in addition to
  981. this.
  982. @end defmac
  983. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  984. Return a pointer to the column index of the matrix designated by @var{interface}.
  985. @end defmac
  986. @defmac STARPU_BCSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  987. Return a device handle for the column index of the matrix designated by
  988. @var{interface}. The offset documented below has to be used in addition to
  989. this.
  990. @end defmac
  991. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  992. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  993. @end defmac
  994. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  995. Return a device handle for the row pointer array of the matrix designated by
  996. @var{interface}. The offset documented below has to be used in addition to
  997. this.
  998. @end defmac
  999. @defmac STARPU_BCSR_GET_OFFSET ({void *}@var{interface})
  1000. Return the offset in the arrays (coling, rowptr, nzval) of the matrix
  1001. designated by @var{interface}, to be used with the device handles.
  1002. @end defmac
  1003. @node Accessing CSR Data Interfaces
  1004. @subsubsection CSR Data Interfaces
  1005. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  1006. Return the number of non-zero values in the matrix designated by @var{handle}.
  1007. @end deftypefun
  1008. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  1009. Return the size of the row pointer array of the matrix designated by @var{handle}.
  1010. @end deftypefun
  1011. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  1012. Return the index at which all arrays (the column indexes, the row pointers...)
  1013. of the matrix designated by @var{handle} start.
  1014. @end deftypefun
  1015. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  1016. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  1017. @end deftypefun
  1018. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  1019. Return a local pointer to the column index of the matrix designated by @var{handle}.
  1020. @end deftypefun
  1021. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  1022. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  1023. @end deftypefun
  1024. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  1025. Return the size of the elements registered into the matrix designated by @var{handle}.
  1026. @end deftypefun
  1027. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  1028. Return the number of non-zero values in the matrix designated by @var{interface}.
  1029. @end defmac
  1030. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  1031. Return the size of the row pointer array of the matrix designated by @var{interface}.
  1032. @end defmac
  1033. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  1034. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  1035. @end defmac
  1036. @defmac STARPU_CSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  1037. Return a device handle for the array of non-zero values in the matrix designated
  1038. by @var{interface}. The offset documented below has to be used in addition to
  1039. this.
  1040. @end defmac
  1041. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  1042. Return a pointer to the column index of the matrix designated by @var{interface}.
  1043. @end defmac
  1044. @defmac STARPU_CSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  1045. Return a device handle for the column index of the matrix designated by
  1046. @var{interface}. The offset documented below has to be used in addition to
  1047. this.
  1048. @end defmac
  1049. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  1050. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  1051. @end defmac
  1052. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  1053. Return a device handle for the row pointer array of the matrix designated by
  1054. @var{interface}. The offset documented below has to be used in addition to
  1055. this.
  1056. @end defmac
  1057. @defmac STARPU_CSR_GET_OFFSET ({void *}@var{interface})
  1058. Return the offset in the arrays (colind, rowptr, nzval) of the matrix
  1059. designated by @var{interface}, to be used with the device handles.
  1060. @end defmac
  1061. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  1062. Return the index at which all arrays (the column indexes, the row pointers...)
  1063. of the @var{interface} start.
  1064. @end defmac
  1065. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  1066. Return the size of the elements registered into the matrix designated by @var{interface}.
  1067. @end defmac
  1068. @node Accessing COO Data Interfaces
  1069. @subsubsection COO Data Interfaces
  1070. @defmac STARPU_COO_GET_COLUMNS ({void *}@var{interface})
  1071. Return a pointer to the column array of the matrix designated by
  1072. @var{interface}.
  1073. @end defmac
  1074. @defmac STARPU_COO_GET_COLUMNS_DEV_HANDLE ({void *}@var{interface})
  1075. Return a device handle for the column array of the matrix designated by
  1076. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1077. used in addition to this.
  1078. @end defmac
  1079. @defmac STARPU_COO_GET_ROWS (interface)
  1080. Return a pointer to the rows array of the matrix designated by @var{interface}.
  1081. @end defmac
  1082. @defmac STARPU_COO_GET_ROWS_DEV_HANDLE ({void *}@var{interface})
  1083. Return a device handle for the row array of the matrix designated by
  1084. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1085. used in addition to this.
  1086. @end defmac
  1087. @defmac STARPU_COO_GET_VALUES (interface)
  1088. Return a pointer to the values array of the matrix designated by
  1089. @var{interface}.
  1090. @end defmac
  1091. @defmac STARPU_COO_GET_VALUES_DEV_HANDLE ({void *}@var{interface})
  1092. Return a device handle for the value array of the matrix designated by
  1093. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1094. used in addition to this.
  1095. @end defmac
  1096. @defmac STARPU_COO_GET_OFFSET ({void *}@var{itnerface})
  1097. Return the offset in the arrays of the COO matrix designated by @var{interface}.
  1098. @end defmac
  1099. @defmac STARPU_COO_GET_NX (interface)
  1100. Return the number of elements on the x-axis of the matrix designated by
  1101. @var{interface}.
  1102. @end defmac
  1103. @defmac STARPU_COO_GET_NY (interface)
  1104. Return the number of elements on the y-axis of the matrix designated by
  1105. @var{interface}.
  1106. @end defmac
  1107. @defmac STARPU_COO_GET_NVALUES (interface)
  1108. Return the number of values registered in the matrix designated by
  1109. @var{interface}.
  1110. @end defmac
  1111. @defmac STARPU_COO_GET_ELEMSIZE (interface)
  1112. Return the size of the elements registered into the matrix designated by
  1113. @var{interface}.
  1114. @end defmac
  1115. @node Defining Interface
  1116. @subsection Defining Interface
  1117. Applications can provide their own interface as shown in
  1118. @pxref{Defining a New Data Interface}.
  1119. @deftypefun uintptr_t starpu_malloc_on_node (unsigned @var{dst_node}, size_t @var{size})
  1120. Allocate @var{size} bytes on node @var{dst_node}. This returns 0 if allocation
  1121. failed, the allocation method should then return -ENOMEM as allocated size.
  1122. @end deftypefun
  1123. @deftypefun void starpu_free_on_node (unsigned @var{dst_node}, uintptr_t @var{addr}, size_t @var{size})
  1124. Free @var{addr} of @var{size} bytes on node @var{dst_node}.
  1125. @end deftypefun
  1126. @deftp {Data Type} {struct starpu_data_interface_ops}
  1127. @anchor{struct starpu_data_interface_ops}
  1128. Per-interface data transfer methods.
  1129. @table @asis
  1130. @item @code{void (*register_data_handle)(starpu_data_handle_t handle, unsigned home_node, void *data_interface)}
  1131. Register an existing interface into a data handle.
  1132. @item @code{starpu_ssize_t (*allocate_data_on_node)(void *data_interface, unsigned node)}
  1133. Allocate data for the interface on a given node.
  1134. @item @code{ void (*free_data_on_node)(void *data_interface, unsigned node)}
  1135. Free data of the interface on a given node.
  1136. @item @code{ const struct starpu_data_copy_methods *copy_methods}
  1137. ram/cuda/opencl synchronous and asynchronous transfer methods.
  1138. @item @code{ void * (*handle_to_pointer)(starpu_data_handle_t handle, unsigned node)}
  1139. Return the current pointer (if any) for the handle on the given node.
  1140. @item @code{ size_t (*get_size)(starpu_data_handle_t handle)}
  1141. Return an estimation of the size of data, for performance models.
  1142. @item @code{ uint32_t (*footprint)(starpu_data_handle_t handle)}
  1143. Return a 32bit footprint which characterizes the data size.
  1144. @item @code{ int (*compare)(void *data_interface_a, void *data_interface_b)}
  1145. Compare the data size of two interfaces.
  1146. @item @code{ void (*display)(starpu_data_handle_t handle, FILE *f)}
  1147. Dump the sizes of a handle to a file.
  1148. @item @code{enum starpu_data_interface_id interfaceid}
  1149. An identifier that is unique to each interface.
  1150. @item @code{size_t interface_size}
  1151. The size of the interface data descriptor.
  1152. @item @code{int is_multiformat}
  1153. todo
  1154. @item @code{struct starpu_multiformat_data_interface_ops* (*get_mf_ops)(void *data_interface)}
  1155. todo
  1156. @item @code{int (*pack_data)(starpu_data_handle_t handle, unsigned node, void **ptr, ssize_t *count)}
  1157. Pack the data handle into a contiguous buffer at the address
  1158. @code{ptr} and set the size of the newly created buffer in
  1159. @code{count}. If @var{ptr} is @code{NULL}, the function should not copy the data in the
  1160. buffer but just set @var{count} to the size of the buffer which
  1161. would have been allocated. The special value @code{-1} indicates the
  1162. size is yet unknown.
  1163. @item @code{int (*unpack_data)(starpu_data_handle_t handle, unsigned node, void *ptr, size_t count)}
  1164. Unpack the data handle from the contiguous buffer at the address @code{ptr} of size @var{count}
  1165. @end table
  1166. @end deftp
  1167. @deftp {Data Type} {struct starpu_data_copy_methods}
  1168. Defines the per-interface methods. If the @code{any_to_any} method is provided,
  1169. it will be used by default if no more specific method is provided. It can still
  1170. be useful to provide more specific method in case of e.g. available particular
  1171. CUDA or OpenCL support.
  1172. @table @asis
  1173. @item @code{int (*@{ram,cuda,opencl,mic@}_to_@{ram,cuda,opencl,mic@})(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node)}
  1174. These 14 functions define how to copy data from the @var{src_interface}
  1175. interface on the @var{src_node} node to the @var{dst_interface} interface
  1176. on the @var{dst_node} node. They return 0 on success.
  1177. @item @code{int (*@{ram,cuda@}_to_@{ram,cuda@}_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, cudaStream_t stream)}
  1178. These 3 functions (@code{ram_to_ram} is not among these) define how to copy
  1179. data from the @var{src_interface} interface on the @var{src_node} node to the
  1180. @var{dst_interface} interface on the @var{dst_node} node, using the given
  1181. @var{stream}. Must return 0 if the transfer was actually completed completely
  1182. synchronously, or -EAGAIN if at least some transfers are still ongoing and
  1183. should be awaited for by the core.
  1184. @item @code{int (*@{ram,opencl@}_to_@{ram,opencl@}_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, /* cl_event * */ void *event)}
  1185. These 3 functions (@code{ram_to_ram} is not among them) define how to copy
  1186. data from the @var{src_interface} interface on the @var{src_node} node to the
  1187. @var{dst_interface} interface on the @var{dst_node} node, by recording in
  1188. @var{event}, a pointer to a cl_event, the event of the last submitted transfer.
  1189. Must return 0 if the transfer was actually completed completely synchronously,
  1190. or -EAGAIN if at least some transfers are still ongoing and should be awaited
  1191. for by the core.
  1192. @item @code{int (*@{ram,mic@}_to_@{ram,mic@}_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node)}
  1193. These 2 functions (@code{ram_to_ram} and @code{mic_to_mic} are not among them) define how to copy
  1194. data from the @var{src_interface} interface on the @var{src_node} node to the
  1195. @var{dst_interface} interface on the @var{dst_node} node.
  1196. Must return 0 if the transfer was actually completed completely synchronously,
  1197. or -EAGAIN if at least some transfers are still ongoing and should be awaited
  1198. for by the core.
  1199. @item @code{int (*@{src,sink@}_to_@{src,sink@}_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node)}
  1200. These 3 functions (@code{src_to_src} is not among them) define how to copy
  1201. data from the @var{src_interface} interface on the @var{src_node} node to the
  1202. @var{dst_interface} interface on the @var{dst_node} node.
  1203. Must return 0 if the transfer was actually completed completely synchronously,
  1204. or -EAGAIN if at least some transfers are still ongoing and should be awaited
  1205. for by the core.
  1206. @item @code{int (*any_to_any)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, void *async_data)}
  1207. Define how to copy data from the @var{src_interface} interface on the
  1208. @var{src_node} node to the @var{dst_interface} interface on the @var{dst_node}
  1209. node. This is meant to be implemented through the @var{starpu_interface_copy}
  1210. helper, to which @var{async_data} should be passed as such, and will be used to
  1211. manage asynchronicity. This must return -EAGAIN if any of the
  1212. @var{starpu_interface_copy} calls has returned -EAGAIN (i.e. at least some
  1213. transfer is still ongoing), and return 0 otherwise.
  1214. @end table
  1215. @end deftp
  1216. @deftypefun int starpu_interface_copy (uintptr_t @var{src}, size_t @var{src_offset}, unsigned @var{src_node}, uintptr_t @var{dst}, size_t @var{dst_offset}, unsigned @var{dst_node}, size_t @var{size}, {void *}@var{async_data})
  1217. Copy @var{size} bytes from byte offset @var{src_offset} of @var{src} on
  1218. @var{src_node} to byte offset @var{dst_offset} of @var{dst} on @var{dst_node}.
  1219. This is to be used in the @var{any_to_any} copy method, which is provided with
  1220. the @var{async_data} to be pased to @var{starpu_interface_copy}. this returns
  1221. -EAGAIN if the transfer is still ongoing, or 0 if the transfer is already
  1222. completed.
  1223. @end deftypefun
  1224. @deftypefun uint32_t starpu_hash_crc32c_be_n ({void *}@var{input}, size_t @var{n}, uint32_t @var{inputcrc})
  1225. Compute the CRC of a byte buffer seeded by the inputcrc "current
  1226. state". The return value should be considered as the new "current
  1227. state" for future CRC computation. This is used for computing data size
  1228. footprint.
  1229. @end deftypefun
  1230. @deftypefun uint32_t starpu_hash_crc32c_be (uint32_t @var{input}, uint32_t @var{inputcrc})
  1231. Compute the CRC of a 32bit number seeded by the inputcrc "current
  1232. state". The return value should be considered as the new "current
  1233. state" for future CRC computation. This is used for computing data size
  1234. footprint.
  1235. @end deftypefun
  1236. @deftypefun uint32_t starpu_hash_crc32c_string ({char *}@var{str}, uint32_t @var{inputcrc})
  1237. Compute the CRC of a string seeded by the inputcrc "current state".
  1238. The return value should be considered as the new "current state" for
  1239. future CRC computation. This is used for computing data size footprint.
  1240. @end deftypefun
  1241. @deftypefun int starpu_data_interface_get_next_id (void)
  1242. Returns the next available id for a newly created data interface
  1243. (@pxref{Defining a New Data Interface}).
  1244. @end deftypefun
  1245. @node Data Partition
  1246. @section Data Partition
  1247. @menu
  1248. * Basic API::
  1249. * Predefined filter functions::
  1250. @end menu
  1251. @node Basic API
  1252. @subsection Basic API
  1253. @deftp {Data Type} {struct starpu_data_filter}
  1254. The filter structure describes a data partitioning operation, to be given to the
  1255. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  1256. for an example. The different fields are:
  1257. @table @asis
  1258. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  1259. This function fills the @code{child_interface} structure with interface
  1260. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  1261. @item @code{unsigned nchildren}
  1262. This is the number of parts to partition the data into.
  1263. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  1264. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  1265. children depends on the actual data (e.g. the number of blocks in a sparse
  1266. matrix).
  1267. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  1268. In case the resulting children use a different data interface, this function
  1269. returns which interface is used by child number @code{id}.
  1270. @item @code{unsigned filter_arg}
  1271. Allow to define an additional parameter for the filter function.
  1272. @item @code{void *filter_arg_ptr}
  1273. Allow to define an additional pointer parameter for the filter
  1274. function, such as the sizes of the different parts.
  1275. @end table
  1276. @end deftp
  1277. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  1278. @anchor{starpu_data_partition}
  1279. This requests partitioning one StarPU data @var{initial_handle} into several
  1280. subdata according to the filter @var{f}, as shown in the following example:
  1281. @cartouche
  1282. @smallexample
  1283. struct starpu_data_filter f = @{
  1284. .filter_func = starpu_matrix_filter_block,
  1285. .nchildren = nslicesx,
  1286. .get_nchildren = NULL,
  1287. .get_child_ops = NULL
  1288. @};
  1289. starpu_data_partition(A_handle, &f);
  1290. @end smallexample
  1291. @end cartouche
  1292. @end deftypefun
  1293. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, unsigned @var{gathering_node})
  1294. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  1295. collected back into one big piece in the @var{gathering_node} (usually 0). Tasks
  1296. working on the partitioned data must be already finished when calling @code{starpu_data_unpartition}.
  1297. @cartouche
  1298. @smallexample
  1299. starpu_data_unpartition(A_handle, 0);
  1300. @end smallexample
  1301. @end cartouche
  1302. @end deftypefun
  1303. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  1304. This function returns the number of children.
  1305. @end deftypefun
  1306. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  1307. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  1308. @end deftypefun
  1309. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  1310. After partitioning a StarPU data by applying a filter,
  1311. @code{starpu_data_get_sub_data} can be used to get handles for each of
  1312. the data portions. @var{root_data} is the parent data that was
  1313. partitioned. @var{depth} is the number of filters to traverse (in
  1314. case several filters have been applied, to e.g. partition in row
  1315. blocks, and then in column blocks), and the subsequent
  1316. parameters are the indexes. The function returns a handle to the
  1317. subdata.
  1318. @cartouche
  1319. @smallexample
  1320. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  1321. @end smallexample
  1322. @end cartouche
  1323. @end deftypefun
  1324. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  1325. This function is similar to @code{starpu_data_get_sub_data} but uses a
  1326. va_list for the parameter list.
  1327. @end deftypefun
  1328. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  1329. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1330. recursively. @var{nfilters} pointers to variables of the type
  1331. starpu_data_filter should be given.
  1332. @end deftypefun
  1333. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  1334. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1335. recursively. It uses a va_list of pointers to variables of the typer
  1336. starpu_data_filter.
  1337. @end deftypefun
  1338. @node Predefined filter functions
  1339. @subsection Predefined filter functions
  1340. @menu
  1341. * Partitioning Vector Data::
  1342. * Partitioning Matrix Data::
  1343. * Partitioning 3D Matrix Data::
  1344. * Partitioning BCSR Data::
  1345. @end menu
  1346. This section gives a partial list of the predefined partitioning functions.
  1347. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  1348. list can be found in @code{starpu_data_filters.h} .
  1349. @node Partitioning Vector Data
  1350. @subsubsection Partitioning Vector Data
  1351. @deftypefun void starpu_vector_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1352. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1353. vector represented by @var{father_interface} once partitioned in
  1354. @var{nparts} chunks of equal size.
  1355. @end deftypefun
  1356. @deftypefun void starpu_vector_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1357. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1358. vector represented by @var{father_interface} once partitioned in
  1359. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}, thus getting a vector of size (n-2*shadow)/nparts+2*shadow
  1360. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  1361. IMPORTANT: This can only be used for read-only access, as no coherency is
  1362. enforced for the shadowed parts.
  1363. A usage example is available in examples/filters/shadow.c
  1364. @end deftypefun
  1365. @deftypefun void starpu_vector_filter_list (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1366. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1367. vector represented by @var{father_interface} once partitioned into
  1368. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  1369. @code{*@var{f}}.
  1370. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  1371. @code{uint32_t} elements, each of which specifies the number of elements
  1372. in each chunk of the partition.
  1373. @end deftypefun
  1374. @deftypefun void starpu_vector_filter_divide_in_2 (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1375. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1376. vector represented by @var{father_interface} once partitioned in two
  1377. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  1378. @code{0} or @code{1}.
  1379. @end deftypefun
  1380. @node Partitioning Matrix Data
  1381. @subsubsection Partitioning Matrix Data
  1382. @deftypefun void starpu_matrix_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1383. This partitions a dense Matrix along the x dimension, thus getting (x/nparts,y)
  1384. matrices. If nparts does not divide x, the last submatrix contains the
  1385. remainder.
  1386. @end deftypefun
  1387. @deftypefun void starpu_matrix_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1388. This partitions a dense Matrix along the x dimension, with a shadow border
  1389. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y)
  1390. matrices. If nparts does not divide x-2*shadow, the last submatrix contains the
  1391. remainder.
  1392. IMPORTANT: This can only be used for read-only access, as no coherency is
  1393. enforced for the shadowed parts.
  1394. A usage example is available in examples/filters/shadow2d.c
  1395. @end deftypefun
  1396. @deftypefun void starpu_matrix_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1397. This partitions a dense Matrix along the y dimension, thus getting (x,y/nparts)
  1398. matrices. If nparts does not divide y, the last submatrix contains the
  1399. remainder.
  1400. @end deftypefun
  1401. @deftypefun void starpu_matrix_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1402. This partitions a dense Matrix along the y dimension, with a shadow border
  1403. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow)
  1404. matrices. If nparts does not divide y-2*shadow, the last submatrix contains the
  1405. remainder.
  1406. IMPORTANT: This can only be used for read-only access, as no coherency is
  1407. enforced for the shadowed parts.
  1408. A usage example is available in examples/filters/shadow2d.c
  1409. @end deftypefun
  1410. @node Partitioning 3D Matrix Data
  1411. @subsubsection Partitioning 3D Matrix Data
  1412. A usage example is available in examples/filters/shadow3d.c
  1413. @deftypefun void starpu_block_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1414. This partitions a 3D matrix along the X dimension, thus getting (x/nparts,y,z)
  1415. 3D matrices. If nparts does not divide x, the last submatrix contains the
  1416. remainder.
  1417. @end deftypefun
  1418. @deftypefun void starpu_block_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1419. This partitions a 3D matrix along the X dimension, with a shadow border
  1420. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y,z) 3D
  1421. matrices. If nparts does not divide x, the last submatrix contains the
  1422. remainder.
  1423. IMPORTANT: This can only be used for read-only access, as no coherency is
  1424. enforced for the shadowed parts.
  1425. @end deftypefun
  1426. @deftypefun void starpu_block_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1427. This partitions a 3D matrix along the Y dimension, thus getting (x,y/nparts,z)
  1428. 3D matrices. If nparts does not divide y, the last submatrix contains the
  1429. remainder.
  1430. @end deftypefun
  1431. @deftypefun void starpu_block_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1432. This partitions a 3D matrix along the Y dimension, with a shadow border
  1433. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow,z) 3D
  1434. matrices. If nparts does not divide y, the last submatrix contains the
  1435. remainder.
  1436. IMPORTANT: This can only be used for read-only access, as no coherency is
  1437. enforced for the shadowed parts.
  1438. @end deftypefun
  1439. @deftypefun void starpu_block_filter_depth_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1440. This partitions a 3D matrix along the Z dimension, thus getting (x,y,z/nparts)
  1441. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1442. remainder.
  1443. @end deftypefun
  1444. @deftypefun void starpu_block_filter_depth_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1445. This partitions a 3D matrix along the Z dimension, with a shadow border
  1446. @code{filter_arg_ptr}, thus getting (x,y,(z-2*shadow)/nparts+2*shadow)
  1447. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1448. remainder.
  1449. IMPORTANT: This can only be used for read-only access, as no coherency is
  1450. enforced for the shadowed parts.
  1451. @end deftypefun
  1452. @node Partitioning BCSR Data
  1453. @subsubsection Partitioning BCSR Data
  1454. @deftypefun void starpu_bcsr_filter_canonical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1455. This partitions a block-sparse matrix into dense matrices.
  1456. @end deftypefun
  1457. @deftypefun void starpu_csr_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1458. This partitions a block-sparse matrix into vertical block-sparse matrices.
  1459. @end deftypefun
  1460. @node Multiformat Data Interface
  1461. @section Multiformat Data Interface
  1462. @deftp {Data Type} {struct starpu_multiformat_data_interface_ops}
  1463. The different fields are:
  1464. @table @asis
  1465. @item @code{size_t cpu_elemsize}
  1466. the size of each element on CPUs,
  1467. @item @code{size_t opencl_elemsize}
  1468. the size of each element on OpenCL devices,
  1469. @item @code{struct starpu_codelet *cpu_to_opencl_cl}
  1470. pointer to a codelet which converts from CPU to OpenCL
  1471. @item @code{struct starpu_codelet *opencl_to_cpu_cl}
  1472. pointer to a codelet which converts from OpenCL to CPU
  1473. @item @code{size_t cuda_elemsize}
  1474. the size of each element on CUDA devices,
  1475. @item @code{struct starpu_codelet *cpu_to_cuda_cl}
  1476. pointer to a codelet which converts from CPU to CUDA
  1477. @item @code{struct starpu_codelet *cuda_to_cpu_cl}
  1478. pointer to a codelet which converts from CUDA to CPU
  1479. @item @code{size_t mic_elemsize}
  1480. the size of each element on MIC devices,
  1481. @item @code{struct starpu_codelet *cpu_to_mic_cl}
  1482. pointer to a codelet which converts from CPU to MIC
  1483. @item @code{struct starpu_codelet *mic_to_cpu_cl}
  1484. pointer to a codelet which converts from MIC to CPU
  1485. @item @code{size_t scc_elemsize}
  1486. the size of each element on SCC devices,
  1487. @item @code{struct starpu_codelet *cpu_to_scc_cl}
  1488. pointer to a codelet which converts from CPU to SCC
  1489. @item @code{struct starpu_codelet *scc_to_cpu_cl}
  1490. pointer to a codelet which converts from SCC to CPU
  1491. @end table
  1492. @end deftp
  1493. @deftypefun void starpu_multiformat_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, void *@var{ptr}, uint32_t @var{nobjects}, struct starpu_multiformat_data_interface_ops *@var{format_ops})
  1494. Register a piece of data that can be represented in different ways, depending upon
  1495. the processing unit that manipulates it. It allows the programmer, for instance, to
  1496. use an array of structures when working on a CPU, and a structure of arrays when
  1497. working on a GPU.
  1498. @var{nobjects} is the number of elements in the data. @var{format_ops} describes
  1499. the format.
  1500. @end deftypefun
  1501. @defmac STARPU_MULTIFORMAT_GET_CPU_PTR ({void *}@var{interface})
  1502. returns the local pointer to the data with CPU format.
  1503. @end defmac
  1504. @defmac STARPU_MULTIFORMAT_GET_CUDA_PTR ({void *}@var{interface})
  1505. returns the local pointer to the data with CUDA format.
  1506. @end defmac
  1507. @defmac STARPU_MULTIFORMAT_GET_OPENCL_PTR ({void *}@var{interface})
  1508. returns the local pointer to the data with OpenCL format.
  1509. @end defmac
  1510. @defmac STARPU_MULTIFORMAT_GET_NX ({void *}@var{interface})
  1511. returns the number of elements in the data.
  1512. @end defmac
  1513. @node Codelets and Tasks
  1514. @section Codelets and Tasks
  1515. This section describes the interface to manipulate codelets and tasks.
  1516. @deftp {Data Type} {enum starpu_codelet_type}
  1517. Describes the type of parallel task. The different values are:
  1518. @table @asis
  1519. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  1520. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  1521. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  1522. @code{starpu_combined_worker_get_rank} to distribute the work
  1523. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  1524. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  1525. determine how many threads should be started.
  1526. @end table
  1527. See @ref{Parallel Tasks} for details.
  1528. @end deftp
  1529. @defmac STARPU_CPU
  1530. This macro is used when setting the field @code{where} of a @code{struct
  1531. starpu_codelet} to specify the codelet may be executed on a CPU
  1532. processing unit.
  1533. @end defmac
  1534. @defmac STARPU_CUDA
  1535. This macro is used when setting the field @code{where} of a @code{struct
  1536. starpu_codelet} to specify the codelet may be executed on a CUDA
  1537. processing unit.
  1538. @end defmac
  1539. @defmac STARPU_OPENCL
  1540. This macro is used when setting the field @code{where} of a @code{struct
  1541. starpu_codelet} to specify the codelet may be executed on an OpenCL
  1542. processing unit.
  1543. @end defmac
  1544. @defmac STARPU_MIC
  1545. This macro is used when setting the field @code{where} of a @code{struct
  1546. starpu_codelet} to specify the codelet may be executed on a MIC
  1547. processing unit.
  1548. @end defmac
  1549. @defmac STARPU_SCC
  1550. This macro is used when setting the field @code{where} of a @code{struct
  1551. starpu_codelet} to specify the codelet may be executed on an SCC
  1552. processing unit.
  1553. @end defmac
  1554. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1555. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1556. with this macro indicates the codelet will have several
  1557. implementations. The use of this macro is deprecated. One should
  1558. always only define the field @code{cpu_funcs}.
  1559. @end defmac
  1560. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1561. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1562. with this macro indicates the codelet will have several
  1563. implementations. The use of this macro is deprecated. One should
  1564. always only define the field @code{cuda_funcs}.
  1565. @end defmac
  1566. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1567. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1568. with this macro indicates the codelet will have several
  1569. implementations. The use of this macro is deprecated. One should
  1570. always only define the field @code{opencl_funcs}.
  1571. @end defmac
  1572. @deftp {Data Type} {struct starpu_codelet}
  1573. The codelet structure describes a kernel that is possibly implemented on various
  1574. targets. For compatibility, make sure to initialize the whole structure to zero,
  1575. either by using explicit memset, or by letting the compiler implicitly do it in
  1576. e.g. static storage case.
  1577. @table @asis
  1578. @item @code{uint32_t where} (optional)
  1579. Indicates which types of processing units are able to execute the
  1580. codelet. The different values
  1581. @code{STARPU_CPU}, @code{STARPU_CUDA},
  1582. @code{STARPU_OPENCL} can be combined to specify
  1583. on which types of processing units the codelet can be executed.
  1584. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1585. implemented for both CPU cores and CUDA devices while @code{STARPU_OPENCL}
  1586. indicates that it is only available on OpenCL devices. If the field is
  1587. unset, its value will be automatically set based on the availability
  1588. of the @code{XXX_funcs} fields defined below.
  1589. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1590. Defines a function which should return 1 if the worker designated by
  1591. @var{workerid} can execute the @var{nimpl}th implementation of the
  1592. given @var{task}, 0 otherwise.
  1593. @item @code{enum starpu_codelet_type type} (optional)
  1594. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1595. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1596. implementation is also available. See @ref{Parallel Tasks} for details.
  1597. @item @code{int max_parallelism} (optional)
  1598. If a parallel implementation is available, this denotes the maximum combined
  1599. worker size that StarPU will use to execute parallel tasks for this codelet.
  1600. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1601. This field has been made deprecated. One should use instead the
  1602. @code{cpu_funcs} field.
  1603. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1604. Is an array of function pointers to the CPU implementations of the codelet.
  1605. It must be terminated by a NULL value.
  1606. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1607. argument being the array of data managed by the data management library, and
  1608. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1609. field of the @code{starpu_task} structure.
  1610. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1611. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1612. field, it must be non-null otherwise.
  1613. @item @code{char * cpu_funcs_name[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1614. Is an array of strings which provide the name of the CPU functions referenced in
  1615. the @code{cpu_funcs} array. This can be used when running on MIC devices or the
  1616. SCC platform, for StarPU to simply look up the MIC function implementation
  1617. through its name.
  1618. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1619. This field has been made deprecated. One should use instead the
  1620. @code{cuda_funcs} field.
  1621. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1622. Is an array of function pointers to the CUDA implementations of the codelet.
  1623. It must be terminated by a NULL value.
  1624. @emph{The functions must be host-functions written in the CUDA runtime
  1625. API}. Their prototype must
  1626. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1627. If the @code{where} field is set, then the @code{cuda_funcs}
  1628. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1629. field, it must be non-null otherwise.
  1630. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1631. This field has been made deprecated. One should use instead the
  1632. @code{opencl_funcs} field.
  1633. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1634. Is an array of function pointers to the OpenCL implementations of the codelet.
  1635. It must be terminated by a NULL value.
  1636. The functions prototype must be:
  1637. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1638. If the @code{where} field is set, then the @code{opencl_funcs} field
  1639. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1640. field, it must be non-null otherwise.
  1641. @item @code{starpu_mic_func_t mic_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1642. Is an array of function pointers to a function which returns the MIC
  1643. implementation of the codelet.
  1644. It must be terminated by a NULL value.
  1645. The functions prototype must be:
  1646. @code{starpu_mic_kernel_t mic_func(struct starpu_codelet *cl, unsigned nimpl);}.
  1647. If the @code{where} field is set, then the @code{mic_funcs} field
  1648. is ignored if @code{STARPU_MIC} does not appear in the @code{where}
  1649. field. It can be null if @code{cpu_funcs_name} is non-NULL, in which case StarPU
  1650. will simply make a symbol lookup to get the implementation.
  1651. @item @code{starpu_scc_func_t scc_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1652. Is an array of function pointers to a function which returns the SCC
  1653. implementation of the codelet.
  1654. It must be terminated by a NULL value.
  1655. The functions prototype must be:
  1656. @code{starpu_scc_kernel_t scc_func(struct starpu_codelet *cl, unsigned nimpl);}.
  1657. If the @code{where} field is set, then the @code{scc_funcs} field
  1658. is ignored if @code{STARPU_SCC} does not appear in the @code{where}
  1659. field. It can be null if @code{cpu_funcs_name} is non-NULL, in which case StarPU
  1660. will simply make a symbol lookup to get the implementation.
  1661. @item @code{unsigned nbuffers}
  1662. Specifies the number of arguments taken by the codelet. These arguments are
  1663. managed by the DSM and are accessed from the @code{void *buffers[]}
  1664. array. The constant argument passed with the @code{cl_arg} field of the
  1665. @code{starpu_task} structure is not counted in this number. This value should
  1666. not be above @code{STARPU_NMAXBUFS}.
  1667. @item @code{enum starpu_data_access_mode modes[STARPU_NMAXBUFS]}
  1668. Is an array of @code{enum starpu_data_access_mode}. It describes the
  1669. required access modes to the data neeeded by the codelet (e.g.
  1670. @code{STARPU_RW}). The number of entries in this array must be
  1671. specified in the @code{nbuffers} field (defined above), and should not
  1672. exceed @code{STARPU_NMAXBUFS}.
  1673. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1674. option when configuring StarPU.
  1675. @item @code{enum starpu_data_access_mode *dyn_modes}
  1676. Is an array of @code{enum starpu_data_access_mode}. It describes the
  1677. required access modes to the data neeeded by the codelet (e.g.
  1678. @code{STARPU_RW}). The number of entries in this array must be
  1679. specified in the @code{nbuffers} field (defined above).
  1680. This field should be used for codelets having a number of datas
  1681. greater than @code{STARPU_NMAXBUFS} (@pxref{Setting the Data Handles
  1682. for a Task}).
  1683. When defining a codelet, one should either define this field or the
  1684. field @code{modes} defined above.
  1685. @item @code{struct starpu_perfmodel *model} (optional)
  1686. This is a pointer to the task duration performance model associated to this
  1687. codelet. This optional field is ignored when set to @code{NULL} or
  1688. when its @code{symbol} field is not set.
  1689. @item @code{struct starpu_perfmodel *power_model} (optional)
  1690. This is a pointer to the task power consumption performance model associated
  1691. to this codelet. This optional field is ignored when set to
  1692. @code{NULL} or when its @code{symbol} field is not set.
  1693. In the case of parallel codelets, this has to account for all processing units
  1694. involved in the parallel execution.
  1695. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1696. Statistics collected at runtime: this is filled by StarPU and should not be
  1697. accessed directly, but for example by calling the
  1698. @code{starpu_codelet_display_stats} function (See
  1699. @ref{starpu_codelet_display_stats} for details).
  1700. @item @code{const char *name} (optional)
  1701. Define the name of the codelet. This can be useful for debugging purposes.
  1702. @end table
  1703. @end deftp
  1704. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1705. @anchor{starpu_codelet_init}
  1706. Initialize @var{cl} with default values. Codelets should preferably be
  1707. initialized statically as shown in @ref{Defining a Codelet}. However
  1708. such a initialisation is not always possible, e.g. when using C++.
  1709. @end deftypefun
  1710. @deftp {Data Type} {enum starpu_task_status}
  1711. State of a task, can be either of
  1712. @table @asis
  1713. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1714. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1715. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1716. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1717. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1718. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1719. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1720. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1721. @end table
  1722. @end deftp
  1723. @deftp {Data Type} {struct starpu_data_descr}
  1724. This type is used to describe a data handle along with an
  1725. access mode.
  1726. @table @asis
  1727. @item @code{starpu_data_handle_t handle} describes a data,
  1728. @item @code{enum starpu_data_access_mode mode} describes its access mode
  1729. @end table
  1730. @end deftp
  1731. @deftp {Data Type} {struct starpu_task}
  1732. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1733. processing units managed by StarPU. It instantiates a codelet. It can either be
  1734. allocated dynamically with the @code{starpu_task_create} method, or declared
  1735. statically. In the latter case, the programmer has to zero the
  1736. @code{starpu_task} structure and to fill the different fields properly. The
  1737. indicated default values correspond to the configuration of a task allocated
  1738. with @code{starpu_task_create}.
  1739. @table @asis
  1740. @item @code{struct starpu_codelet *cl}
  1741. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1742. describes where the kernel should be executed, and supplies the appropriate
  1743. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1744. such empty tasks can be useful for synchronization purposes.
  1745. @item @code{struct starpu_data_descr buffers[STARPU_NMAXBUFS]}
  1746. This field has been made deprecated. One should use instead the
  1747. @code{handles} field to specify the handles to the data accessed by
  1748. the task. The access modes are now defined in the @code{mode} field of
  1749. the @code{struct starpu_codelet cl} field defined above.
  1750. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1751. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1752. to the different pieces of data accessed by the task. The number
  1753. of entries in this array must be specified in the @code{nbuffers} field of the
  1754. @code{struct starpu_codelet} structure, and should not exceed
  1755. @code{STARPU_NMAXBUFS}.
  1756. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1757. option when configuring StarPU.
  1758. @item @code{starpu_data_handle_t *dyn_handles}
  1759. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1760. to the different pieces of data accessed by the task. The number
  1761. of entries in this array must be specified in the @code{nbuffers} field of the
  1762. @code{struct starpu_codelet} structure.
  1763. This field should be used for tasks having a number of datas
  1764. greater than @code{STARPU_NMAXBUFS} (@pxref{Setting the Data Handles
  1765. for a Task}).
  1766. When defining a task, one should either define this field or the
  1767. field @code{handles} defined above.
  1768. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1769. The actual data pointers to the memory node where execution will happen, managed
  1770. by the DSM.
  1771. @item @code{void **dyn_interfaces}
  1772. The actual data pointers to the memory node where execution will happen, managed
  1773. by the DSM. Is used when the field @code{dyn_handles} is defined.
  1774. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1775. This pointer is passed to the codelet through the second argument
  1776. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1777. @item @code{size_t cl_arg_size} (optional)
  1778. For some specific drivers, the @code{cl_arg} pointer cannot not be directly
  1779. given to the driver function. A buffer of size @code{cl_arg_size}
  1780. needs to be allocated on the driver. This buffer is then filled with
  1781. the @code{cl_arg_size} bytes starting at address @code{cl_arg}. In
  1782. this case, the argument given to the codelet is therefore not the
  1783. @code{cl_arg} pointer, but the address of the buffer in local store
  1784. (LS) instead.
  1785. This field is ignored for CPU, CUDA and OpenCL codelets, where the
  1786. @code{cl_arg} pointer is given as such.
  1787. @item @code{unsigned cl_arg_free} (optional)
  1788. In case @code{cl_arg} was allocated by the application through @code{malloc},
  1789. setting @code{cl_arg_free} to 1 makes StarPU automatically call
  1790. @code{free(cl_arg)} when destroying the task. This saves the user from
  1791. defining a callback just for that. This is mostly useful when targetting MIC or
  1792. SCC, where the codelet does not execute in the same memory space as the main
  1793. thread.
  1794. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1795. This is a function pointer of prototype @code{void (*f)(void *)} which
  1796. specifies a possible callback. If this pointer is non-null, the callback
  1797. function is executed @emph{on the host} after the execution of the task. Tasks
  1798. which depend on it might already be executing. The callback is passed the
  1799. value contained in the @code{callback_arg} field. No callback is executed if the
  1800. field is set to @code{NULL}.
  1801. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1802. This is the pointer passed to the callback function. This field is ignored if
  1803. the @code{callback_func} is set to @code{NULL}.
  1804. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1805. If set, this flag indicates that the task should be associated with the tag
  1806. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1807. with the task and to express task dependencies easily.
  1808. @item @code{starpu_tag_t tag_id}
  1809. This field contains the tag associated to the task if the @code{use_tag} field
  1810. was set, it is ignored otherwise.
  1811. @item @code{unsigned sequential_consistency}
  1812. If this flag is set (which is the default), sequential consistency is enforced
  1813. for the data parameters of this task for which sequential consistency is
  1814. enabled. Clearing this flag permits to disable sequential consistency for this
  1815. task, even if data have it enabled.
  1816. @item @code{unsigned synchronous}
  1817. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1818. returns only when the task has been executed (or if no worker is able to
  1819. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1820. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1821. This field indicates a level of priority for the task. This is an integer value
  1822. that must be set between the return values of the
  1823. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1824. and that of the @code{starpu_sched_get_max_priority} for the most important
  1825. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1826. are provided for convenience and respectively returns value of
  1827. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1828. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1829. order to allow static task initialization. Scheduling strategies that take
  1830. priorities into account can use this parameter to take better scheduling
  1831. decisions, but the scheduling policy may also ignore it.
  1832. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1833. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1834. task to the worker specified by the @code{workerid} field.
  1835. @item @code{unsigned workerid} (optional)
  1836. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1837. which is the identifier of the worker that should process this task (as
  1838. returned by @code{starpu_worker_get_id}). This field is ignored if
  1839. @code{execute_on_a_specific_worker} field is set to 0.
  1840. @item @code{starpu_task_bundle_t bundle} (optional)
  1841. The bundle that includes this task. If no bundle is used, this should be NULL.
  1842. @item @code{int detach} (optional) (default: @code{1})
  1843. If this flag is set, it is not possible to synchronize with the task
  1844. by the means of @code{starpu_task_wait} later on. Internal data structures
  1845. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1846. flag is not set.
  1847. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1848. If this flag is set, the task structure will automatically be freed, either
  1849. after the execution of the callback if the task is detached, or during
  1850. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1851. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1852. called explicitly. Setting this flag for a statically allocated task structure
  1853. will result in undefined behaviour. The flag is set to 1 when the task is
  1854. created by calling @code{starpu_task_create()}. Note that
  1855. @code{starpu_task_wait_for_all} will not free any task.
  1856. @item @code{int regenerate} (optional)
  1857. If this flag is set, the task will be re-submitted to StarPU once it has been
  1858. executed. This flag must not be set if the destroy flag is set too.
  1859. @item @code{enum starpu_task_status status} (optional)
  1860. Current state of the task.
  1861. @item @code{struct starpu_profiling_task_info *profiling_info} (optional)
  1862. Profiling information for the task.
  1863. @item @code{double predicted} (output field)
  1864. Predicted duration of the task. This field is only set if the scheduling
  1865. strategy used performance models.
  1866. @item @code{double predicted_transfer} (optional)
  1867. Predicted data transfer duration for the task in microseconds. This field is
  1868. only valid if the scheduling strategy uses performance models.
  1869. @item @code{struct starpu_task *prev}
  1870. A pointer to the previous task. This should only be used by StarPU.
  1871. @item @code{struct starpu_task *next}
  1872. A pointer to the next task. This should only be used by StarPU.
  1873. @item @code{unsigned int mf_skip}
  1874. This is only used for tasks that use multiformat handle. This should only be
  1875. used by StarPU.
  1876. @item @code{double flops}
  1877. This can be set to the number of floating points operations that the task
  1878. will have to achieve. This is useful for easily getting GFlops curves from
  1879. @code{starpu_perfmodel_plot}, and for the hypervisor load balancing.
  1880. @item @code{void *starpu_private}
  1881. This is private to StarPU, do not modify. If the task is allocated by hand
  1882. (without starpu_task_create), this field should be set to NULL.
  1883. @item @code{int magic}
  1884. This field is set when initializing a task. It prevents a task from being
  1885. submitted if it has not been properly initialized.
  1886. @end table
  1887. @end deftp
  1888. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1889. Initialize @var{task} with default values. This function is implicitly
  1890. called by @code{starpu_task_create}. By default, tasks initialized with
  1891. @code{starpu_task_init} must be deinitialized explicitly with
  1892. @code{starpu_task_clean}. Tasks can also be initialized statically,
  1893. using @code{STARPU_TASK_INITIALIZER} defined below.
  1894. @end deftypefun
  1895. @defmac STARPU_TASK_INITIALIZER
  1896. It is possible to initialize statically allocated tasks with this
  1897. value. This is equivalent to initializing a starpu_task structure with
  1898. the @code{starpu_task_init} function defined above.
  1899. @end defmac
  1900. @defmac STARPU_TASK_GET_HANDLE ({struct starpu_task} *@var{task}, int @var{i})
  1901. Return the i-th data handle of the given task. If the task is defined
  1902. with a static or dynamic number of handles, will either return the
  1903. i-th element of the field @code{handles} or the i-th element of the field
  1904. @code{dyn_handles} (@pxref{Setting the Data Handles for a Task})
  1905. @end defmac
  1906. @defmac STARPU_TASK_SET_HANDLE ({struct starpu_task} *@var{task}, starpu_data_handle_t @var{handle}, int @var{i})
  1907. Set the i-th data handle of the given task with the given dat handle.
  1908. If the task is defined with a static or dynamic number of handles,
  1909. will either set the i-th element of the field @code{handles} or the
  1910. i-th element of the field @code{dyn_handles} (@pxref{Setting the Data
  1911. Handles for a Task})
  1912. @end defmac
  1913. @defmac STARPU_CODELET_GET_MODE ({struct starpu_codelet *}@var{codelet}, int @var{i})
  1914. Return the access mode of the i-th data handle of the given codelet.
  1915. If the codelet is defined with a static or dynamic number of handles,
  1916. will either return the i-th element of the field @code{modes} or the
  1917. i-th element of the field @code{dyn_modes} (@pxref{Setting the Data
  1918. Handles for a Task})
  1919. @end defmac
  1920. @defmac STARPU_CODELET_SET_MODE ({struct starpu_codelet *}@var{codelet}, {enum starpu_data_access_mode} @var{mode}, int @var{i})
  1921. Set the access mode of the i-th data handle of the given codelet.
  1922. If the codelet is defined with a static or dynamic number of handles,
  1923. will either set the i-th element of the field @code{modes} or the
  1924. i-th element of the field @code{dyn_modes} (@pxref{Setting the Data
  1925. Handles for a Task})
  1926. @end defmac
  1927. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1928. Allocate a task structure and initialize it with default values. Tasks
  1929. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1930. task is terminated. This means that the task pointer can not be used any more
  1931. once the task is submitted, since it can be executed at any time (unless
  1932. dependencies make it wait) and thus freed at any time.
  1933. If the destroy flag is explicitly unset, the resources used
  1934. by the task have to be freed by calling
  1935. @code{starpu_task_destroy}.
  1936. @end deftypefun
  1937. @deftypefun {struct starpu_task *} starpu_task_dup ({struct starpu_task *}@var{task})
  1938. Allocate a task structure which is the exact duplicate of the given task.
  1939. @end deftypefun
  1940. @deftypefun void starpu_task_clean ({struct starpu_task} *@var{task})
  1941. Release all the structures automatically allocated to execute @var{task}, but
  1942. not the task structure itself and values set by the user remain unchanged.
  1943. It is thus useful for statically allocated tasks for instance.
  1944. It is also useful when the user wants to execute the same operation several
  1945. times with as least overhead as possible.
  1946. It is called automatically by @code{starpu_task_destroy}.
  1947. It has to be called only after explicitly waiting for the task or after
  1948. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1949. still manipulates the task after calling the callback).
  1950. @end deftypefun
  1951. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1952. Free the resource allocated during @code{starpu_task_create} and
  1953. associated with @var{task}. This function is already called automatically
  1954. after the execution of a task when the @code{destroy} flag of the
  1955. @code{starpu_task} structure is set, which is the default for tasks created by
  1956. @code{starpu_task_create}. Calling this function on a statically allocated task
  1957. results in an undefined behaviour.
  1958. @end deftypefun
  1959. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1960. This function blocks until @var{task} has been executed. It is not possible to
  1961. synchronize with a task more than once. It is not possible to wait for
  1962. synchronous or detached tasks.
  1963. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1964. indicates that the specified task was either synchronous or detached.
  1965. @end deftypefun
  1966. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1967. This function submits @var{task} to StarPU. Calling this function does
  1968. not mean that the task will be executed immediately as there can be data or task
  1969. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1970. scheduling this task with respect to such dependencies.
  1971. This function returns immediately if the @code{synchronous} field of the
  1972. @code{starpu_task} structure was set to 0, and block until the termination of
  1973. the task otherwise. It is also possible to synchronize the application with
  1974. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1975. function for instance.
  1976. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1977. means that there is no worker able to process this task (e.g. there is no GPU
  1978. available and this task is only implemented for CUDA devices).
  1979. starpu_task_submit() can be called from anywhere, including codelet
  1980. functions and callbacks, provided that the @code{synchronous} field of the
  1981. @code{starpu_task} structure is left to 0.
  1982. @end deftypefun
  1983. @deftypefun int starpu_task_wait_for_all (void)
  1984. This function blocks until all the tasks that were submitted are terminated. It
  1985. does not destroy these tasks.
  1986. @end deftypefun
  1987. @deftypefun int starpu_task_nready (void)
  1988. @end deftypefun
  1989. @deftypefun int starpu_task_nsubmitted (void)
  1990. Return the number of submitted tasks which have not completed yet.
  1991. @end deftypefun
  1992. @deftypefun int starpu_task_nready (void)
  1993. Return the number of submitted tasks which are ready for execution are already
  1994. executing. It thus does not include tasks waiting for dependencies.
  1995. @end deftypefun
  1996. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1997. This function returns the task currently executed by the worker, or
  1998. NULL if it is called either from a thread that is not a task or simply
  1999. because there is no task being executed at the moment.
  2000. This function must be called from the callback (not from the codelet).
  2001. @end deftypefun
  2002. @deftypefun void starpu_codelet_display_stats ({struct starpu_codelet} *@var{cl})
  2003. @anchor{starpu_codelet_display_stats}
  2004. Output on @code{stderr} some statistics on the codelet @var{cl}.
  2005. @end deftypefun
  2006. @deftypefun int starpu_task_wait_for_no_ready (void)
  2007. This function waits until there is no more ready task.
  2008. @end deftypefun
  2009. @deftypefun void starpu_task_set_implementation ({struct starpu_task *}@var{task}, unsigned @var{impl})
  2010. This function should be called by schedulers to specify the codelet
  2011. implementation to be executed when executing the task.
  2012. @end deftypefun
  2013. @deftypefun unsigned starpu_task_get_implementation ({struct starpu_task *}@var{task})
  2014. This function return the codelet implementation to be executed when
  2015. executing the task.
  2016. @end deftypefun
  2017. @c Callbacks: what can we put in callbacks ?
  2018. @node Insert Task
  2019. @section Insert Task
  2020. @deftypefun int starpu_insert_task (struct starpu_codelet *@var{cl}, ...)
  2021. Create and submit a task corresponding to @var{cl} with the following
  2022. arguments. The argument list must be zero-terminated.
  2023. The arguments following the codelets can be of the following types:
  2024. @itemize
  2025. @item
  2026. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  2027. @item
  2028. @code{STARPU_DATA_ARRAY} followed by an array of data handles and its number of elements;
  2029. @item
  2030. the specific values @code{STARPU_VALUE}, @code{STARPU_CALLBACK},
  2031. @code{STARPU_CALLBACK_ARG}, @code{STARPU_CALLBACK_WITH_ARG},
  2032. @code{STARPU_PRIORITY}, @code{STARPU_TAG}, @code{STARPU_FLOPS}, @code{STARPU_SCHED_CTX} followed by the appropriated objects
  2033. as defined below.
  2034. @end itemize
  2035. When using @code{STARPU_DATA_ARRAY}, the access mode of the data
  2036. handles is not defined.
  2037. Parameters to be passed to the codelet implementation are defined
  2038. through the type @code{STARPU_VALUE}. The function
  2039. @code{starpu_codelet_unpack_args} must be called within the codelet
  2040. implementation to retrieve them.
  2041. @end deftypefun
  2042. @defmac STARPU_VALUE
  2043. this macro is used when calling @code{starpu_insert_task}, and must be
  2044. followed by a pointer to a constant value and the size of the constant
  2045. @end defmac
  2046. @defmac STARPU_CALLBACK
  2047. this macro is used when calling @code{starpu_insert_task}, and must be
  2048. followed by a pointer to a callback function
  2049. @end defmac
  2050. @defmac STARPU_CALLBACK_ARG
  2051. this macro is used when calling @code{starpu_insert_task}, and must be
  2052. followed by a pointer to be given as an argument to the callback
  2053. function
  2054. @end defmac
  2055. @defmac STARPU_CALLBACK_WITH_ARG
  2056. this macro is used when calling @code{starpu_insert_task}, and must be
  2057. followed by two pointers: one to a callback function, and the other to
  2058. be given as an argument to the callback function; this is equivalent
  2059. to using both @code{STARPU_CALLBACK} and
  2060. @code{STARPU_CALLBACK_WITH_ARG}
  2061. @end defmac
  2062. @defmac STARPU_PRIORITY
  2063. this macro is used when calling @code{starpu_insert_task}, and must be
  2064. followed by a integer defining a priority level
  2065. @end defmac
  2066. @defmac STARPU_TAG
  2067. this macro is used when calling @code{starpu_insert_task}, and must be
  2068. followed by a tag.
  2069. @end defmac
  2070. @defmac STARPU_FLOPS
  2071. this macro is used when calling @code{starpu_insert_task}, and must be followed
  2072. by an amount of floating point operations, as a double. The user may have to
  2073. explicitly cast into double, otherwise parameter passing will not work.
  2074. @end defmac
  2075. @defmac STARPU_SCHED_CTX
  2076. this macro is used when calling @code{starpu_insert_task}, and must be followed
  2077. by the id of the scheduling context to which we want to submit the task.
  2078. @end defmac
  2079. @deftypefun void starpu_codelet_pack_args ({void **}@var{arg_buffer}, {size_t *}@var{arg_buffer_size}, ...)
  2080. Pack arguments of type @code{STARPU_VALUE} into a buffer which can be
  2081. given to a codelet and later unpacked with the function
  2082. @code{starpu_codelet_unpack_args} defined below.
  2083. @end deftypefun
  2084. @deftypefun void starpu_codelet_unpack_args ({void *}@var{cl_arg}, ...)
  2085. Retrieve the arguments of type @code{STARPU_VALUE} associated to a
  2086. task automatically created using the function
  2087. @code{starpu_insert_task} defined above.
  2088. @end deftypefun
  2089. @node Explicit Dependencies
  2090. @section Explicit Dependencies
  2091. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  2092. Declare task dependencies between a @var{task} and an array of tasks of length
  2093. @var{ndeps}. This function must be called prior to the submission of the task,
  2094. but it may called after the submission or the execution of the tasks in the
  2095. array, provided the tasks are still valid (ie. they were not automatically
  2096. destroyed). Calling this function on a task that was already submitted or with
  2097. an entry of @var{task_array} that is not a valid task anymore results in an
  2098. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  2099. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2100. same task, in this case, the dependencies are added. It is possible to have
  2101. redundancy in the task dependencies.
  2102. @end deftypefun
  2103. @deftp {Data Type} {starpu_tag_t}
  2104. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2105. dependencies between tasks by the means of those tags. To do so, fill the
  2106. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2107. be arbitrary) and set the @code{use_tag} field to 1.
  2108. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2109. not be started until the tasks which holds the declared dependency tags are
  2110. completed.
  2111. @end deftp
  2112. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  2113. Specify the dependencies of the task identified by tag @var{id}. The first
  2114. argument specifies the tag which is configured, the second argument gives the
  2115. number of tag(s) on which @var{id} depends. The following arguments are the
  2116. tags which have to be terminated to unlock the task.
  2117. This function must be called before the associated task is submitted to StarPU
  2118. with @code{starpu_task_submit}.
  2119. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2120. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2121. typically need to be explicitly casted. Using the
  2122. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2123. @cartouche
  2124. @smallexample
  2125. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2126. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2127. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2128. @end smallexample
  2129. @end cartouche
  2130. @end deftypefun
  2131. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  2132. This function is similar to @code{starpu_tag_declare_deps}, except
  2133. that its does not take a variable number of arguments but an array of
  2134. tags of size @var{ndeps}.
  2135. @cartouche
  2136. @smallexample
  2137. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2138. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2139. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2140. @end smallexample
  2141. @end cartouche
  2142. @end deftypefun
  2143. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  2144. This function blocks until the task associated to tag @var{id} has been
  2145. executed. This is a blocking call which must therefore not be called within
  2146. tasks or callbacks, but only from the application directly. It is possible to
  2147. synchronize with the same tag multiple times, as long as the
  2148. @code{starpu_tag_remove} function is not called. Note that it is still
  2149. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2150. data structure was freed (e.g. if the @code{destroy} flag of the
  2151. @code{starpu_task} was enabled).
  2152. @end deftypefun
  2153. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  2154. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2155. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  2156. terminated.
  2157. @end deftypefun
  2158. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  2159. This function can be used to clear the "already notified" status
  2160. of a tag which is not associated with a task. Before that, calling
  2161. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  2162. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  2163. successors.
  2164. @end deftypefun
  2165. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  2166. This function releases the resources associated to tag @var{id}. It can be
  2167. called once the corresponding task has been executed and when there is
  2168. no other tag that depend on this tag anymore.
  2169. @end deftypefun
  2170. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  2171. This function explicitly unlocks tag @var{id}. It may be useful in the
  2172. case of applications which execute part of their computation outside StarPU
  2173. tasks (e.g. third-party libraries). It is also provided as a
  2174. convenient tool for the programmer, for instance to entirely construct the task
  2175. DAG before actually giving StarPU the opportunity to execute the tasks. When
  2176. called several times on the same tag, notification will be done only on first
  2177. call, thus implementing "OR" dependencies, until the tag is restarted using
  2178. @code{starpu_tag_restart}.
  2179. @end deftypefun
  2180. @node Implicit Data Dependencies
  2181. @section Implicit Data Dependencies
  2182. In this section, we describe how StarPU makes it possible to insert implicit
  2183. task dependencies in order to enforce sequential data consistency. When this
  2184. data consistency is enabled on a specific data handle, any data access will
  2185. appear as sequentially consistent from the application. For instance, if the
  2186. application submits two tasks that access the same piece of data in read-only
  2187. mode, and then a third task that access it in write mode, dependencies will be
  2188. added between the two first tasks and the third one. Implicit data dependencies
  2189. are also inserted in the case of data accesses from the application.
  2190. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  2191. Set the default sequential consistency flag. If a non-zero value is passed, a
  2192. sequential data consistency will be enforced for all handles registered after
  2193. this function call, otherwise it is disabled. By default, StarPU enables
  2194. sequential data consistency. It is also possible to select the data consistency
  2195. mode of a specific data handle with the
  2196. @code{starpu_data_set_sequential_consistency_flag} function.
  2197. @end deftypefun
  2198. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  2199. Return the default sequential consistency flag
  2200. @end deftypefun
  2201. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  2202. Sets the data consistency mode associated to a data handle. The consistency
  2203. mode set using this function has the priority over the default mode which can
  2204. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  2205. @end deftypefun
  2206. @node Performance Model API
  2207. @section Performance Model API
  2208. @deftp {Data Type} {enum starpu_perfmodel_archtype}
  2209. Enumerates the various types of architectures.
  2210. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  2211. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  2212. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  2213. @table @asis
  2214. @item @code{STARPU_CPU_DEFAULT}
  2215. @item @code{STARPU_CUDA_DEFAULT}
  2216. @item @code{STARPU_OPENCL_DEFAULT}
  2217. @end table
  2218. @end deftp
  2219. @deftp {Data Type} {enum starpu_perfmodel_type}
  2220. The possible values are:
  2221. @table @asis
  2222. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  2223. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  2224. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  2225. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  2226. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  2227. @end table
  2228. @end deftp
  2229. @deftp {Data Type} {struct starpu_perfmodel}
  2230. @anchor{struct starpu_perfmodel}
  2231. contains all information about a performance model. At least the
  2232. @code{type} and @code{symbol} fields have to be filled when defining a
  2233. performance model for a codelet. For compatibility, make sure to initialize the
  2234. whole structure to zero, either by using explicit memset, or by letting the
  2235. compiler implicitly do it in e.g. static storage case.
  2236. If not provided, other fields have to be zero.
  2237. @table @asis
  2238. @item @code{type}
  2239. is the type of performance model @code{enum starpu_perfmodel_type}:
  2240. @code{STARPU_HISTORY_BASED},
  2241. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  2242. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  2243. @code{per_arch} has to be filled with functions which return the cost in
  2244. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  2245. a function that returns the cost in micro-seconds on a CPU, timing on other
  2246. archs will be determined by multiplying by an arch-specific factor.
  2247. @item @code{const char *symbol}
  2248. is the symbol name for the performance model, which will be used as
  2249. file name to store the model. It must be set otherwise the model will
  2250. be ignored.
  2251. @item @code{double (*cost_model)(struct starpu_data_descr *)}
  2252. This field is deprecated. Use instead the @code{cost_function} field.
  2253. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  2254. Used by @code{STARPU_COMMON}: takes a task and
  2255. implementation number, and must return a task duration estimation in micro-seconds.
  2256. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  2257. Used by @code{STARPU_HISTORY_BASED} and
  2258. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  2259. implementation number, and returns the size to be used as index for
  2260. history and regression.
  2261. @item @code{struct starpu_perfmodel_per_arch per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  2262. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  2263. starpu_per_arch_perfmodel} structures.
  2264. @item @code{unsigned is_loaded}
  2265. Whether the performance model is already loaded from the disk.
  2266. @item @code{unsigned benchmarking}
  2267. Whether the performance model is still being calibrated.
  2268. @item @code{pthread_rwlock_t model_rwlock}
  2269. Lock to protect concurrency between loading from disk (W), updating the values
  2270. (W), and making a performance estimation (R).
  2271. @end table
  2272. @end deftp
  2273. @deftp {Data Type} {struct starpu_perfmodel_regression_model}
  2274. @table @asis
  2275. @item @code{double sumlny} sum of ln(measured)
  2276. @item @code{double sumlnx} sum of ln(size)
  2277. @item @code{double sumlnx2} sum of ln(size)^2
  2278. @item @code{unsigned long minx} minimum size
  2279. @item @code{unsigned long maxx} maximum size
  2280. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  2281. @item @code{double alpha} estimated = alpha * size ^ beta
  2282. @item @code{double beta}
  2283. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  2284. @item @code{double a, b, c} estimaed = a size ^b + c
  2285. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  2286. @item @code{unsigned nsample} number of sample values for non-linear regression
  2287. @end table
  2288. @end deftp
  2289. @deftp {Data Type} {struct starpu_perfmodel_per_arch}
  2290. contains information about the performance model of a given arch.
  2291. @table @asis
  2292. @item @code{double (*cost_model)(struct starpu_data_descr *t)}
  2293. This field is deprecated. Use instead the @code{cost_function} field.
  2294. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perfmodel_archtype arch, unsigned nimpl)}
  2295. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  2296. target arch and implementation number (as mere conveniency, since the array
  2297. is already indexed by these), and must return a task duration estimation in
  2298. micro-seconds.
  2299. @item @code{size_t (*size_base)(struct starpu_task *, enum starpu_perfmodel_archtype arch, unsigned nimpl)}
  2300. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  2301. case it depends on the architecture-specific implementation.
  2302. @item @code{struct starpu_htbl32_node *history}
  2303. The history of performance measurements.
  2304. @item @code{struct starpu_perfmodel_history_list *list}
  2305. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  2306. records all execution history measures.
  2307. @item @code{struct starpu_perfmodel_regression_model regression}
  2308. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  2309. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  2310. regression.
  2311. @end table
  2312. @end deftp
  2313. @deftypefun int starpu_perfmodel_load_symbol ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  2314. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{$STARPU_HOME/.starpu}.
  2315. @end deftypefun
  2316. @deftypefun int starpu_perfmodel_unload_model ({struct starpu_perfmodel} *@var{model})
  2317. unloads the given model which has been previously loaded through the function @code{starpu_perfmodel_load_symbol}
  2318. @end deftypefun
  2319. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perfmodel_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  2320. returns the path to the debugging information for the performance model.
  2321. @end deftypefun
  2322. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perfmodel_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  2323. returns the architecture name for @var{arch}.
  2324. @end deftypefun
  2325. @deftypefun {enum starpu_perfmodel_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  2326. returns the architecture type of a given worker.
  2327. @end deftypefun
  2328. @deftypefun int starpu_perfmodel_list ({FILE *}@var{output})
  2329. prints a list of all performance models on @var{output}.
  2330. @end deftypefun
  2331. @deftypefun void starpu_perfmodel_print ({struct starpu_perfmodel *}@var{model}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl}, {char *}@var{parameter}, {uint32_t *}footprint, {FILE *}@var{output})
  2332. todo
  2333. @end deftypefun
  2334. @deftypefun int starpu_perfmodel_print_all ({struct starpu_perfmodel *}@var{model}, {char *}@var{arch}, @var{char *}parameter, {uint32_t *}@var{footprint}, {FILE *}@var{output})
  2335. todo
  2336. @end deftypefun
  2337. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  2338. prints a matrix of bus bandwidths on @var{f}.
  2339. @end deftypefun
  2340. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  2341. prints the affinity devices on @var{f}.
  2342. @end deftypefun
  2343. @deftypefun void starpu_topology_print ({FILE *}@var{f})
  2344. prints a description of the topology on @var{f}.
  2345. @end deftypefun
  2346. @deftypefun void starpu_perfmodel_update_history ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *}@var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{cpuid}, unsigned @var{nimpl}, double @var{measured});
  2347. This feeds the performance model @var{model} with an explicit measurement
  2348. @var{measured}, in addition to measurements done by StarPU itself. This can be
  2349. useful when the application already has an existing set of measurements done
  2350. in good conditions, that StarPU could benefit from instead of doing on-line
  2351. measurements. And example of use can be see in @ref{Performance model example}.
  2352. @end deftypefun
  2353. @node Profiling API
  2354. @section Profiling API
  2355. @deftypefun int starpu_profiling_status_set (int @var{status})
  2356. Thie function sets the profiling status. Profiling is activated by passing
  2357. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  2358. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  2359. resets all profiling measurements. When profiling is enabled, the
  2360. @code{profiling_info} field of the @code{struct starpu_task} structure points
  2361. to a valid @code{struct starpu_profiling_task_info} structure containing
  2362. information about the execution of the task.
  2363. Negative return values indicate an error, otherwise the previous status is
  2364. returned.
  2365. @end deftypefun
  2366. @deftypefun int starpu_profiling_status_get (void)
  2367. Return the current profiling status or a negative value in case there was an error.
  2368. @end deftypefun
  2369. @deftypefun void starpu_profiling_set_id (int @var{new_id})
  2370. This function sets the ID used for profiling trace filename. It needs to be
  2371. called before starpu_init.
  2372. @end deftypefun
  2373. @deftp {Data Type} {struct starpu_profiling_task_info}
  2374. This structure contains information about the execution of a task. It is
  2375. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  2376. structure if profiling was enabled. The different fields are:
  2377. @table @asis
  2378. @item @code{struct timespec submit_time}
  2379. Date of task submission (relative to the initialization of StarPU).
  2380. @item @code{struct timespec push_start_time}
  2381. Time when the task was submitted to the scheduler.
  2382. @item @code{struct timespec push_end_time}
  2383. Time when the scheduler finished with the task submission.
  2384. @item @code{struct timespec pop_start_time}
  2385. Time when the scheduler started to be requested for a task, and eventually gave
  2386. that task.
  2387. @item @code{struct timespec pop_end_time}
  2388. Time when the scheduler finished providing the task for execution.
  2389. @item @code{struct timespec acquire_data_start_time}
  2390. Time when the worker started fetching input data.
  2391. @item @code{struct timespec acquire_data_end_time}
  2392. Time when the worker finished fetching input data.
  2393. @item @code{struct timespec start_time}
  2394. Date of task execution beginning (relative to the initialization of StarPU).
  2395. @item @code{struct timespec end_time}
  2396. Date of task execution termination (relative to the initialization of StarPU).
  2397. @item @code{struct timespec release_data_start_time}
  2398. Time when the worker started releasing data.
  2399. @item @code{struct timespec release_data_end_time}
  2400. Time when the worker finished releasing data.
  2401. @item @code{struct timespec callback_start_time}
  2402. Time when the worker started the application callback for the task.
  2403. @item @code{struct timespec callback_end_time}
  2404. Time when the worker finished the application callback for the task.
  2405. @item @code{workerid}
  2406. Identifier of the worker which has executed the task.
  2407. @item @code{uint64_t used_cycles}
  2408. Number of cycles used by the task, only available in the MoviSim
  2409. @item @code{uint64_t stall_cycles}
  2410. Number of cycles stalled within the task, only available in the MoviSim
  2411. @item @code{double power_consumed}
  2412. Power consumed by the task, only available in the MoviSim
  2413. @end table
  2414. @end deftp
  2415. @deftp {Data Type} {struct starpu_profiling_worker_info}
  2416. This structure contains the profiling information associated to a
  2417. worker. The different fields are:
  2418. @table @asis
  2419. @item @code{struct timespec start_time}
  2420. Starting date for the reported profiling measurements.
  2421. @item @code{struct timespec total_time}
  2422. Duration of the profiling measurement interval.
  2423. @item @code{struct timespec executing_time}
  2424. Time spent by the worker to execute tasks during the profiling measurement interval.
  2425. @item @code{struct timespec sleeping_time}
  2426. Time spent idling by the worker during the profiling measurement interval.
  2427. @item @code{int executed_tasks}
  2428. Number of tasks executed by the worker during the profiling measurement interval.
  2429. @item @code{uint64_t used_cycles}
  2430. Number of cycles used by the worker, only available in the MoviSim
  2431. @item @code{uint64_t stall_cycles}
  2432. Number of cycles stalled within the worker, only available in the MoviSim
  2433. @item @code{double power_consumed}
  2434. Power consumed by the worker, only available in the MoviSim
  2435. @end table
  2436. @end deftp
  2437. @deftypefun int starpu_profiling_worker_get_info (int @var{workerid}, {struct starpu_profiling_worker_info *}@var{worker_info})
  2438. Get the profiling info associated to the worker identified by @var{workerid},
  2439. and reset the profiling measurements. If the @var{worker_info} argument is
  2440. NULL, only reset the counters associated to worker @var{workerid}.
  2441. Upon successful completion, this function returns 0. Otherwise, a negative
  2442. value is returned.
  2443. @end deftypefun
  2444. @deftp {Data Type} {struct starpu_profiling_bus_info}
  2445. The different fields are:
  2446. @table @asis
  2447. @item @code{struct timespec start_time}
  2448. Time of bus profiling startup.
  2449. @item @code{struct timespec total_time}
  2450. Total time of bus profiling.
  2451. @item @code{int long long transferred_bytes}
  2452. Number of bytes transferred during profiling.
  2453. @item @code{int transfer_count}
  2454. Number of transfers during profiling.
  2455. @end table
  2456. @end deftp
  2457. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_profiling_bus_info *}@var{bus_info})
  2458. Get the profiling info associated to the worker designated by @var{workerid},
  2459. and reset the profiling measurements. If worker_info is NULL, only reset the
  2460. counters.
  2461. @end deftypefun
  2462. @deftypefun int starpu_bus_get_count (void)
  2463. Return the number of buses in the machine.
  2464. @end deftypefun
  2465. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  2466. Return the identifier of the bus between @var{src} and @var{dst}
  2467. @end deftypefun
  2468. @deftypefun int starpu_bus_get_src (int @var{busid})
  2469. Return the source point of bus @var{busid}
  2470. @end deftypefun
  2471. @deftypefun int starpu_bus_get_dst (int @var{busid})
  2472. Return the destination point of bus @var{busid}
  2473. @end deftypefun
  2474. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  2475. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  2476. @end deftypefun
  2477. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  2478. Converts the given timespec @var{ts} into microseconds.
  2479. @end deftypefun
  2480. @deftypefun void starpu_profiling_bus_helper_display_summary (void)
  2481. Displays statistics about the bus on stderr. if the environment
  2482. variable @code{STARPU_BUS_STATS} is defined. The function is called
  2483. automatically by @code{starpu_shutdown()}.
  2484. @end deftypefun
  2485. @deftypefun void starpu_profiling_worker_helper_display_summary (void)
  2486. Displays statistics about the workers on stderr if the environment
  2487. variable @code{STARPU_WORKER_STATS} is defined. The function is called
  2488. automatically by @code{starpu_shutdown()}.
  2489. @end deftypefun
  2490. @deftypefun void starpu_data_display_memory_stats ()
  2491. Display statistics about the current data handles registered within
  2492. StarPU. StarPU must have been configured with the option
  2493. @code{----enable-memory-stats} (@pxref{Memory feedback}).
  2494. @end deftypefun
  2495. @node Theoretical lower bound on execution time API
  2496. @section Theoretical lower bound on execution time
  2497. @deftypefun void starpu_bound_start (int @var{deps}, int @var{prio})
  2498. Start recording tasks (resets stats). @var{deps} tells whether
  2499. dependencies should be recorded too (this is quite expensive)
  2500. @end deftypefun
  2501. @deftypefun void starpu_bound_stop (void)
  2502. Stop recording tasks
  2503. @end deftypefun
  2504. @deftypefun void starpu_bound_print_dot ({FILE *}@var{output})
  2505. Print the DAG that was recorded
  2506. @end deftypefun
  2507. @deftypefun void starpu_bound_compute ({double *}@var{res}, {double *}@var{integer_res}, int @var{integer})
  2508. Get theoretical upper bound (in ms) (needs glpk support detected by @code{configure} script). It returns 0 if some performance models are not calibrated.
  2509. @end deftypefun
  2510. @deftypefun void starpu_bound_print_lp ({FILE *}@var{output})
  2511. Emit the Linear Programming system on @var{output} for the recorded tasks, in
  2512. the lp format
  2513. @end deftypefun
  2514. @deftypefun void starpu_bound_print_mps ({FILE *}@var{output})
  2515. Emit the Linear Programming system on @var{output} for the recorded tasks, in
  2516. the mps format
  2517. @end deftypefun
  2518. @deftypefun void starpu_bound_print ({FILE *}@var{output}, int @var{integer})
  2519. Emit statistics of actual execution vs theoretical upper bound. @var{integer}
  2520. permits to choose between integer solving (which takes a long time but is
  2521. correct), and relaxed solving (which provides an approximate solution).
  2522. @end deftypefun
  2523. @node CUDA extensions
  2524. @section CUDA extensions
  2525. @defmac STARPU_USE_CUDA
  2526. This macro is defined when StarPU has been installed with CUDA
  2527. support. It should be used in your code to detect the availability of
  2528. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2529. @end defmac
  2530. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  2531. This function gets the current worker's CUDA stream.
  2532. StarPU provides a stream for every CUDA device controlled by StarPU. This
  2533. function is only provided for convenience so that programmers can easily use
  2534. asynchronous operations within codelets without having to create a stream by
  2535. hand. Note that the application is not forced to use the stream provided by
  2536. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  2537. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  2538. the likelihood of having all transfers overlapped.
  2539. @end deftypefun
  2540. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  2541. This function returns a pointer to device properties for worker @var{workerid}
  2542. (assumed to be a CUDA worker).
  2543. @end deftypefun
  2544. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  2545. Report a CUDA error.
  2546. @end deftypefun
  2547. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  2548. Calls starpu_cuda_report_error, passing the current function, file and line
  2549. position.
  2550. @end defmac
  2551. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  2552. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  2553. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  2554. The function first tries to copy the data asynchronous (unless
  2555. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  2556. @var{stream} is @code{NULL}, it copies the data synchronously.
  2557. The function returns @code{-EAGAIN} if the asynchronous launch was
  2558. successfull. It returns 0 if the synchronous copy was successful, or
  2559. fails otherwise.
  2560. @end deftypefun
  2561. @deftypefun void starpu_cuda_set_device (unsigned @var{devid})
  2562. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  2563. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  2564. the @code{starpu_conf} structure.
  2565. @end deftypefun
  2566. @deftypefun void starpu_cublas_init (void)
  2567. This function initializes CUBLAS on every CUDA device.
  2568. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2569. @code{starpu_cublas_init} will initialize CUBLAS on every CUDA device
  2570. controlled by StarPU. This call blocks until CUBLAS has been properly
  2571. initialized on every device.
  2572. @end deftypefun
  2573. @deftypefun void starpu_cublas_shutdown (void)
  2574. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2575. @end deftypefun
  2576. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  2577. Report a cublas error.
  2578. @end deftypefun
  2579. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  2580. Calls starpu_cublas_report_error, passing the current function, file and line
  2581. position.
  2582. @end defmac
  2583. @node OpenCL extensions
  2584. @section OpenCL extensions
  2585. @menu
  2586. * Writing OpenCL kernels:: Writing OpenCL kernels
  2587. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  2588. * Loading OpenCL kernels:: Loading OpenCL kernels
  2589. * OpenCL statistics:: Collecting statistics from OpenCL
  2590. * OpenCL utilities:: Utilities for OpenCL
  2591. @end menu
  2592. @defmac STARPU_USE_OPENCL
  2593. This macro is defined when StarPU has been installed with OpenCL
  2594. support. It should be used in your code to detect the availability of
  2595. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2596. @end defmac
  2597. @node Writing OpenCL kernels
  2598. @subsection Writing OpenCL kernels
  2599. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  2600. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  2601. @end deftypefun
  2602. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  2603. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  2604. @end deftypefun
  2605. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  2606. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  2607. @end deftypefun
  2608. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  2609. Return the context of the current worker.
  2610. @end deftypefun
  2611. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  2612. Return the computation kernel command queue of the current worker.
  2613. @end deftypefun
  2614. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  2615. Sets the arguments of a given kernel. The list of arguments must be given as
  2616. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  2617. The last argument must be 0. Returns the number of arguments that were
  2618. successfully set. In case of failure, returns the id of the argument
  2619. that could not be set and @var{err} is set to the error returned by
  2620. OpenCL. Otherwise, returns the number of arguments that were set.
  2621. @cartouche
  2622. @smallexample
  2623. int n;
  2624. cl_int err;
  2625. cl_kernel kernel;
  2626. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  2627. sizeof(foo), &foo,
  2628. sizeof(bar), &bar,
  2629. 0);
  2630. if (n != 2)
  2631. fprintf(stderr, "Error : %d\n", err);
  2632. @end smallexample
  2633. @end cartouche
  2634. @end deftypefun
  2635. @node Compiling OpenCL kernels
  2636. @subsection Compiling OpenCL kernels
  2637. Source codes for OpenCL kernels can be stored in a file or in a
  2638. string. StarPU provides functions to build the program executable for
  2639. each available OpenCL device as a @code{cl_program} object. This
  2640. program executable can then be loaded within a specific queue as
  2641. explained in the next section. These are only helpers, Applications
  2642. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2643. use (e.g. different programs on the different OpenCL devices, for
  2644. relocation purpose for instance).
  2645. @deftp {Data Type} {struct starpu_opencl_program}
  2646. Stores the OpenCL programs as compiled for the different OpenCL
  2647. devices. The different fields are:
  2648. @table @asis
  2649. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  2650. Stores each program for each OpenCL device.
  2651. @end table
  2652. @end deftp
  2653. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2654. @anchor{starpu_opencl_load_opencl_from_file}
  2655. This function compiles an OpenCL source code stored in a file.
  2656. @end deftypefun
  2657. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2658. This function compiles an OpenCL source code stored in a string.
  2659. @end deftypefun
  2660. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  2661. This function unloads an OpenCL compiled code.
  2662. @end deftypefun
  2663. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  2664. @anchor{starpu_opencl_load_program_source}
  2665. Store the contents of the file @var{source_file_name} in the buffer
  2666. @var{opencl_program_source}. The file @var{source_file_name} can be
  2667. located in the current directory, or in the directory specified by the
  2668. environment variable @code{STARPU_OPENCL_PROGRAM_DIR} (@pxref{STARPU_OPENCL_PROGRAM_DIR}), or in the
  2669. directory @code{share/starpu/opencl} of the installation directory of
  2670. StarPU, or in the source directory of StarPU.
  2671. When the file is found, @code{located_file_name} is the full name of
  2672. the file as it has been located on the system, @code{located_dir_name}
  2673. the directory where it has been located. Otherwise, they are both set
  2674. to the empty string.
  2675. @end deftypefun
  2676. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char *} @var{build_options})
  2677. Compile the OpenCL kernel stored in the file @code{source_file_name}
  2678. with the given options @code{build_options} and stores the result in
  2679. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  2680. filename as @code{source_file_name}. The compilation is done for every
  2681. OpenCL device, and the filename is suffixed with the vendor id and the
  2682. device id of the OpenCL device.
  2683. @end deftypefun
  2684. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  2685. Compile the OpenCL kernel in the string @code{opencl_program_source}
  2686. with the given options @code{build_options} and stores the result in
  2687. the directory @code{$STARPU_HOME/.starpu/opencl}
  2688. with the filename
  2689. @code{file_name}. The compilation is done for every
  2690. OpenCL device, and the filename is suffixed with the vendor id and the
  2691. device id of the OpenCL device.
  2692. @end deftypefun
  2693. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  2694. Compile the binary OpenCL kernel identified with @var{id}. For every
  2695. OpenCL device, the binary OpenCL kernel will be loaded from the file
  2696. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  2697. @end deftypefun
  2698. @node Loading OpenCL kernels
  2699. @subsection Loading OpenCL kernels
  2700. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  2701. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  2702. queue returned in @var{queue}, using program @var{opencl_programs} and name
  2703. @var{kernel_name}
  2704. @end deftypefun
  2705. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  2706. Release the given @var{kernel}, to be called after kernel execution.
  2707. @end deftypefun
  2708. @node OpenCL statistics
  2709. @subsection OpenCL statistics
  2710. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  2711. This function allows to collect statistics on a kernel execution.
  2712. After termination of the kernels, the OpenCL codelet should call this function
  2713. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  2714. collect statistics about the kernel execution (used cycles, consumed power).
  2715. @end deftypefun
  2716. @node OpenCL utilities
  2717. @subsection OpenCL utilities
  2718. @deftypefun {const char *} starpu_opencl_error_string (cl_int @var{status})
  2719. Return the error message in English corresponding to @var{status}, an
  2720. OpenCL error code.
  2721. @end deftypefun
  2722. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2723. Given a valid error @var{status}, prints the corresponding error message on
  2724. stdout, along with the given function name @var{func}, the given filename
  2725. @var{file}, the given line number @var{line} and the given message @var{msg}.
  2726. @end deftypefun
  2727. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  2728. Call the function @code{starpu_opencl_display_error} with the given
  2729. error @var{status}, the current function name, current file and line
  2730. number, and a empty message.
  2731. @end defmac
  2732. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2733. Call the function @code{starpu_opencl_display_error} and abort.
  2734. @end deftypefun
  2735. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  2736. Call the function @code{starpu_opencl_report_error} with the given
  2737. error @var{status}, with the current function name, current file and
  2738. line number, and a empty message.
  2739. @end defmac
  2740. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  2741. Call the function @code{starpu_opencl_report_error} with the given
  2742. message and the given error @var{status}, with the current function
  2743. name, current file and line number.
  2744. @end defmac
  2745. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  2746. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  2747. valid combination of cl_mem_flags values.
  2748. @end deftypefun
  2749. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2750. Copy @var{size} bytes from the given @var{ptr} on
  2751. RAM @var{src_node} to the given @var{buffer} on OpenCL @var{dst_node}.
  2752. @var{offset} is the offset, in bytes, in @var{buffer}.
  2753. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2754. synchronised before returning. If non NULL, @var{event} can be used
  2755. after the call to wait for this particular copy to complete.
  2756. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2757. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2758. was successful, or to 0 if event was NULL.
  2759. @end deftypefun
  2760. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2761. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  2762. OpenCL @var{src_node} to the given @var{ptr} on RAM @var{dst_node}.
  2763. @var{offset} is the offset, in bytes, in @var{buffer}.
  2764. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2765. synchronised before returning. If non NULL, @var{event} can be used
  2766. after the call to wait for this particular copy to complete.
  2767. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2768. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2769. was successful, or to 0 if event was NULL.
  2770. @end deftypefun
  2771. @deftypefun cl_int starpu_opencl_copy_opencl_to_opencl (cl_mem @var{src}, unsigned @var{src_node}, size_t @var{src_offset}, cl_mem @var{dst}, unsigned @var{dst_node}, size_t @var{dst_offset}, size_t @var{size}, {cl_event *}@var{event}, {int *}@var{ret})
  2772. Copy @var{size} bytes asynchronously from byte offset @var{src_offset} of
  2773. @var{src} on OpenCL @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2774. OpenCL @var{dst_node}.
  2775. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2776. synchronised before returning. If non NULL, @var{event} can be used
  2777. after the call to wait for this particular copy to complete.
  2778. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2779. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2780. was successful, or to 0 if event was NULL.
  2781. @end deftypefun
  2782. @deftypefun cl_int starpu_opencl_copy_async_sync (uintptr_t @var{src}, size_t @var{src_offset}, unsigned @var{src_node}, uintptr_t @var{dst}, size_t @var{dst_offset}, unsigned @var{dst_node}, size_t @var{size}, {cl_event *}@var{event})
  2783. Copy @var{size} bytes from byte offset @var{src_offset} of
  2784. @var{src} on @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2785. @var{dst_node}. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2786. synchronised before returning. If non NULL, @var{event} can be used
  2787. after the call to wait for this particular copy to complete.
  2788. The function returns @code{-EAGAIN} if the asynchronous launch was
  2789. successfull. It returns 0 if the synchronous copy was successful, or
  2790. fails otherwise.
  2791. @end deftypefun
  2792. @node MIC extensions
  2793. @section MIC extensions
  2794. @defmac STARPU_USE_MIC
  2795. This macro is defined when StarPU has been installed with MIC
  2796. support. It should be used in your code to detect the availability of
  2797. MIC.
  2798. @end defmac
  2799. @deftypefun int starpu_mic_register_kernel({starpu_mic_func_symbol_t *}@var{symbol}, {const char *}@var{func_name})
  2800. Initiate a lookup on each MIC device to find the adress of the function
  2801. named FUNC_NAME, store them in the global array kernels and return
  2802. the index in the array through SYMBOL.
  2803. @end deftypefun
  2804. @deftypefun starpu_mic_kernel_t starpu_mic_get_kernel(starpu_mic_func_symbol_t @var{symbol})
  2805. If success, return the pointer to the function defined by SYMBOL on the
  2806. device linked to the called device. This can for instance be used in a
  2807. @code{starpu_mic_func_t} implementation.
  2808. @end deftypefun
  2809. @node SCC extensions
  2810. @section SCC extensions
  2811. @defmac STARPU_USE_SCC
  2812. This macro is defined when StarPU has been installed with SCC
  2813. support. It should be used in your code to detect the availability of
  2814. SCC.
  2815. @end defmac
  2816. @deftypefun int starpu_scc_register_kernel({starpu_scc_func_symbol_t *}@var{symbol}, {const char *}@var{func_name})
  2817. Initiate a lookup on each SCC device to find the adress of the function
  2818. named FUNC_NAME, store them in the global array kernels and return
  2819. the index in the array through SYMBOL.
  2820. @end deftypefun
  2821. @deftypefun starpu_scc_kernel_t starpu_scc_get_kernel(starpu_scc_func_symbol_t @var{symbol})
  2822. If success, return the pointer to the function defined by SYMBOL on the
  2823. device linked to the called device. This can for instance be used in a
  2824. @code{starpu_scc_func_t} implementation.
  2825. @end deftypefun
  2826. @node Miscellaneous helpers
  2827. @section Miscellaneous helpers
  2828. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2829. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2830. The @var{asynchronous} parameter indicates whether the function should
  2831. block or not. In the case of an asynchronous call, it is possible to
  2832. synchronize with the termination of this operation either by the means of
  2833. implicit dependencies (if enabled) or by calling
  2834. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2835. this callback function is executed after the handle has been copied, and it is
  2836. given the @var{callback_arg} pointer as argument.
  2837. @end deftypefun
  2838. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2839. This function executes the given function on a subset of workers.
  2840. When calling this method, the offloaded function specified by the first argument is
  2841. executed by every StarPU worker that may execute the function.
  2842. The second argument is passed to the offloaded function.
  2843. The last argument specifies on which types of processing units the function
  2844. should be executed. Similarly to the @var{where} field of the
  2845. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2846. should be executed on every CUDA device and every CPU by passing
  2847. @code{STARPU_CPU|STARPU_CUDA}.
  2848. This function blocks until the function has been executed on every appropriate
  2849. processing units, so that it may not be called from a callback function for
  2850. instance.
  2851. @end deftypefun
  2852. @node FXT Support
  2853. @section FXT Support
  2854. @deftypefun void starpu_fxt_start_profiling (void)
  2855. Start recording the trace. The trace is by default started from
  2856. @code{starpu_init()} call, but can be paused by using
  2857. @code{starpu_fxt_stop_profiling}, in which case
  2858. @code{starpu_fxt_start_profiling} should be called to specify when to resume
  2859. recording events.
  2860. @end deftypefun
  2861. @deftypefun void starpu_fxt_stop_profiling (void)
  2862. Stop recording the trace. The trace is by default stopped at
  2863. @code{starpu_shutdown()} call. @code{starpu_fxt_stop_profiling} can however be
  2864. used to stop it earlier. @code{starpu_fxt_start_profiling} can then be called to
  2865. start recording it again, etc.
  2866. @end deftypefun
  2867. @node FFT Support
  2868. @section FFT Support
  2869. @deftypefun {void *} starpufft_malloc (size_t @var{n})
  2870. Allocates memory for @var{n} bytes. This is preferred over @code{malloc}, since
  2871. it allocates pinned memory, which allows overlapped transfers.
  2872. @end deftypefun
  2873. @deftypefun {void *} starpufft_free (void *@var{p})
  2874. Release memory previously allocated.
  2875. @end deftypefun
  2876. @deftypefun {struct starpufft_plan *} starpufft_plan_dft_1d (int @var{n}, int @var{sign}, unsigned @var{flags})
  2877. Initializes a plan for 1D FFT of size @var{n}. @var{sign} can be
  2878. @code{STARPUFFT_FORWARD} or @code{STARPUFFT_INVERSE}. @var{flags} must be 0.
  2879. @end deftypefun
  2880. @deftypefun {struct starpufft_plan *} starpufft_plan_dft_2d (int @var{n}, int @var{m}, int @var{sign}, unsigned @var{flags})
  2881. Initializes a plan for 2D FFT of size (@var{n}, @var{m}). @var{sign} can be
  2882. @code{STARPUFFT_FORWARD} or @code{STARPUFFT_INVERSE}. @var{flags} must be 0.
  2883. @end deftypefun
  2884. @deftypefun {struct starpu_task *} starpufft_start (starpufft_plan @var{p}, void *@var{in}, void *@var{out})
  2885. Start an FFT previously planned as @var{p}, using @var{in} and @var{out} as
  2886. input and output. This only submits the task and does not wait for it.
  2887. The application should call @code{starpufft_cleanup} to unregister the data.
  2888. @end deftypefun
  2889. @deftypefun {struct starpu_task *} starpufft_start_handle (starpufft_plan @var{p}, starpu_data_handle_t @var{in}, starpu_data_handle_t @var{out})
  2890. Start an FFT previously planned as @var{p}, using data handles @var{in} and
  2891. @var{out} as input and output (assumed to be vectors of elements of the expected
  2892. types). This only submits the task and does not wait for it.
  2893. @end deftypefun
  2894. @deftypefun void starpufft_execute (starpufft_plan @var{p}, void *@var{in}, void *@var{out})
  2895. Execute an FFT previously planned as @var{p}, using @var{in} and @var{out} as
  2896. input and output. This submits and waits for the task.
  2897. @end deftypefun
  2898. @deftypefun void starpufft_execute_handle (starpufft_plan @var{p}, starpu_data_handle_t @var{in}, starpu_data_handle_t @var{out})
  2899. Execute an FFT previously planned as @var{p}, using data handles @var{in} and
  2900. @var{out} as input and output (assumed to be vectors of elements of the expected
  2901. types). This submits and waits for the task.
  2902. @end deftypefun
  2903. @deftypefun void starpufft_cleanup (starpufft_plan @var{p})
  2904. Releases data for plan @var{p}, in the @code{starpufft_start} case.
  2905. @end deftypefun
  2906. @deftypefun void starpufft_destroy_plan (starpufft_plan @var{p})
  2907. Destroys plan @var{p}, i.e. release all CPU (fftw) and GPU (cufft) resources.
  2908. @end deftypefun
  2909. @node MPI
  2910. @section MPI
  2911. @menu
  2912. * Initialisation::
  2913. * Communication::
  2914. * Communication Cache::
  2915. * MPI Insert Task::
  2916. * Collective Operations::
  2917. @end menu
  2918. @node Initialisation
  2919. @subsection Initialisation
  2920. @deftypefun int starpu_mpi_init (int *@var{argc}, char ***@var{argv}, int initialize_mpi)
  2921. Initializes the starpumpi library. @code{initialize_mpi} indicates if
  2922. MPI should be initialized or not by StarPU. If the value is not @code{0},
  2923. MPI will be initialized by calling @code{MPI_Init_Thread(argc, argv,
  2924. MPI_THREAD_SERIALIZED, ...)}.
  2925. @end deftypefun
  2926. @deftypefun int starpu_mpi_initialize (void)
  2927. This function has been made deprecated. One should use instead the
  2928. function @code{starpu_mpi_init()} defined above.
  2929. This function does not call @code{MPI_Init}, it should be called beforehand.
  2930. @end deftypefun
  2931. @deftypefun int starpu_mpi_initialize_extended (int *@var{rank}, int *@var{world_size})
  2932. This function has been made deprecated. One should use instead the
  2933. function @code{starpu_mpi_init()} defined above.
  2934. MPI will be initialized by starpumpi by calling @code{MPI_Init_Thread(argc, argv,
  2935. MPI_THREAD_SERIALIZED, ...)}.
  2936. @end deftypefun
  2937. @deftypefun int starpu_mpi_shutdown (void)
  2938. Cleans the starpumpi library. This must be called between calling
  2939. @code{starpu_mpi} functions and @code{starpu_shutdown()}.
  2940. @code{MPI_Finalize()} will be called if StarPU-MPI has been initialized
  2941. by @code{starpu_mpi_init()}.
  2942. @end deftypefun
  2943. @deftypefun void starpu_mpi_comm_amounts_retrieve (size_t *@var{comm_amounts})
  2944. Retrieve the current amount of communications from the current node in
  2945. the array @code{comm_amounts} which must have a size greater or equal
  2946. to the world size. Communications statistics must be enabled
  2947. (@pxref{STARPU_COMM_STATS}).
  2948. @end deftypefun
  2949. @deftypefun void starpu_mpi_set_communication_tag (int @var{tag})
  2950. @anchor{starpu_mpi_set_communication_tag}
  2951. Tell StarPU-MPI which MPI tag to use for all its communications.
  2952. @end deftypefun
  2953. @deftypefun int starpu_mpi_get_communication_tag (void)
  2954. @anchor{starpu_mpi_get_communication_tag}
  2955. Returns the MPI tag which will be used for all StarPU-MPI communications.
  2956. @end deftypefun
  2957. @node Communication
  2958. @subsection Communication
  2959. @deftypefun int starpu_mpi_send (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  2960. Performs a standard-mode, blocking send of @var{data_handle} to the
  2961. node @var{dest} using the message tag @code{mpi_tag} within the
  2962. communicator @var{comm}.
  2963. @end deftypefun
  2964. @deftypefun int starpu_mpi_recv (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  2965. Performs a standard-mode, blocking receive in @var{data_handle} from the
  2966. node @var{source} using the message tag @code{mpi_tag} within the
  2967. communicator @var{comm}.
  2968. @end deftypefun
  2969. @deftypefun int starpu_mpi_isend (starpu_data_handle_t @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  2970. Posts a standard-mode, non blocking send of @var{data_handle} to the
  2971. node @var{dest} using the message tag @code{mpi_tag} within the
  2972. communicator @var{comm}. After the call, the pointer to the request
  2973. @var{req} can be used to test or to wait for the completion of the communication.
  2974. @end deftypefun
  2975. @deftypefun int starpu_mpi_irecv (starpu_data_handle_t @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  2976. Posts a nonblocking receive in @var{data_handle} from the
  2977. node @var{source} using the message tag @code{mpi_tag} within the
  2978. communicator @var{comm}. After the call, the pointer to the request
  2979. @var{req} can be used to test or to wait for the completion of the communication.
  2980. @end deftypefun
  2981. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  2982. Posts a standard-mode, non blocking send of @var{data_handle} to the
  2983. node @var{dest} using the message tag @code{mpi_tag} within the
  2984. communicator @var{comm}. On completion, the @var{callback} function is
  2985. called with the argument @var{arg}. Similarly to the pthread detached
  2986. functionality, when a detached communication completes, its resources
  2987. are automatically released back to the system, there is no need to
  2988. test or to wait for the completion of the request.
  2989. @end deftypefun
  2990. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  2991. Posts a nonblocking receive in @var{data_handle} from the
  2992. node @var{source} using the message tag @code{mpi_tag} within the
  2993. communicator @var{comm}. On completion, the @var{callback} function is
  2994. called with the argument @var{arg}. Similarly to the pthread detached
  2995. functionality, when a detached communication completes, its resources
  2996. are automatically released back to the system, there is no need to
  2997. test or to wait for the completion of the request.
  2998. @end deftypefun
  2999. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  3000. Returns when the operation identified by request @var{req} is complete.
  3001. @end deftypefun
  3002. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  3003. If the operation identified by @var{req} is complete, set @var{flag}
  3004. to 1. The @var{status} object is set to contain information on the
  3005. completed operation.
  3006. @end deftypefun
  3007. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  3008. Blocks the caller until all group members of the communicator
  3009. @var{comm} have called it.
  3010. @end deftypefun
  3011. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  3012. Posts a standard-mode, non blocking send of @var{data_handle} to the
  3013. node @var{dest} using the message tag @code{mpi_tag} within the
  3014. communicator @var{comm}. On completion, @var{tag} is unlocked.
  3015. @end deftypefun
  3016. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  3017. Posts a nonblocking receive in @var{data_handle} from the
  3018. node @var{source} using the message tag @code{mpi_tag} within the
  3019. communicator @var{comm}. On completion, @var{tag} is unlocked.
  3020. @end deftypefun
  3021. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle_t *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  3022. Posts @var{array_size} standard-mode, non blocking send. Each post
  3023. sends the n-th data of the array @var{data_handle} to the n-th node of
  3024. the array @var{dest}
  3025. using the n-th message tag of the array @code{mpi_tag} within the n-th
  3026. communicator of the array
  3027. @var{comm}. On completion of the all the requests, @var{tag} is unlocked.
  3028. @end deftypefun
  3029. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle_t *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  3030. Posts @var{array_size} nonblocking receive. Each post receives in the
  3031. n-th data of the array @var{data_handle} from the n-th
  3032. node of the array @var{source} using the n-th message tag of the array
  3033. @code{mpi_tag} within the n-th communicator of the array @var{comm}.
  3034. On completion of the all the requests, @var{tag} is unlocked.
  3035. @end deftypefun
  3036. @node Communication Cache
  3037. @subsection Communication Cache
  3038. @deftypefun void starpu_mpi_cache_flush (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle})
  3039. Clear the send and receive communication cache for the data
  3040. @var{data_handle}. The function has to be called synchronously by all
  3041. the MPI nodes.
  3042. The function does nothing if the cache mechanism is disabled (@pxref{STARPU_MPI_CACHE}).
  3043. @end deftypefun
  3044. @deftypefun void starpu_mpi_cache_flush_all_data (MPI_Comm @var{comm})
  3045. Clear the send and receive communication cache for all data. The
  3046. function has to be called synchronously by all the MPI nodes.
  3047. The function does nothing if the cache mechanism is disabled (@pxref{STARPU_MPI_CACHE}).
  3048. @end deftypefun
  3049. @node MPI Insert Task
  3050. @subsection MPI Insert Task
  3051. @deftypefun int starpu_data_set_tag (starpu_data_handle_t @var{handle}, int @var{tag})
  3052. Tell StarPU-MPI which MPI tag to use when exchanging the data.
  3053. @end deftypefun
  3054. @deftypefun int starpu_data_get_tag (starpu_data_handle_t @var{handle})
  3055. Returns the MPI tag to be used when exchanging the data.
  3056. @end deftypefun
  3057. @deftypefun int starpu_data_set_rank (starpu_data_handle_t @var{handle}, int @var{rank})
  3058. Tell StarPU-MPI which MPI node "owns" a given data, that is, the node which will
  3059. always keep an up-to-date value, and will by default execute tasks which write
  3060. to it.
  3061. @end deftypefun
  3062. @deftypefun int starpu_data_get_rank (starpu_data_handle_t @var{handle})
  3063. Returns the last value set by @code{starpu_data_set_rank}.
  3064. @end deftypefun
  3065. @deftypefun starpu_data_handle_t starpu_data_get_data_handle_from_tag (int @var{tag})
  3066. Returns the data handle associated to the MPI tag, or NULL if there is not.
  3067. @end deftypefun
  3068. @defmac STARPU_EXECUTE_ON_NODE
  3069. this macro is used when calling @code{starpu_mpi_insert_task}, and
  3070. must be followed by a integer value which specified the node on which
  3071. to execute the codelet.
  3072. @end defmac
  3073. @defmac STARPU_EXECUTE_ON_DATA
  3074. this macro is used when calling @code{starpu_mpi_insert_task}, and
  3075. must be followed by a data handle to specify that the node owning the
  3076. given data will execute the codelet.
  3077. @end defmac
  3078. @deftypefun int starpu_mpi_insert_task (MPI_Comm @var{comm}, struct starpu_codelet *@var{codelet}, ...)
  3079. Create and submit a task corresponding to @var{codelet} with the following
  3080. arguments. The argument list must be zero-terminated.
  3081. The arguments following the codelets are the same types as for the
  3082. function @code{starpu_insert_task} defined in @ref{Insert Task
  3083. Utility}. The extra argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  3084. integer allows to specify the MPI node to execute the codelet. It is also
  3085. possible to specify that the node owning a specific data will execute
  3086. the codelet, by using @code{STARPU_EXECUTE_ON_DATA} followed by a data
  3087. handle.
  3088. The internal algorithm is as follows:
  3089. @enumerate
  3090. @item Find out which MPI node is going to execute the codelet.
  3091. @enumerate
  3092. @item If there is only one node owning data in W mode, it will
  3093. be selected;
  3094. @item If there is several nodes owning data in W node, the one
  3095. selected will be the one having the least data in R mode so as
  3096. to minimize the amount of data to be transfered;
  3097. @item The argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  3098. integer can be used to specify the node;
  3099. @item The argument @code{STARPU_EXECUTE_ON_DATA} followed by a
  3100. data handle can be used to specify that the node owing the given
  3101. data will execute the codelet.
  3102. @end enumerate
  3103. @item Send and receive data as requested. Nodes owning data which need to be
  3104. read by the task are sending them to the MPI node which will execute it. The
  3105. latter receives them.
  3106. @item Execute the codelet. This is done by the MPI node selected in the
  3107. 1st step of the algorithm.
  3108. @item If several MPI nodes own data to be written to, send written
  3109. data back to their owners.
  3110. @end enumerate
  3111. The algorithm also includes a communication cache mechanism that
  3112. allows not to send data twice to the same MPI node, unless the data
  3113. has been modified. The cache can be disabled
  3114. (@pxref{STARPU_MPI_CACHE}).
  3115. @c todo parler plus du cache
  3116. @end deftypefun
  3117. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle}, int @var{node})
  3118. Transfer data @var{data_handle} to MPI node @var{node}, sending it from its
  3119. owner if needed. At least the target node and the owner have to call the
  3120. function.
  3121. @end deftypefun
  3122. @deftypefun void starpu_mpi_get_data_on_node_detached (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle}, int @var{node}, {void (*}@var{callback})(void*), {void *}@var{arg})
  3123. Transfer data @var{data_handle} to MPI node @var{node}, sending it from its
  3124. owner if needed. At least the target node and the owner have to call the
  3125. function. On reception, the @var{callback} function is called with the
  3126. argument @var{arg}.
  3127. @end deftypefun
  3128. @node Collective Operations
  3129. @subsection Collective Operations
  3130. @deftypefun void starpu_mpi_redux_data (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle})
  3131. Perform a reduction on the given data. All nodes send the data to its
  3132. owner node which will perform a reduction.
  3133. @end deftypefun
  3134. @deftypefun int starpu_mpi_scatter_detached (starpu_data_handle_t *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm}, {void (*}@var{scallback})(void *), {void *}@var{sarg}, {void (*}@var{rcallback})(void *), {void *}@var{rarg})
  3135. Scatter data among processes of the communicator based on the ownership of
  3136. the data. For each data of the array @var{data_handles}, the
  3137. process @var{root} sends the data to the process owning this data.
  3138. Processes receiving data must have valid data handles to receive them.
  3139. On completion of the collective communication, the @var{scallback} function is
  3140. called with the argument @var{sarg} on the process @var{root}, the @var{rcallback} function is
  3141. called with the argument @var{rarg} on any other process.
  3142. @end deftypefun
  3143. @deftypefun int starpu_mpi_gather_detached (starpu_data_handle_t *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm}, {void (*}@var{scallback})(void *), {void *}@var{sarg}, {void (*}@var{rcallback})(void *), {void *}@var{rarg})
  3144. Gather data from the different processes of the communicator onto the
  3145. process @var{root}. Each process owning data handle in the array
  3146. @var{data_handles} will send them to the process @var{root}. The
  3147. process @var{root} must have valid data handles to receive the data.
  3148. On completion of the collective communication, the @var{rcallback} function is
  3149. called with the argument @var{rarg} on the process @var{root}, the @var{scallback} function is
  3150. called with the argument @var{sarg} on any other process.
  3151. @end deftypefun
  3152. @node Task Bundles
  3153. @section Task Bundles
  3154. @deftp {Data Type} {starpu_task_bundle_t}
  3155. Opaque structure describing a list of tasks that should be scheduled
  3156. on the same worker whenever it's possible. It must be considered as a
  3157. hint given to the scheduler as there is no guarantee that they will be
  3158. executed on the same worker.
  3159. @end deftp
  3160. @deftypefun void starpu_task_bundle_create ({starpu_task_bundle_t *}@var{bundle})
  3161. Factory function creating and initializing @var{bundle}, when the call returns, memory needed is allocated and @var{bundle} is ready to use.
  3162. @end deftypefun
  3163. @deftypefun int starpu_task_bundle_insert (starpu_task_bundle_t @var{bundle}, {struct starpu_task *}@var{task})
  3164. Insert @var{task} in @var{bundle}. Until @var{task} is removed from @var{bundle} its expected length and data transfer time will be considered along those of the other tasks of @var{bundle}.
  3165. This function mustn't be called if @var{bundle} is already closed and/or @var{task} is already submitted.
  3166. @end deftypefun
  3167. @deftypefun int starpu_task_bundle_remove (starpu_task_bundle_t @var{bundle}, {struct starpu_task *}@var{task})
  3168. Remove @var{task} from @var{bundle}.
  3169. Of course @var{task} must have been previously inserted @var{bundle}.
  3170. This function mustn't be called if @var{bundle} is already closed and/or @var{task} is already submitted. Doing so would result in undefined behaviour.
  3171. @end deftypefun
  3172. @deftypefun void starpu_task_bundle_close (starpu_task_bundle_t @var{bundle})
  3173. Inform the runtime that the user won't modify @var{bundle} anymore, it means no more inserting or removing task. Thus the runtime can destroy it when possible.
  3174. @end deftypefun
  3175. @deftypefun double starpu_task_bundle_expected_length (starpu_task_bundle_t @var{bundle}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl})
  3176. Return the expected duration of the entire task bundle in µs.
  3177. @end deftypefun
  3178. @deftypefun double starpu_task_bundle_expected_power (starpu_task_bundle_t @var{bundle}, enum starpu_perfmodel_archtype @var{arch}, unsigned @var{nimpl})
  3179. Return the expected power consumption of the entire task bundle in J.
  3180. @end deftypefun
  3181. @deftypefun double starpu_task_bundle_expected_data_transfer_time (starpu_task_bundle_t @var{bundle}, unsigned @var{memory_node})
  3182. Return the time (in µs) expected to transfer all data used within the bundle.
  3183. @end deftypefun
  3184. @node Task Lists
  3185. @section Task Lists
  3186. @deftp {Data Type} {struct starpu_task_list}
  3187. Stores a double-chained list of tasks
  3188. @end deftp
  3189. @deftypefun void starpu_task_list_init ({struct starpu_task_list *}@var{list})
  3190. Initialize a list structure
  3191. @end deftypefun
  3192. @deftypefun void starpu_task_list_push_front ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  3193. Push a task at the front of a list
  3194. @end deftypefun
  3195. @deftypefun void starpu_task_list_push_back ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  3196. Push a task at the back of a list
  3197. @end deftypefun
  3198. @deftypefun {struct starpu_task *} starpu_task_list_front ({struct starpu_task_list *}@var{list})
  3199. Get the front of the list (without removing it)
  3200. @end deftypefun
  3201. @deftypefun {struct starpu_task *} starpu_task_list_back ({struct starpu_task_list *}@var{list})
  3202. Get the back of the list (without removing it)
  3203. @end deftypefun
  3204. @deftypefun int starpu_task_list_empty ({struct starpu_task_list *}@var{list})
  3205. Test if a list is empty
  3206. @end deftypefun
  3207. @deftypefun void starpu_task_list_erase ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  3208. Remove an element from the list
  3209. @end deftypefun
  3210. @deftypefun {struct starpu_task *} starpu_task_list_pop_front ({struct starpu_task_list *}@var{list})
  3211. Remove the element at the front of the list
  3212. @end deftypefun
  3213. @deftypefun {struct starpu_task *} starpu_task_list_pop_back ({struct starpu_task_list *}@var{list})
  3214. Remove the element at the back of the list
  3215. @end deftypefun
  3216. @deftypefun {struct starpu_task *} starpu_task_list_begin ({struct starpu_task_list *}@var{list})
  3217. Get the first task of the list.
  3218. @end deftypefun
  3219. @deftypefun {struct starpu_task *} starpu_task_list_end ({struct starpu_task_list *}@var{list})
  3220. Get the end of the list.
  3221. @end deftypefun
  3222. @deftypefun {struct starpu_task *} starpu_task_list_next ({struct starpu_task *}@var{task})
  3223. Get the next task of the list. This is not erase-safe.
  3224. @end deftypefun
  3225. @node Using Parallel Tasks
  3226. @section Using Parallel Tasks
  3227. These are used by parallel tasks:
  3228. @deftypefun int starpu_combined_worker_get_size (void)
  3229. Return the size of the current combined worker, i.e. the total number of cpus
  3230. running the same task in the case of SPMD parallel tasks, or the total number
  3231. of threads that the task is allowed to start in the case of FORKJOIN parallel
  3232. tasks.
  3233. @end deftypefun
  3234. @deftypefun int starpu_combined_worker_get_rank (void)
  3235. Return the rank of the current thread within the combined worker. Can only be
  3236. used in FORKJOIN parallel tasks, to know which part of the task to work on.
  3237. @end deftypefun
  3238. Most of these are used for schedulers which support parallel tasks.
  3239. @deftypefun unsigned starpu_combined_worker_get_count (void)
  3240. Return the number of different combined workers.
  3241. @end deftypefun
  3242. @deftypefun int starpu_combined_worker_get_id (void)
  3243. Return the identifier of the current combined worker.
  3244. @end deftypefun
  3245. @deftypefun int starpu_combined_worker_assign_workerid (int @var{nworkers}, int @var{workerid_array}[])
  3246. Register a new combined worker and get its identifier
  3247. @end deftypefun
  3248. @deftypefun int starpu_combined_worker_get_description (int @var{workerid}, {int *}@var{worker_size}, {int **}@var{combined_workerid})
  3249. Get the description of a combined worker
  3250. @end deftypefun
  3251. @deftypefun int starpu_combined_worker_can_execute_task (unsigned @var{workerid}, {struct starpu_task *}@var{task}, unsigned @var{nimpl})
  3252. Variant of starpu_worker_can_execute_task compatible with combined workers
  3253. @end deftypefun
  3254. @deftypefun void starpu_parallel_task_barrier_init ({struct starpu_task* }@var{task}, int @var{workerid})
  3255. Initialise the barrier for the parallel task, and dispatch the task
  3256. between the different combined workers
  3257. @end deftypefun
  3258. @deftp {Data Type} {struct starpu_machine_topology}
  3259. @table @asis
  3260. @item @code{unsigned nworkers}
  3261. Total number of workers.
  3262. @item @code{unsigned ncombinedworkers}
  3263. Total number of combined workers.
  3264. @item @code{hwloc_topology_t hwtopology}
  3265. Topology as detected by hwloc.
  3266. To maintain ABI compatibility when hwloc is not available, the field
  3267. is replaced with @code{void *dummy}
  3268. @item @code{unsigned nhwcpus}
  3269. Total number of CPUs, as detected by the topology code. May be different from
  3270. the actual number of CPU workers.
  3271. @item @code{unsigned nhwcudagpus}
  3272. Total number of CUDA devices, as detected. May be different from the actual
  3273. number of CUDA workers.
  3274. @item @code{unsigned nhwopenclgpus}
  3275. Total number of OpenCL devices, as detected. May be different from the actual
  3276. number of OpenCL workers.
  3277. @item @code{unsigned nhscc}
  3278. Total number of SCC cores, as detected. May be different from the actual
  3279. number of core workers.
  3280. @item @code{unsigned ncpus}
  3281. Actual number of CPU workers used by StarPU.
  3282. @item @code{unsigned ncudagpus}
  3283. Actual number of CUDA workers used by StarPU.
  3284. @item @code{unsigned nopenclgpus}
  3285. Actual number of OpenCL workers used by StarPU.
  3286. @item @code{unsigned nsccdevices}
  3287. Actual number of SCC workers used by StarPU.
  3288. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  3289. Indicates the successive cpu identifier that should be used to bind the
  3290. workers. It is either filled according to the user's explicit
  3291. parameters (from starpu_conf) or according to the STARPU_WORKERS_CPUID env.
  3292. variable. Otherwise, a round-robin policy is used to distributed the workers
  3293. over the cpus.
  3294. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  3295. Indicates the successive CUDA identifier that should be used by the CUDA
  3296. driver. It is either filled according to the user's explicit parameters (from
  3297. starpu_conf) or according to the STARPU_WORKERS_CUDAID env. variable. Otherwise,
  3298. they are taken in ID order.
  3299. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  3300. Indicates the successive OpenCL identifier that should be used by the OpenCL
  3301. driver. It is either filled according to the user's explicit parameters (from
  3302. starpu_conf) or according to the STARPU_WORKERS_OPENCLID env. variable. Otherwise,
  3303. they are taken in ID order.
  3304. @item @code{unsigned workers_mic_deviceid[STARPU_NMAXWORKERS]}
  3305. Indicates the successive MIC devices that should be used by the MIC
  3306. driver. It is either filled according to the user's explicit parameters (from
  3307. starpu_conf) or according to the STARPU_WORKERS_MICID env. variable. Otherwise,
  3308. they are taken in ID order.
  3309. @item @code{unsigned workers_scc_deviceid[STARPU_NMAXWORKERS]}
  3310. Indicates the successive SCC devices that should be used by the SCC
  3311. driver. It is either filled according to the user's explicit parameters (from
  3312. starpu_conf) or according to the STARPU_WORKERS_SCCID env. variable. Otherwise,
  3313. they are taken in ID order.
  3314. @end table
  3315. @end deftp
  3316. @node Scheduling Contexts
  3317. @section Scheduling Contexts
  3318. StarPU permits on one hand grouping workers in combined workers in order to execute a parallel task and on the other hand grouping tasks in bundles that will be executed by a single specified worker.
  3319. In contrast when we group workers in scheduling contexts we submit starpu tasks to them and we schedule them with the policy assigned to the context.
  3320. Scheduling contexts can be created, deleted and modified dynamically.
  3321. @deftypefun unsigned starpu_sched_ctx_create (const char *@var{policy_name}, int *@var{workerids_ctx}, int @var{nworkers_ctx}, const char *@var{sched_ctx_name})
  3322. This function creates a scheduling context which uses the scheduling policy indicated in the first argument and assigns the workers indicated in the second argument to execute the tasks submitted to it.
  3323. The return value represents the identifier of the context that has just been created. It will be further used to indicate the context the tasks will be submitted to. The return value should be at most @code{STARPU_NMAX_SCHED_CTXS}.
  3324. @end deftypefun
  3325. @deftypefun void starpu_sched_ctx_delete (unsigned @var{sched_ctx_id})
  3326. Delete scheduling context @var{sched_ctx_id} and transfer remaining workers to the inheritor scheduling context.
  3327. @end deftypefun
  3328. @deftypefun void starpu_sched_ctx_add_workers ({int *}@var{workerids_ctx}, int @var{nworkers_ctx}, unsigned @var{sched_ctx_id})
  3329. This function adds dynamically the workers indicated in the first argument to the context indicated in the last argument. The last argument cannot be greater than @code{STARPU_NMAX_SCHED_CTXS}.
  3330. @end deftypefun
  3331. @deftypefun void starpu_sched_ctx_remove_workers ({int *}@var{workerids_ctx}, int @var{nworkers_ctx}, unsigned @var{sched_ctx_id})
  3332. This function removes the workers indicated in the first argument from the context indicated in the last argument. The last argument cannot be greater than @code{STARPU_NMAX_SCHED_CTXS}.
  3333. @end deftypefun
  3334. A scheduling context manages a collection of workers that can be memorized using different data structures. Thus, a generic structure is available in order to simplify the choice of its type.
  3335. Only the list data structure is available but further data structures(like tree) implementations are foreseen.
  3336. @deftp {Data Type} {struct starpu_worker_collection}
  3337. @table @asis
  3338. @item @code{void *workerids}
  3339. The workerids managed by the collection
  3340. @item @code{unsigned nworkers}
  3341. The number of workerids
  3342. @item @code{pthread_key_t cursor_key} (optional)
  3343. The cursor needed to iterate the collection (depending on the data structure)
  3344. @item @code{int type}
  3345. The type of structure (currently STARPU_WORKER_LIST is the only one available)
  3346. @item @code{unsigned (*has_next)(struct starpu_worker_collection *workers)}
  3347. Checks if there is a next worker
  3348. @item @code{int (*get_next)(struct starpu_worker_collection *workers)}
  3349. Gets the next worker
  3350. @item @code{int (*add)(struct starpu_worker_collection *workers, int worker)}
  3351. Adds a worker to the collection
  3352. @item @code{int (*remove)(struct starpu_worker_collection *workers, int worker)}
  3353. Removes a worker from the collection
  3354. @item @code{void* (*init)(struct starpu_worker_collection *workers)}
  3355. Initialize the collection
  3356. @item @code{void (*deinit)(struct starpu_worker_collection *workers)}
  3357. Deinitialize the colection
  3358. @item @code{void (*init_cursor)(struct starpu_worker_collection *workers)} (optional)
  3359. Initialize the cursor if there is one
  3360. @item @code{void (*deinit_cursor)(struct starpu_worker_collection *workers)} (optional)
  3361. Deinitialize the cursor if there is one
  3362. @end table
  3363. @end deftp
  3364. @deftypefun struct starpu_worker_collection* starpu_sched_ctx_create_worker_collection (unsigned @var{sched_ctx_id}, int @var{type})
  3365. Create a worker collection of the type indicated by the last parameter for the context specified through the first parameter.
  3366. @end deftypefun
  3367. @deftypefun void starpu_sched_ctx_delete_worker_collection (unsigned @var{sched_ctx_id})
  3368. Delete the worker collection of the specified scheduling context
  3369. @end deftypefun
  3370. @deftypefun struct starpu_worker_collection* starpu_sched_ctx_get_worker_collection (unsigned @var{sched_ctx_id})
  3371. Return the worker collection managed by the indicated context
  3372. @end deftypefun
  3373. @deftypefun void starpu_sched_ctx_set_context (unsigned *@var{sched_ctx_id})
  3374. Set the scheduling context the subsequent tasks will be submitted to
  3375. @end deftypefun
  3376. @deftypefun unsigned starpu_sched_ctx_get_context (void)
  3377. Return the scheduling context the tasks are currently submitted to
  3378. @end deftypefun
  3379. @deftypefun unsigned starpu_sched_ctx_get_nworkers (unsigned @var{sched_ctx_id})
  3380. Return the number of workers managed by the specified contexts
  3381. (Usually needed to verify if it manages any workers or if it should be blocked)
  3382. @end deftypefun
  3383. @deftypefun unsigned starpu_sched_ctx_get_nshared_workers (unsigned @var{sched_ctx_id}, unsigned @var{sched_ctx_id2})
  3384. Return the number of workers shared by two contexts
  3385. @end deftypefun
  3386. @deftypefun int starpu_sched_ctx_set_min_priority (unsigned @var{sched_ctx_id}, int @var{min_prio})
  3387. Defines the minimum task priority level supported by the scheduling
  3388. policy of the given scheduler context. The
  3389. default minimum priority level is the same as the default priority level which
  3390. is 0 by convention. The application may access that value by calling the
  3391. @code{starpu_sched_ctx_get_min_priority} function. This function should only be
  3392. called from the initialization method of the scheduling policy, and should not
  3393. be used directly from the application.
  3394. @end deftypefun
  3395. @deftypefun int starpu_sched_ctx_set_max_priority (unsigned @var{sched_ctx_id}, int @var{max_prio})
  3396. Defines the maximum priority level supported by the scheduling policy of the given scheduler context. The
  3397. default maximum priority level is 1. The application may access that value by
  3398. calling the @code{starpu_sched_ctx_get_max_priority} function. This function should
  3399. only be called from the initialization method of the scheduling policy, and
  3400. should not be used directly from the application.
  3401. @end deftypefun
  3402. @deftypefun int starpu_sched_ctx_get_min_priority (unsigned @var{sched_ctx_id})
  3403. Returns the current minimum priority level supported by the
  3404. scheduling policy of the given scheduler context.
  3405. @end deftypefun
  3406. @deftypefun int starpu_sched_ctx_get_max_priority (unsigned @var{sched_ctx_id})
  3407. Returns the current maximum priority level supported by the
  3408. scheduling policy of the given scheduler context.
  3409. @end deftypefun
  3410. @node Scheduling Policy
  3411. @section Scheduling Policy
  3412. TODO
  3413. While StarPU comes with a variety of scheduling policies (@pxref{Task
  3414. scheduling policy}), it may sometimes be desirable to implement custom
  3415. policies to address specific problems. The API described below allows
  3416. users to write their own scheduling policy.
  3417. @deftp {Data Type} {struct starpu_sched_policy}
  3418. This structure contains all the methods that implement a scheduling policy. An
  3419. application may specify which scheduling strategy in the @code{sched_policy}
  3420. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3421. function. The different fields are:
  3422. @table @asis
  3423. @item @code{void (*init_sched)(unsigned sched_ctx_id)}
  3424. Initialize the scheduling policy.
  3425. @item @code{void (*deinit_sched)(unsigned sched_ctx_id)}
  3426. Cleanup the scheduling policy.
  3427. @item @code{int (*push_task)(struct starpu_task *)}
  3428. Insert a task into the scheduler.
  3429. @item @code{void (*push_task_notify)(struct starpu_task *, int workerid)}
  3430. Notify the scheduler that a task was pushed on a given worker. This method is
  3431. called when a task that was explicitely assigned to a worker becomes ready and
  3432. is about to be executed by the worker. This method therefore permits to keep
  3433. the state of of the scheduler coherent even when StarPU bypasses the scheduling
  3434. strategy.
  3435. @item @code{struct starpu_task *(*pop_task)(unsigned sched_ctx_id)} (optional)
  3436. Get a task from the scheduler. The mutex associated to the worker is already
  3437. taken when this method is called. If this method is defined as @code{NULL}, the
  3438. worker will only execute tasks from its local queue. In this case, the
  3439. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3440. assign tasks to the different workers.
  3441. @item @code{struct starpu_task *(*pop_every_task)(unsigned sched_ctx_id)}
  3442. Remove all available tasks from the scheduler (tasks are chained by the means
  3443. of the prev and next fields of the starpu_task structure). The mutex associated
  3444. to the worker is already taken when this method is called. This is currently
  3445. not used.
  3446. @item @code{void (*pre_exec_hook)(struct starpu_task *)} (optional)
  3447. This method is called every time a task is starting.
  3448. @item @code{void (*post_exec_hook)(struct starpu_task *)} (optional)
  3449. This method is called every time a task has been executed.
  3450. @item @code{void (*add_workers)(unsigned sched_ctx_id, int *workerids, unsigned nworkers)}
  3451. Initialize scheduling structures corresponding to each worker used by the policy.
  3452. @item @code{void (*remove_workers)(unsigned sched_ctx_id, int *workerids, unsigned nworkers)}
  3453. Deinitialize scheduling structures corresponding to each worker used by the policy.
  3454. @item @code{const char *policy_name} (optional)
  3455. Name of the policy.
  3456. @item @code{const char *policy_description} (optional)
  3457. Description of the policy.
  3458. @end table
  3459. @end deftp
  3460. @deftypefun {struct starpu_sched_policy **} starpu_sched_get_predefined_policies ()
  3461. Return an NULL-terminated array of all the predefined scheduling policies.
  3462. @end deftypefun
  3463. @deftypefun void starpu_sched_ctx_set_policy_data (unsigned @var{sched_ctx_id}, {void *} @var{policy_data})
  3464. Each scheduling policy uses some specific data (queues, variables, additional condition variables).
  3465. It is memorize through a local structure. This function assigns it to a scheduling context.
  3466. @end deftypefun
  3467. @deftypefun void* starpu_sched_ctx_get_policy_data (unsigned @var{sched_ctx_id})
  3468. Returns the policy data previously assigned to a context
  3469. @end deftypefun
  3470. @deftypefun int starpu_sched_set_min_priority (int @var{min_prio})
  3471. Defines the minimum task priority level supported by the scheduling policy. The
  3472. default minimum priority level is the same as the default priority level which
  3473. is 0 by convention. The application may access that value by calling the
  3474. @code{starpu_sched_get_min_priority} function. This function should only be
  3475. called from the initialization method of the scheduling policy, and should not
  3476. be used directly from the application.
  3477. @end deftypefun
  3478. @deftypefun int starpu_sched_set_max_priority (int @var{max_prio})
  3479. Defines the maximum priority level supported by the scheduling policy. The
  3480. default maximum priority level is 1. The application may access that value by
  3481. calling the @code{starpu_sched_get_max_priority} function. This function should
  3482. only be called from the initialization method of the scheduling policy, and
  3483. should not be used directly from the application.
  3484. @end deftypefun
  3485. @deftypefun int starpu_sched_get_min_priority (void)
  3486. Returns the current minimum priority level supported by the
  3487. scheduling policy
  3488. @end deftypefun
  3489. @deftypefun int starpu_sched_get_max_priority (void)
  3490. Returns the current maximum priority level supported by the
  3491. scheduling policy
  3492. @end deftypefun
  3493. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  3494. The scheduling policy may put tasks directly into a worker's local queue so
  3495. that it is not always necessary to create its own queue when the local queue
  3496. is sufficient. If @var{back} not null, @var{task} is put at the back of the queue
  3497. where the worker will pop tasks first. Setting @var{back} to 0 therefore ensures
  3498. a FIFO ordering.
  3499. @end deftypefun
  3500. @deftypefun int starpu_push_task_end ({struct starpu_task} *@var{task})
  3501. This function must be called by a scheduler to notify that the given
  3502. task has just been pushed.
  3503. @end deftypefun
  3504. @deftypefun int starpu_worker_can_execute_task (unsigned @var{workerid}, {struct starpu_task *}@var{task}, unsigned {nimpl})
  3505. Check if the worker specified by workerid can execute the codelet. Schedulers need to call it before assigning a task to a worker, otherwise the task may fail to execute.
  3506. @end deftypefun
  3507. @deftypefun double starpu_timing_now (void)
  3508. Return the current date in µs
  3509. @end deftypefun
  3510. @deftypefun uint32_t starpu_task_footprint ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *} @var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl})
  3511. Returns the footprint for a given task
  3512. @end deftypefun
  3513. @deftypefun double starpu_task_expected_length ({struct starpu_task *}@var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl})
  3514. Returns expected task duration in µs
  3515. @end deftypefun
  3516. @deftypefun double starpu_worker_get_relative_speedup ({enum starpu_perfmodel_archtype} @var{perf_archtype})
  3517. Returns an estimated speedup factor relative to CPU speed
  3518. @end deftypefun
  3519. @deftypefun double starpu_task_expected_data_transfer_time (unsigned @var{memory_node}, {struct starpu_task *}@var{task})
  3520. Returns expected data transfer time in µs
  3521. @end deftypefun
  3522. @deftypefun double starpu_data_expected_transfer_time (starpu_data_handle_t @var{handle}, unsigned @var{memory_node}, {enum starpu_data_access_mode} @var{mode})
  3523. Predict the transfer time (in µs) to move a handle to a memory node
  3524. @end deftypefun
  3525. @deftypefun double starpu_task_expected_power ({struct starpu_task *}@var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl})
  3526. Returns expected power consumption in J
  3527. @end deftypefun
  3528. @deftypefun double starpu_task_expected_conversion_time ({struct starpu_task *}@var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned {nimpl})
  3529. Returns expected conversion time in ms (multiformat interface only)
  3530. @end deftypefun
  3531. @node Running drivers
  3532. @section Running drivers
  3533. @deftypefun int starpu_driver_run ({struct starpu_driver *}@var{d})
  3534. Initialize the given driver, run it until it receives a request to terminate,
  3535. deinitialize it and return 0 on success. It returns -EINVAL if @code{d->type}
  3536. is not a valid StarPU device type (STARPU_CPU_WORKER, STARPU_CUDA_WORKER or
  3537. STARPU_OPENCL_WORKER). This is the same as using the following
  3538. functions: calling @code{starpu_driver_init()}, then calling
  3539. @code{starpu_driver_run_once()} in a loop, and eventually
  3540. @code{starpu_driver_deinit()}.
  3541. @end deftypefun
  3542. @deftypefun int starpu_driver_init (struct starpu_driver *@var{d})
  3543. Initialize the given driver. Returns 0 on success, -EINVAL if
  3544. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  3545. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  3546. @end deftypefun
  3547. @deftypefun int starpu_driver_run_once (struct starpu_driver *@var{d})
  3548. Run the driver once, then returns 0 on success, -EINVAL if
  3549. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  3550. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  3551. @end deftypefun
  3552. @deftypefun int starpu_driver_deinit (struct starpu_driver *@var{d})
  3553. Deinitialize the given driver. Returns 0 on success, -EINVAL if
  3554. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  3555. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  3556. @end deftypefun
  3557. @deftypefun void starpu_drivers_request_termination (void)
  3558. Notify all running drivers they should terminate.
  3559. @end deftypefun
  3560. @node Expert mode
  3561. @section Expert mode
  3562. @deftypefun void starpu_wake_all_blocked_workers (void)
  3563. Wake all the workers, so they can inspect data requests and task submissions
  3564. again.
  3565. @end deftypefun
  3566. @deftypefun int starpu_progression_hook_register (unsigned (*@var{func})(void *arg), void *@var{arg})
  3567. Register a progression hook, to be called when workers are idle.
  3568. @end deftypefun
  3569. @deftypefun void starpu_progression_hook_deregister (int @var{hook_id})
  3570. Unregister a given progression hook.
  3571. @end deftypefun