shadow3d.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2012-2014 Université de Bordeaux
  4. * Copyright (C) 2010, 2011, 2012, 2013, 2015 CNRS
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. /*
  18. * This examplifies the use of the 3D matrix shadow filters: a source "matrix" of
  19. * NX*NY*NZ elements (plus SHADOW wrap-around elements) is partitioned into
  20. * matrices with some shadowing, and these are copied into a destination
  21. * "matrix2" of
  22. * NRPARTSX*NPARTSY*NPARTSZ*((NX/NPARTSX+2*SHADOWX)*(NY/NPARTSY+2*SHADOWY)*(NZ/NPARTSZ+2*SHADOWZ))
  23. * elements, partitioned in the traditionnal way, thus showing how shadowing
  24. * shows up.
  25. */
  26. #include <starpu.h>
  27. /* Shadow width */
  28. #define SHADOWX 2
  29. #define SHADOWY 3
  30. #define SHADOWZ 4
  31. #define NX 12
  32. #define NY 9
  33. #define NZ 6
  34. #define PARTSX 4
  35. #define PARTSY 3
  36. #define PARTSZ 2
  37. #define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__); }} while(0)
  38. void cpu_func(void *buffers[], void *cl_arg)
  39. {
  40. /* length of the shadowed source matrix */
  41. unsigned ldy = STARPU_BLOCK_GET_LDY(buffers[0]);
  42. unsigned ldz = STARPU_BLOCK_GET_LDZ(buffers[0]);
  43. unsigned x = STARPU_BLOCK_GET_NX(buffers[0]);
  44. unsigned y = STARPU_BLOCK_GET_NY(buffers[0]);
  45. unsigned z = STARPU_BLOCK_GET_NZ(buffers[0]);
  46. /* local copy of the shadowed source matrix pointer */
  47. int *val = (int *)STARPU_BLOCK_GET_PTR(buffers[0]);
  48. /* length of the destination matrix */
  49. unsigned ldy2 = STARPU_BLOCK_GET_LDY(buffers[1]);
  50. unsigned ldz2 = STARPU_BLOCK_GET_LDZ(buffers[1]);
  51. unsigned x2 = STARPU_BLOCK_GET_NX(buffers[1]);
  52. unsigned y2 = STARPU_BLOCK_GET_NY(buffers[1]);
  53. unsigned z2 = STARPU_BLOCK_GET_NZ(buffers[1]);
  54. /* local copy of the destination matrix pointer */
  55. int *val2 = (int *)STARPU_BLOCK_GET_PTR(buffers[1]);
  56. unsigned i, j, k;
  57. /* If things go right, sizes should match */
  58. STARPU_ASSERT(x == x2);
  59. STARPU_ASSERT(y == y2);
  60. STARPU_ASSERT(z == z2);
  61. for (k = 0; k < z; k++)
  62. for (j = 0; j < y; j++)
  63. for (i = 0; i < x; i++)
  64. val2[k*ldz2+j*ldy2+i] = val[k*ldz+j*ldy+i];
  65. }
  66. #ifdef STARPU_USE_CUDA
  67. void cuda_func(void *buffers[], void *cl_arg)
  68. {
  69. /* length of the shadowed source matrix */
  70. unsigned ldy = STARPU_BLOCK_GET_LDY(buffers[0]);
  71. unsigned ldz = STARPU_BLOCK_GET_LDZ(buffers[0]);
  72. unsigned x = STARPU_BLOCK_GET_NX(buffers[0]);
  73. unsigned y = STARPU_BLOCK_GET_NY(buffers[0]);
  74. unsigned z = STARPU_BLOCK_GET_NZ(buffers[0]);
  75. /* local copy of the shadowed source matrix pointer */
  76. int *val = (int *)STARPU_BLOCK_GET_PTR(buffers[0]);
  77. /* length of the destination matrix */
  78. unsigned ldy2 = STARPU_BLOCK_GET_LDY(buffers[1]);
  79. unsigned ldz2 = STARPU_BLOCK_GET_LDZ(buffers[1]);
  80. unsigned x2 = STARPU_BLOCK_GET_NX(buffers[1]);
  81. unsigned y2 = STARPU_BLOCK_GET_NY(buffers[1]);
  82. unsigned z2 = STARPU_BLOCK_GET_NZ(buffers[1]);
  83. /* local copy of the destination matrix pointer */
  84. int *val2 = (int *)STARPU_BLOCK_GET_PTR(buffers[1]);
  85. unsigned k;
  86. cudaError_t cures;
  87. /* If things go right, sizes should match */
  88. STARPU_ASSERT(x == x2);
  89. STARPU_ASSERT(y == y2);
  90. STARPU_ASSERT(z == z2);
  91. for (k = 0; k < z; k++)
  92. {
  93. cures = cudaMemcpy2DAsync(val2+k*ldz2, ldy2*sizeof(*val2), val+k*ldz, ldy*sizeof(*val),
  94. x*sizeof(*val), y, cudaMemcpyDeviceToDevice, starpu_cuda_get_local_stream());
  95. STARPU_ASSERT(!cures);
  96. }
  97. }
  98. #endif
  99. int main(int argc, char **argv)
  100. {
  101. unsigned i, j, k, l, m, n;
  102. int matrix[NZ + 2*SHADOWZ][NY + 2*SHADOWY][NX + 2*SHADOWX];
  103. int matrix2[NZ + PARTSZ*2*SHADOWZ][NY + PARTSY*2*SHADOWY][NX + PARTSX*2*SHADOWX];
  104. starpu_data_handle_t handle, handle2;
  105. int ret;
  106. struct starpu_codelet cl =
  107. {
  108. .cpu_funcs = {cpu_func},
  109. .cpu_funcs_name = {"cpu_func"},
  110. #ifdef STARPU_USE_CUDA
  111. .cuda_funcs = {cuda_func},
  112. .cuda_flags = {STARPU_CUDA_ASYNC},
  113. #endif
  114. .nbuffers = 2,
  115. .modes = {STARPU_R, STARPU_W}
  116. };
  117. memset(matrix, -1, sizeof(matrix));
  118. for(k=1 ; k<=NZ ; k++)
  119. for(j=1 ; j<=NY ; j++)
  120. for(i=1 ; i<=NX ; i++)
  121. matrix[SHADOWZ+k-1][SHADOWY+j-1][SHADOWX+i-1] = i+j+k;
  122. /* Copy planes */
  123. for (k = SHADOWZ ; k<SHADOWZ+NZ ; k++)
  124. for (j = SHADOWY ; j<SHADOWY+NY ; j++)
  125. for(i=0 ; i<SHADOWX ; i++)
  126. {
  127. matrix[k][j][i] = matrix[k][j][i+NX];
  128. matrix[k][j][SHADOWX+NX+i] = matrix[k][j][SHADOWX+i];
  129. }
  130. for(k=SHADOWZ ; k<SHADOWZ+NZ ; k++)
  131. for(j=0 ; j<SHADOWY ; j++)
  132. for(i=SHADOWX ; i<SHADOWX+NX ; i++)
  133. {
  134. matrix[k][j][i] = matrix[k][j+NY][i];
  135. matrix[k][SHADOWY+NY+j][i] = matrix[k][SHADOWY+j][i];
  136. }
  137. for(k=0 ; k<SHADOWZ ; k++)
  138. for(j=SHADOWY ; j<SHADOWY+NY ; j++)
  139. for(i=SHADOWX ; i<SHADOWX+NX ; i++)
  140. {
  141. matrix[k][j][i] = matrix[k+NZ][j][i];
  142. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j][i];
  143. }
  144. /* Copy borders */
  145. for (k = SHADOWZ ; k<SHADOWZ+NZ ; k++)
  146. for(j=0 ; j<SHADOWY ; j++)
  147. for(i=0 ; i<SHADOWX ; i++)
  148. {
  149. matrix[k][j][i] = matrix[k][j+NY][i+NX];
  150. matrix[k][SHADOWY+NY+j][i] = matrix[k][SHADOWY+j][i+NX];
  151. matrix[k][SHADOWY+NY+j][SHADOWX+NX+i] = matrix[k][SHADOWY+j][SHADOWX+i];
  152. matrix[k][j][SHADOWX+NX+i] = matrix[k][j+NY][SHADOWX+i];
  153. }
  154. for(k=0 ; k<SHADOWZ ; k++)
  155. for (j = SHADOWY ; j<SHADOWY+NY ; j++)
  156. for(i=0 ; i<SHADOWX ; i++)
  157. {
  158. matrix[k][j][i] = matrix[k+NZ][j][i+NX];
  159. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j][i+NX];
  160. matrix[SHADOWZ+NZ+k][j][SHADOWX+NX+i] = matrix[SHADOWZ+k][j][SHADOWX+i];
  161. matrix[k][j][SHADOWX+NX+i] = matrix[k+NZ][j][SHADOWX+i];
  162. }
  163. for(k=0 ; k<SHADOWZ ; k++)
  164. for(j=0 ; j<SHADOWY ; j++)
  165. for(i=SHADOWX ; i<SHADOWX+NX ; i++)
  166. {
  167. matrix[k][j][i] = matrix[k+NZ][j+NY][i];
  168. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j+NY][i];
  169. matrix[SHADOWZ+NZ+k][SHADOWY+NY+j][i] = matrix[SHADOWZ+k][SHADOWY+j][i];
  170. matrix[k][SHADOWY+NY+j][i] = matrix[k+NZ][SHADOWY+j][i];
  171. }
  172. /* Copy corners */
  173. for(k=0 ; k<SHADOWZ ; k++)
  174. for(j=0 ; j<SHADOWY ; j++)
  175. for(i=0 ; i<SHADOWX ; i++)
  176. {
  177. matrix[k][j][i] = matrix[k+NZ][j+NY][i+NX];
  178. matrix[k][j][SHADOWX+NX+i] = matrix[k+NZ][j+NY][SHADOWX+i];
  179. matrix[k][SHADOWY+NY+j][i] = matrix[k+NZ][SHADOWY+j][i+NX];
  180. matrix[k][SHADOWY+NY+j][SHADOWX+NX+i] = matrix[k+NZ][SHADOWY+j][SHADOWX+i];
  181. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j+NY][i+NX];
  182. matrix[SHADOWZ+NZ+k][j][SHADOWX+NX+i] = matrix[SHADOWZ+k][j+NY][SHADOWX+i];
  183. matrix[SHADOWZ+NZ+k][SHADOWY+NY+j][i] = matrix[SHADOWZ+k][SHADOWY+j][i+NX];
  184. matrix[SHADOWZ+NZ+k][SHADOWY+NY+j][SHADOWX+NX+i] = matrix[SHADOWZ+k][SHADOWY+j][SHADOWX+i];
  185. }
  186. FPRINTF(stderr,"IN Matrix:\n");
  187. for(k=0 ; k<NZ + 2*SHADOWZ ; k++)
  188. {
  189. for(j=0 ; j<NY + 2*SHADOWY ; j++)
  190. {
  191. for(i=0 ; i<NX + 2*SHADOWX ; i++)
  192. FPRINTF(stderr, "%5d ", matrix[k][j][i]);
  193. FPRINTF(stderr,"\n");
  194. }
  195. FPRINTF(stderr,"\n\n");
  196. }
  197. FPRINTF(stderr,"\n");
  198. ret = starpu_init(NULL);
  199. if (ret == -ENODEV)
  200. exit(77);
  201. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  202. /* Declare source matrix to StarPU */
  203. starpu_block_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)matrix,
  204. NX + 2*SHADOWX, (NX + 2*SHADOWX) * (NY + 2*SHADOWY),
  205. NX + 2*SHADOWX, NY + 2*SHADOWY, NZ + 2*SHADOWZ,
  206. sizeof(matrix[0][0][0]));
  207. /* Declare destination matrix to StarPU */
  208. starpu_block_data_register(&handle2, STARPU_MAIN_RAM, (uintptr_t)matrix2,
  209. NX + PARTSX*2*SHADOWX, (NX + PARTSX*2*SHADOWX) * (NY + PARTSY*2*SHADOWY),
  210. NX + PARTSX*2*SHADOWX, NY + PARTSY*2*SHADOWY, NZ + PARTSZ*2*SHADOWZ,
  211. sizeof(matrix2[0][0][0]));
  212. /* Partition the source matrix in PARTSZ*PARTSY*PARTSX sub-matrices with shadows */
  213. /* NOTE: the resulting handles should only be used in read-only mode,
  214. * as StarPU will not know how the overlapping parts would have to be
  215. * combined. */
  216. struct starpu_data_filter fz =
  217. {
  218. .filter_func = starpu_block_filter_depth_block_shadow,
  219. .nchildren = PARTSZ,
  220. .filter_arg_ptr = (void*)(uintptr_t) SHADOWZ /* Shadow width */
  221. };
  222. struct starpu_data_filter fy =
  223. {
  224. .filter_func = starpu_block_filter_vertical_block_shadow,
  225. .nchildren = PARTSY,
  226. .filter_arg_ptr = (void*)(uintptr_t) SHADOWY /* Shadow width */
  227. };
  228. struct starpu_data_filter fx =
  229. {
  230. .filter_func = starpu_block_filter_block_shadow,
  231. .nchildren = PARTSX,
  232. .filter_arg_ptr = (void*)(uintptr_t) SHADOWX /* Shadow width */
  233. };
  234. starpu_data_map_filters(handle, 3, &fz, &fy, &fx);
  235. /* Partition the destination matrix in PARTSZ*PARTSY*PARTSX sub-matrices */
  236. struct starpu_data_filter fz2 =
  237. {
  238. .filter_func = starpu_block_filter_depth_block,
  239. .nchildren = PARTSZ,
  240. };
  241. struct starpu_data_filter fy2 =
  242. {
  243. .filter_func = starpu_block_filter_vertical_block,
  244. .nchildren = PARTSY,
  245. };
  246. struct starpu_data_filter fx2 =
  247. {
  248. .filter_func = starpu_block_filter_block,
  249. .nchildren = PARTSX,
  250. };
  251. starpu_data_map_filters(handle2, 3, &fz2, &fy2, &fx2);
  252. /* Submit a task on each sub-matrix */
  253. for (k=0; k<PARTSZ; k++)
  254. {
  255. for (j=0; j<PARTSY; j++)
  256. {
  257. for (i=0; i<PARTSX; i++)
  258. {
  259. starpu_data_handle_t sub_handle = starpu_data_get_sub_data(handle, 3, k, j, i);
  260. starpu_data_handle_t sub_handle2 = starpu_data_get_sub_data(handle2, 3, k, j, i);
  261. struct starpu_task *task = starpu_task_create();
  262. task->handles[0] = sub_handle;
  263. task->handles[1] = sub_handle2;
  264. task->cl = &cl;
  265. task->synchronous = 1;
  266. ret = starpu_task_submit(task);
  267. if (ret == -ENODEV) goto enodev;
  268. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  269. }
  270. }
  271. }
  272. starpu_data_unpartition(handle, STARPU_MAIN_RAM);
  273. starpu_data_unpartition(handle2, STARPU_MAIN_RAM);
  274. starpu_data_unregister(handle);
  275. starpu_data_unregister(handle2);
  276. starpu_shutdown();
  277. FPRINTF(stderr,"OUT Matrix:\n");
  278. for(k=0 ; k<NZ + PARTSZ*2*SHADOWZ ; k++)
  279. {
  280. for(j=0 ; j<NY + PARTSY*2*SHADOWY ; j++)
  281. {
  282. for(i=0 ; i<NX + PARTSX*2*SHADOWX ; i++)
  283. {
  284. FPRINTF(stderr, "%5d ", matrix2[k][j][i]);
  285. }
  286. FPRINTF(stderr,"\n");
  287. }
  288. FPRINTF(stderr,"\n\n");
  289. }
  290. FPRINTF(stderr,"\n");
  291. for(k=0 ; k<PARTSZ ; k++)
  292. for(j=0 ; j<PARTSY ; j++)
  293. for(i=0 ; i<PARTSX ; i++)
  294. for (n=0 ; n<NZ/PARTSZ + 2*SHADOWZ ; n++)
  295. for (m=0 ; m<NY/PARTSY + 2*SHADOWY ; m++)
  296. for (l=0 ; l<NX/PARTSX + 2*SHADOWX ; l++)
  297. STARPU_ASSERT(matrix2[k*(NZ/PARTSZ+2*SHADOWZ)+n][j*(NY/PARTSY+2*SHADOWY)+m][i*(NX/PARTSX+2*SHADOWX)+l] ==
  298. matrix[k*(NZ/PARTSZ)+n][j*(NY/PARTSY)+m][i*(NX/PARTSX)+l]);
  299. return 0;
  300. enodev:
  301. FPRINTF(stderr, "WARNING: No one can execute this task\n");
  302. starpu_shutdown();
  303. return 77;
  304. }