123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396 |
- #!/usr/bin/env python3
- # coding=utf-8
- #
- # StarPU --- Runtime system for heterogeneous multicore architectures.
- #
- # Copyright (C) 2016-2021 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
- #
- # StarPU is free software; you can redistribute it and/or modify
- # it under the terms of the GNU Lesser General Public License as published by
- # the Free Software Foundation; either version 2.1 of the License, or (at
- # your option) any later version.
- #
- # StarPU is distributed in the hope that it will be useful, but
- # WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- #
- # See the GNU Lesser General Public License in COPYING.LGPL for more details.
- #
- ##
- # This script parses the generated trace.rec file and reports statistics about
- # the number of different events/tasks and their durations. The report is
- # similar to the starpu_paje_state_stats.in script, except that this one
- # doesn't need R and pj_dump (from the pajeng repository), and it is also much
- # faster.
- ##
- import getopt
- import os
- import sys
- class Event():
- def __init__(self, type, name, category, start_time):
- self._type = type
- self._name = name
- self._category = category
- self._start_time = start_time
- class EventStats():
- def __init__(self, name, duration_time, category, count = 1):
- self._name = name
- self._duration_time = duration_time
- self._category = category
- self._count = count
- def aggregate(self, duration_time):
- self._duration_time += duration_time
- self._count += 1
- def show(self):
- if not self._name == None and not self._category == None:
- print("\"" + self._name + "\"," + str(self._count) + ",\"" + self._category + "\"," + str(round(self._duration_time, 6)))
- class Worker():
- def __init__(self, id):
- self._id = id
- self._events = []
- self._stats = []
- self._stack = []
- self._current_state = None
- def get_event_stats(self, name):
- for stat in self._stats:
- if stat._name == name:
- return stat
- return None
- def add_event(self, type, name, category, start_time):
- self._events.append(Event(type, name, category, start_time))
- def add_event_to_stats(self, curr_event):
- if curr_event._type == "PushState":
- self._stack.append(curr_event)
- return # Will look later to find a PopState event.
- elif curr_event._type == "PopState":
- if len(self._stack) == 0:
- print("warning: PopState without a PushState, probably a trace with start/stop profiling")
- self._current_state = None
- return
- next_event = curr_event
- curr_event = self._stack.pop()
- elif curr_event._type == "SetState":
- if self._current_state == None:
- # First SetState event found
- self._current_state = curr_event
- return
- saved_state = curr_event
- next_event = curr_event
- curr_event = self._current_state
- self._current_state = saved_state
- else:
- sys.exit("ERROR: Invalid event type!")
- # Compute duration with the next event.
- a = curr_event._start_time
- b = next_event._start_time
- # Add the event to the list of stats.
- for i in range(len(self._stats)):
- if self._stats[i]._name == curr_event._name:
- self._stats[i].aggregate(b - a)
- return
- self._stats.append(EventStats(curr_event._name, b - a,
- curr_event._category))
- def calc_stats(self, start_profiling_times, stop_profiling_times):
- num_events = len(self._events)
- use_start_stop = len(start_profiling_times) != 0
- for i in range(0, num_events):
- event = self._events[i]
- if i > 0 and self._events[i-1]._name == "Deinitializing":
- # Drop all events after the Deinitializing event is found
- # because they do not make sense.
- break
- if not use_start_stop:
- self.add_event_to_stats(event)
- continue
- # Check if the event is inbetween start/stop profiling events
- for t in range(len(start_profiling_times)):
- if (event._start_time > start_profiling_times[t] and
- event._start_time < stop_profiling_times[t]):
- self.add_event_to_stats(event)
- break
- if not use_start_stop:
- return
- # Special case for SetState events which need a next one for computing
- # the duration.
- curr_event = self._events[-1]
- if curr_event._type == "SetState":
- for i in range(len(start_profiling_times)):
- if (curr_event._start_time > start_profiling_times[i] and
- curr_event._start_time < stop_profiling_times[i]):
- curr_event = Event(curr_event._type, curr_event._name,
- curr_event._category,
- stop_profiling_times[i])
- self.add_event_to_stats(curr_event)
- def read_blocks(input_file):
- empty_lines = 0
- first_line = 1
- blocks = []
- for line in open(input_file):
- if first_line:
- blocks.append([])
- blocks[-1].append(line)
- first_line = 0
- # Check for empty lines
- if not line or line[0] == '\n':
- # If 1st one: new block
- if empty_lines == 0:
- blocks.append([])
- empty_lines += 1
- else:
- # Non empty line: add line in current(last) block
- empty_lines = 0
- blocks[-1].append(line)
- return blocks
- def read_field(field, index):
- return field[index+1:-1]
- def insert_worker_event(workers, prog_events, block):
- worker_id = -1
- name = None
- start_time = 0.0
- category = None
- for line in block:
- key = line[:2]
- value = read_field(line, 2)
- if key == "E:": # EventType
- event_type = value
- elif key == "C:": # Category
- category = value
- elif key == "W:": # WorkerId
- worker_id = int(value)
- elif key == "N:": # Name
- name = value
- elif key == "S:": # StartTime
- start_time = float(value)
- # Program events don't belong to workers, they are globals.
- if category == "Program":
- prog_events.append(Event(event_type, name, category, start_time))
- return
- for worker in workers:
- if worker._id == worker_id:
- worker.add_event(event_type, name, category, start_time)
- return
- worker = Worker(worker_id)
- worker.add_event(event_type, name, category, start_time)
- workers.append(worker)
- def calc_times(stats):
- tr = 0.0 # Runtime
- tt = 0.0 # Task
- ti = 0.0 # Idle
- ts = 0.0 # Scheduling
- for stat in stats:
- if stat._category == None:
- continue
- if stat._category == "Runtime":
- if stat._name == "Scheduling":
- # Scheduling time is part of runtime but we want to have
- # it separately.
- ts += stat._duration_time
- else:
- tr += stat._duration_time
- elif stat._category == "Task":
- tt += stat._duration_time
- elif stat._category == "Other":
- ti += stat._duration_time
- else:
- print("WARNING: Unknown category '" + stat._category + "'!")
- return ti, tr, tt, ts
- def save_times(ti, tr, tt, ts):
- f = open("times.csv", "w+")
- f.write("\"Time\",\"Duration\"\n")
- f.write("\"Runtime\"," + str(tr) + "\n")
- f.write("\"Task\"," + str(tt) + "\n")
- f.write("\"Idle\"," + str(ti) + "\n")
- f.write("\"Scheduling\"," + str(ts) + "\n")
- f.close()
- def calc_et(tt_1, tt_p):
- """ Compute the task efficiency (et). This measures the exploitation of
- data locality. """
- return tt_1 / tt_p
- def calc_es(tt_p, ts_p):
- """ Compute the scheduling efficiency (es). This measures time spent in
- the runtime scheduler. """
- return tt_p / (tt_p + ts_p)
- def calc_er(tt_p, tr_p, ts_p):
- """ Compute the runtime efficiency (er). This measures how the runtime
- overhead affects performance."""
- return (tt_p + ts_p) / (tt_p + tr_p + ts_p)
- def calc_ep(tt_p, tr_p, ti_p, ts_p):
- """ Compute the pipeline efficiency (et). This measures how much
- concurrency is available and how well it's exploited. """
- return (tt_p + tr_p + ts_p) / (tt_p + tr_p + ti_p + ts_p)
- def calc_e(et, er, ep, es):
- """ Compute the parallel efficiency. """
- return et * er * ep * es
- def save_efficiencies(e, ep, er, et, es):
- f = open("efficiencies.csv", "w+")
- f.write("\"Efficiency\",\"Value\"\n")
- f.write("\"Parallel\"," + str(e) + "\n")
- f.write("\"Task\"," + str(et) + "\n")
- f.write("\"Runtime\"," + str(er) + "\n")
- f.write("\"Scheduling\"," + str(es) + "\n")
- f.write("\"Pipeline\"," + str(ep) + "\n")
- f.close()
- def usage():
- print("USAGE:")
- print("starpu_trace_state_stats.py [ -te -s=<time> ] <trace.rec>")
- print("")
- print("OPTIONS:")
- print(" -t or --time Compute and dump times to times.csv")
- print("")
- print(" -e or --efficiency Compute and dump efficiencies to efficiencies.csv")
- print("")
- print(" -s or --seq_task_time Used to compute task efficiency between sequential and parallel times")
- print(" (if not set, task efficiency will be 1.0)")
- print("")
- print("EXAMPLES:")
- print("# Compute event statistics and report them to stdout:")
- print("starpu_trace_state_stats.py trace.rec")
- print("")
- print("# Compute event stats, times and efficiencies:")
- print("starpu_trace_state_stats.py -te trace.rec")
- print("")
- print("# Compute correct task efficiency with the sequential task time:")
- print("starpu_trace_state_stats.py -s=60093.950614 trace.rec")
- def main():
- try:
- opts, args = getopt.getopt(sys.argv[1:], "hets:",
- ["help", "time", "efficiency", "seq_task_time="])
- except getopt.GetoptError as err:
- usage()
- sys.exit(1)
- dump_time = False
- dump_efficiency = False
- tt_1 = 0.0
- for o, a in opts:
- if o in ("-h", "--help"):
- usage()
- sys.exit()
- elif o in ("-t", "--time"):
- dump_time = True
- elif o in ("-e", "--efficiency"):
- dump_efficiency = True
- elif o in ("-s", "--seq_task_time"):
- tt_1 = float(a)
- if len(args) < 1:
- usage()
- sys.exit()
- recfile = args[0]
- if not os.path.isfile(recfile):
- sys.exit("File does not exist!")
- # Declare a list for all workers.
- workers = []
- # Declare a list for program events
- prog_events = []
- # Read the recutils file format per blocks.
- blocks = read_blocks(recfile)
- for block in blocks:
- if not len(block) == 0:
- first_line = block[0]
- if first_line[:2] == "E:":
- insert_worker_event(workers, prog_events, block)
- # Find allowed range times between start/stop profiling events.
- start_profiling_times = []
- stop_profiling_times = []
- for prog_event in prog_events:
- if prog_event._name == "start_profiling":
- start_profiling_times.append(prog_event._start_time)
- if prog_event._name == "stop_profiling":
- stop_profiling_times.append(prog_event._start_time)
- if len(start_profiling_times) != len(stop_profiling_times):
- sys.exit("Mismatch number of start/stop profiling events!")
- # Compute worker statistics.
- stats = []
- for worker in workers:
- worker.calc_stats(start_profiling_times, stop_profiling_times)
- for stat in worker._stats:
- found = False
- for s in stats:
- if stat._name == s._name:
- found = True
- break
- if not found == True:
- stats.append(EventStats(stat._name, 0.0, stat._category, 0))
- # Compute global statistics for all workers.
- for i in range(0, len(workers)):
- for stat in stats:
- s = workers[i].get_event_stats(stat._name)
- if not s == None:
- # A task might not be executed on all workers.
- stat._duration_time += s._duration_time
- stat._count += s._count
- # Output statistics.
- print("\"Name\",\"Count\",\"Type\",\"Duration\"")
- for stat in stats:
- stat.show()
- # Compute runtime, task, idle, scheduling times and dump them to times.csv
- ti_p = tr_p = tt_p = ts_p = 0.0
- if dump_time == True:
- ti_p, tr_p, tt_p, ts_p = calc_times(stats)
- save_times(ti_p, tr_p, tt_p, ts_p)
- # Compute runtime, task, idle efficiencies and dump them to
- # efficiencies.csv.
- if dump_efficiency == True or not tt_1 == 0.0:
- if dump_time == False:
- ti_p, tr_p, tt_p, ts_p = calc_times(stats)
- if tt_1 == 0.0:
- sys.stderr.write("WARNING: Task efficiency will be 1.0 because -s is not set!\n")
- tt_1 = tt_p
- # Compute efficiencies.
- et = round(calc_et(tt_1, tt_p), 6)
- es = round(calc_es(tt_p, ts_p), 6)
- er = round(calc_er(tt_p, tr_p, ts_p), 6)
- ep = round(calc_ep(tt_p, tr_p, ti_p, ts_p), 6)
- e = round(calc_e(et, er, ep, es), 6)
- save_efficiencies(e, ep, er, et, es)
- if __name__ == "__main__":
- main()
|