parallel_tasks_reuse_handle.c 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2015-2021 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. #include <starpu.h>
  17. #include <omp.h>
  18. #include <pthread.h>
  19. #ifdef STARPU_QUICK_CHECK
  20. #define NTASKS 64
  21. #define SIZE 40
  22. #define LOOPS 4
  23. #else
  24. #define NTASKS 100
  25. #define SIZE 400
  26. #define LOOPS 10
  27. #endif
  28. #define N_NESTED_CTXS 2
  29. struct context
  30. {
  31. int ncpus;
  32. int *cpus;
  33. unsigned id;
  34. };
  35. /* Helper for the task that will initiate everything */
  36. void parallel_task_prologue_init_once_and_for_all(void * sched_ctx_)
  37. {
  38. fprintf(stderr, "%p: %s -->\n", (void*)pthread_self(), __func__);
  39. int sched_ctx = *(int *)sched_ctx_;
  40. int *cpuids = NULL;
  41. int ncpuids = 0;
  42. starpu_sched_ctx_get_available_cpuids(sched_ctx, &cpuids, &ncpuids);
  43. #pragma omp parallel num_threads(ncpuids)
  44. {
  45. starpu_sched_ctx_bind_current_thread_to_cpuid(cpuids[omp_get_thread_num()]);
  46. }
  47. omp_set_num_threads(ncpuids);
  48. free(cpuids);
  49. fprintf(stderr, "%p: %s <--\n", (void*)pthread_self(), __func__);
  50. return;
  51. }
  52. void noop(void * buffers[], void * cl_arg)
  53. {
  54. (void)buffers;
  55. (void)cl_arg;
  56. }
  57. static struct starpu_codelet init_parallel_worker_cl=
  58. {
  59. .cpu_funcs = {noop},
  60. .nbuffers = 0,
  61. .name = "init_parallel_worker"
  62. };
  63. /* function called to initialize the parallel "workers" */
  64. void parallel_task_init_one_context(unsigned * context_id)
  65. {
  66. struct starpu_task * t;
  67. int ret;
  68. t = starpu_task_build(&init_parallel_worker_cl,
  69. STARPU_SCHED_CTX, *context_id,
  70. 0);
  71. t->destroy = 1;
  72. t->prologue_callback_pop_func=parallel_task_prologue_init_once_and_for_all;
  73. if (t->prologue_callback_pop_arg_free)
  74. free(t->prologue_callback_pop_arg);
  75. t->prologue_callback_pop_arg=context_id;
  76. t->prologue_callback_pop_arg_free=0;
  77. ret = starpu_task_submit(t);
  78. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  79. }
  80. struct context main_context;
  81. struct context *contexts;
  82. void parallel_task_init()
  83. {
  84. /* Context creation */
  85. main_context.ncpus = starpu_cpu_worker_get_count();
  86. main_context.cpus = (int *) malloc(main_context.ncpus*sizeof(int));
  87. fprintf(stderr, "ncpus : %d \n",main_context.ncpus);
  88. starpu_worker_get_ids_by_type(STARPU_CPU_WORKER, main_context.cpus, main_context.ncpus);
  89. main_context.id = starpu_sched_ctx_create(main_context.cpus,
  90. main_context.ncpus,"main_ctx",
  91. STARPU_SCHED_CTX_POLICY_NAME,"prio",
  92. 0);
  93. /* Initialize nested contexts */
  94. contexts = malloc(sizeof(struct context)*N_NESTED_CTXS);
  95. int cpus_per_context = main_context.ncpus/N_NESTED_CTXS;
  96. int i;
  97. for(i = 0; i < N_NESTED_CTXS; i++)
  98. {
  99. contexts[i].ncpus = cpus_per_context;
  100. if (i == N_NESTED_CTXS-1)
  101. contexts[i].ncpus += main_context.ncpus%N_NESTED_CTXS;
  102. contexts[i].cpus = main_context.cpus+i*cpus_per_context;
  103. }
  104. for(i = 0; i < N_NESTED_CTXS; i++)
  105. contexts[i].id = starpu_sched_ctx_create(contexts[i].cpus,
  106. contexts[i].ncpus,"nested_ctx",
  107. STARPU_SCHED_CTX_NESTED,main_context.id,
  108. 0);
  109. for (i = 0; i < N_NESTED_CTXS; i++)
  110. {
  111. parallel_task_init_one_context(&contexts[i].id);
  112. }
  113. starpu_task_wait_for_all();
  114. starpu_sched_ctx_set_context(&main_context.id);
  115. }
  116. void parallel_task_deinit()
  117. {
  118. int i;
  119. for (i=0; i<N_NESTED_CTXS;i++)
  120. starpu_sched_ctx_delete(contexts[i].id);
  121. free(contexts);
  122. free(main_context.cpus);
  123. }
  124. /* Codelet SUM */
  125. static void sum_cpu(void * descr[], void *cl_arg)
  126. {
  127. (void)cl_arg;
  128. double *v_dst = (double *) STARPU_VECTOR_GET_PTR(descr[0]);
  129. double *v_src0 = (double *) STARPU_VECTOR_GET_PTR(descr[1]);
  130. double *v_src1 = (double *) STARPU_VECTOR_GET_PTR(descr[2]);
  131. int size = STARPU_VECTOR_GET_NX(descr[0]);
  132. int i, k;
  133. for (k=0;k<LOOPS;k++)
  134. {
  135. #pragma omp parallel for
  136. for (i=0; i<size; i++)
  137. {
  138. v_dst[i]+=v_src0[i]+v_src1[i];
  139. }
  140. }
  141. }
  142. static struct starpu_codelet sum_cl =
  143. {
  144. .cpu_funcs = {sum_cpu, NULL},
  145. .nbuffers = 3,
  146. .modes={STARPU_RW,STARPU_R, STARPU_R}
  147. };
  148. int main(void)
  149. {
  150. int ntasks = NTASKS;
  151. int ret;
  152. unsigned ncpus = 0;
  153. ret = starpu_init(NULL);
  154. if (ret == -ENODEV)
  155. return 77;
  156. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  157. if (starpu_cpu_worker_get_count() < N_NESTED_CTXS)
  158. {
  159. starpu_shutdown();
  160. return 77;
  161. }
  162. parallel_task_init();
  163. /* Data preparation */
  164. double array1[SIZE];
  165. double array2[SIZE];
  166. memset(array1, 0, sizeof(double));
  167. int i;
  168. for (i=0;i<SIZE;i++)
  169. {
  170. array2[i]=i*2;
  171. }
  172. starpu_data_handle_t handle1;
  173. starpu_data_handle_t handle2;
  174. starpu_vector_data_register(&handle1, 0, (uintptr_t)array1, SIZE, sizeof(double));
  175. starpu_vector_data_register(&handle2, 0, (uintptr_t)array2, SIZE, sizeof(double));
  176. for (i = 0; i < ntasks; i++)
  177. {
  178. struct starpu_task *t;
  179. t=starpu_task_build(&sum_cl,
  180. STARPU_RW,handle1,
  181. STARPU_R,handle2,
  182. STARPU_R,handle1,
  183. STARPU_SCHED_CTX, main_context.id,
  184. 0);
  185. t->destroy = 1;
  186. t->possibly_parallel = 1;
  187. ret=starpu_task_submit(t);
  188. if (ret == -ENODEV)
  189. goto out;
  190. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  191. }
  192. out:
  193. /* wait for all tasks at the end*/
  194. starpu_task_wait_for_all();
  195. starpu_data_unregister(handle1);
  196. starpu_data_unregister(handle2);
  197. parallel_task_deinit();
  198. starpu_shutdown();
  199. return 0;
  200. }