starpu.texi 129 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU
  9. @page
  10. @vskip 0pt plus 1filll
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Configuring StarPU:: How to configure StarPU
  31. * StarPU API:: The API to use StarPU
  32. * Advanced Topics:: Advanced use of StarPU
  33. * Performance feedback:: Performance debugging tools
  34. * Full source code for the 'Scaling a Vector' example::
  35. @end menu
  36. @c ---------------------------------------------------------------------
  37. @c Introduction to StarPU
  38. @c ---------------------------------------------------------------------
  39. @node Introduction
  40. @chapter Introduction to StarPU
  41. @menu
  42. * Motivation:: Why StarPU ?
  43. * StarPU in a Nutshell:: The Fundamentals of StarPU
  44. @end menu
  45. @node Motivation
  46. @section Motivation
  47. @c complex machines with heterogeneous cores/devices
  48. The use of specialized hardware such as accelerators or coprocessors offers an
  49. interesting approach to overcome the physical limits encountered by processor
  50. architects. As a result, many machines are now equipped with one or several
  51. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  52. efforts have been devoted to offload computation onto such accelerators, very
  53. little attention as been paid to portability concerns on the one hand, and to the
  54. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  55. StarPU is a runtime system that offers support for heterogeneous multicore
  56. architectures, it not only offers a unified view of the computational resources
  57. (i.e. CPUs and accelerators at the same time), but it also takes care of
  58. efficiently mapping and executing tasks onto an heterogeneous machine while
  59. transparently handling low-level issues in a portable fashion.
  60. @c this leads to a complicated distributed memory design
  61. @c which is not (easily) manageable by hand
  62. @c added value/benefits of StarPU
  63. @c - portability
  64. @c - scheduling, perf. portability
  65. @node StarPU in a Nutshell
  66. @section StarPU in a Nutshell
  67. @menu
  68. * Codelet and Tasks::
  69. * StarPU Data Management Library::
  70. * Research Papers::
  71. @end menu
  72. From a programming point of view, StarPU is not a new language but a library
  73. that executes tasks explicitly submitted by the application. The data that a
  74. task manipulates are automatically transferred onto the accelerator so that the
  75. programmer does not have to take care of complex data movements. StarPU also
  76. takes particular care of scheduling those tasks efficiently and allows
  77. scheduling experts to implement custom scheduling policies in a portable
  78. fashion.
  79. @c explain the notion of codelet and task (i.e. g(A, B)
  80. @node Codelet and Tasks
  81. @subsection Codelet and Tasks
  82. One of StarPU primary data structure is the @b{codelet}. A codelet describes a
  83. computational kernel that can possibly be implemented on multiple architectures
  84. such as a CPU, a CUDA device or a Cell's SPU.
  85. @c TODO insert illustration f : f_spu, f_cpu, ...
  86. Another important data structure is the @b{task}. Executing a StarPU task
  87. consists in applying a codelet on a data set, on one of the architectures on
  88. which the codelet is implemented. In addition to the codelet that a task
  89. implements, it also describes which data are accessed, and how they are
  90. accessed during the computation (read and/or write).
  91. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  92. operation. The task structure can also specify a @b{callback} function that is
  93. called once StarPU has properly executed the task. It also contains optional
  94. fields that the application may use to give hints to the scheduler (such as
  95. priority levels).
  96. A task may be identified by a unique 64-bit number which we refer as a @b{tag}.
  97. Task dependencies can be enforced either by the means of callback functions, or
  98. by expressing dependencies between tags.
  99. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  100. @c DSM
  101. @node StarPU Data Management Library
  102. @subsection StarPU Data Management Library
  103. Because StarPU schedules tasks at runtime, data transfers have to be
  104. done automatically and ``just-in-time'' between processing units,
  105. relieving the application programmer from explicit data transfers.
  106. Moreover, to avoid unnecessary transfers, StarPU keeps data
  107. where it was last needed, even if was modified there, and it
  108. allows multiple copies of the same data to reside at the same time on
  109. several processing units as long as it is not modified.
  110. @node Research Papers
  111. @subsection Research Papers
  112. Research papers on StarPU can be found on
  113. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  114. Notably a good overview in the research report
  115. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  116. @c ---------------------------------------------------------------------
  117. @c Installing StarPU
  118. @c ---------------------------------------------------------------------
  119. @node Installing StarPU
  120. @chapter Installing StarPU
  121. @menu
  122. * Downloading StarPU::
  123. * Configuration of StarPU::
  124. * Building and Installing StarPU::
  125. @end menu
  126. StarPU can be built and installed by the standard means of the GNU
  127. autotools. The following chapter is intended to briefly remind how these tools
  128. can be used to install StarPU.
  129. @node Downloading StarPU
  130. @section Downloading StarPU
  131. @menu
  132. * Getting Sources::
  133. * Optional dependencies::
  134. @end menu
  135. @node Getting Sources
  136. @subsection Getting Sources
  137. The source code is managed by a Subversion server hosted by the
  138. InriaGforge. To get the source code, you need:
  139. @itemize
  140. @item
  141. To install the client side of the software Subversion if it is
  142. not already available on your system. The software can be obtained from
  143. @indicateurl{http://subversion.tigris.org}.
  144. @item
  145. You can check out the project's SVN repository through anonymous
  146. access. This will provide you with a read access to the
  147. repository.
  148. You can also choose to become a member of the project @code{starpu}.
  149. For this, you first need to get an account to the gForge server. You
  150. can then send a request to join the project
  151. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  152. @item
  153. More information on how to get a gForge account, to become a member of
  154. a project, or on any other related task can be obtained from the
  155. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  156. thing is to upload your public SSH key on the gForge server (see the
  157. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  158. instructions).
  159. @end itemize
  160. You can now check out the latest version from the Subversion server:
  161. @itemize
  162. @item
  163. using the anonymous access via svn:
  164. @example
  165. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  166. @end example
  167. @item
  168. using the anonymous access via https:
  169. @example
  170. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  171. @end example
  172. The password is @code{anonsvn}.
  173. @item
  174. using your gForge account
  175. @example
  176. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  177. @end example
  178. @end itemize
  179. These steps require to run autoconf and automake to generate the
  180. @code{./configure} script. This can be done by calling
  181. @code{./autogen.sh}. The required version for autoconf is 2.60 or
  182. higher.
  183. @example
  184. % ./autogen.sh
  185. @end example
  186. If the autotools are not available on your machine or not recent
  187. enough, you can choose to download the latest nightly tarball, which
  188. is provided with a @code{configure} script.
  189. @example
  190. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  191. @end example
  192. @node Optional dependencies
  193. @subsection Optional dependencies
  194. The topology discovery library, hwloc, is not mandatory to use StarPU
  195. but strongly recommended. It allows to increase performance, and to
  196. perform some topology aware scheduling.
  197. hwloc is available in major distributions and for most OSes and can be
  198. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  199. @node Configuration of StarPU
  200. @section Configuration of StarPU
  201. @menu
  202. * Generating Makefiles and configuration scripts::
  203. * Running the configuration::
  204. @end menu
  205. @node Generating Makefiles and configuration scripts
  206. @subsection Generating Makefiles and configuration scripts
  207. This step is not necessary when using the tarball releases of StarPU. If you
  208. are using the source code from the svn repository, you first need to generate
  209. the configure scripts and the Makefiles.
  210. @example
  211. % ./autogen.sh
  212. @end example
  213. @node Running the configuration
  214. @subsection Running the configuration
  215. @example
  216. % ./configure
  217. @end example
  218. Details about options that are useful to give to @code{./configure} are given in
  219. @ref{Compilation configuration}.
  220. @node Building and Installing StarPU
  221. @section Building and Installing StarPU
  222. @menu
  223. * Building::
  224. * Sanity Checks::
  225. * Installing::
  226. @end menu
  227. @node Building
  228. @subsection Building
  229. @example
  230. % make
  231. @end example
  232. @node Sanity Checks
  233. @subsection Sanity Checks
  234. In order to make sure that StarPU is working properly on the system, it is also
  235. possible to run a test suite.
  236. @example
  237. % make check
  238. @end example
  239. @node Installing
  240. @subsection Installing
  241. In order to install StarPU at the location that was specified during
  242. configuration:
  243. @example
  244. % make install
  245. @end example
  246. @c ---------------------------------------------------------------------
  247. @c Using StarPU
  248. @c ---------------------------------------------------------------------
  249. @node Using StarPU
  250. @chapter Using StarPU
  251. @menu
  252. * Setting flags for compiling and linking applications::
  253. * Running a basic StarPU application::
  254. @end menu
  255. @node Setting flags for compiling and linking applications
  256. @section Setting flags for compiling and linking applications
  257. Compiling and linking an application against StarPU may require to use
  258. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  259. To this end, it is possible to use the @code{pkg-config} tool.
  260. If StarPU was not installed at some standard location, the path of StarPU's
  261. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  262. that @code{pkg-config} can find it. For example if StarPU was installed in
  263. @code{$prefix_dir}:
  264. @example
  265. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  266. @end example
  267. The flags required to compile or link against StarPU are then
  268. accessible with the following commands:
  269. @example
  270. % pkg-config --cflags libstarpu # options for the compiler
  271. % pkg-config --libs libstarpu # options for the linker
  272. @end example
  273. @node Running a basic StarPU application
  274. @section Running a basic StarPU application
  275. Basic examples using StarPU have been built in the directory
  276. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  277. example @code{vector_scal}.
  278. @example
  279. % $prefix_dir/lib/starpu/examples/vector_scal
  280. BEFORE : First element was 1.000000
  281. AFTER First element is 3.140000
  282. %
  283. @end example
  284. When StarPU is used for the first time, the directory
  285. @code{$HOME/.starpu/} is created, performance models will be stored in
  286. that directory.
  287. Please note that buses are benchmarked when StarPU is launched for the
  288. first time. This may take a few minutes, or less if @code{hwloc} is
  289. installed. This step is done only once per user and per machine.
  290. @c ---------------------------------------------------------------------
  291. @c Basic Examples
  292. @c ---------------------------------------------------------------------
  293. @node Basic Examples
  294. @chapter Basic Examples
  295. @menu
  296. * Compiling and linking options::
  297. * Hello World:: Submitting Tasks
  298. * Scaling a Vector:: Manipulating Data
  299. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  300. * Task and Worker Profiling::
  301. * Partitioning Data:: Partitioning Data
  302. * Performance model example::
  303. * Theoretical lower bound on execution time::
  304. * More examples:: More examples shipped with StarPU
  305. @end menu
  306. @node Compiling and linking options
  307. @section Compiling and linking options
  308. Let's suppose StarPU has been installed in the directory
  309. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  310. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  311. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  312. libraries at runtime.
  313. @example
  314. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  315. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  316. @end example
  317. The Makefile could for instance contain the following lines to define which
  318. options must be given to the compiler and to the linker:
  319. @cartouche
  320. @example
  321. CFLAGS += $$(pkg-config --cflags libstarpu)
  322. LDFLAGS += $$(pkg-config --libs libstarpu)
  323. @end example
  324. @end cartouche
  325. @node Hello World
  326. @section Hello World
  327. @menu
  328. * Required Headers::
  329. * Defining a Codelet::
  330. * Submitting a Task::
  331. * Execution of Hello World::
  332. @end menu
  333. In this section, we show how to implement a simple program that submits a task to StarPU.
  334. @node Required Headers
  335. @subsection Required Headers
  336. The @code{starpu.h} header should be included in any code using StarPU.
  337. @cartouche
  338. @smallexample
  339. #include <starpu.h>
  340. @end smallexample
  341. @end cartouche
  342. @node Defining a Codelet
  343. @subsection Defining a Codelet
  344. @cartouche
  345. @smallexample
  346. void cpu_func(void *buffers[], void *cl_arg)
  347. @{
  348. float *array = cl_arg;
  349. printf("Hello world (array = @{%f, %f@} )\n", array[0], array[1]);
  350. @}
  351. starpu_codelet cl =
  352. @{
  353. .where = STARPU_CPU,
  354. .cpu_func = cpu_func,
  355. .nbuffers = 0
  356. @};
  357. @end smallexample
  358. @end cartouche
  359. A codelet is a structure that represents a computational kernel. Such a codelet
  360. may contain an implementation of the same kernel on different architectures
  361. (e.g. CUDA, Cell's SPU, x86, ...).
  362. The @code{nbuffers} field specifies the number of data buffers that are
  363. manipulated by the codelet: here the codelet does not access or modify any data
  364. that is controlled by our data management library. Note that the argument
  365. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  366. structure) does not count as a buffer since it is not managed by our data
  367. management library.
  368. @c TODO need a crossref to the proper description of "where" see bla for more ...
  369. We create a codelet which may only be executed on the CPUs. The @code{where}
  370. field is a bitmask that defines where the codelet may be executed. Here, the
  371. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  372. (@pxref{Codelets and Tasks} for more details on this field).
  373. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  374. which @emph{must} have the following prototype:
  375. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  376. In this example, we can ignore the first argument of this function which gives a
  377. description of the input and output buffers (e.g. the size and the location of
  378. the matrices). The second argument is a pointer to a buffer passed as an
  379. argument to the codelet by the means of the @code{cl_arg} field of the
  380. @code{starpu_task} structure.
  381. @c TODO rewrite so that it is a little clearer ?
  382. Be aware that this may be a pointer to a
  383. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  384. if the codelet modifies this buffer, there is no guarantee that the initial
  385. buffer will be modified as well: this for instance implies that the buffer
  386. cannot be used as a synchronization medium.
  387. @node Submitting a Task
  388. @subsection Submitting a Task
  389. @cartouche
  390. @smallexample
  391. void callback_func(void *callback_arg)
  392. @{
  393. printf("Callback function (arg %x)\n", callback_arg);
  394. @}
  395. int main(int argc, char **argv)
  396. @{
  397. /* @b{initialize StarPU} */
  398. starpu_init(NULL);
  399. struct starpu_task *task = starpu_task_create();
  400. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  401. float array[2] = @{1.0f, -1.0f@};
  402. task->cl_arg = &array;
  403. task->cl_arg_size = sizeof(array);
  404. task->callback_func = callback_func;
  405. task->callback_arg = 0x42;
  406. /* @b{starpu_task_submit will be a blocking call} */
  407. task->synchronous = 1;
  408. /* @b{submit the task to StarPU} */
  409. starpu_task_submit(task);
  410. /* @b{terminate StarPU} */
  411. starpu_shutdown();
  412. return 0;
  413. @}
  414. @end smallexample
  415. @end cartouche
  416. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  417. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  418. be submitted after the termination of StarPU by a call to
  419. @code{starpu_shutdown}.
  420. In the example above, a task structure is allocated by a call to
  421. @code{starpu_task_create}. This function only allocates and fills the
  422. corresponding structure with the default settings (@pxref{starpu_task_create}),
  423. but it does not submit the task to StarPU.
  424. @c not really clear ;)
  425. The @code{cl} field is a pointer to the codelet which the task will
  426. execute: in other words, the codelet structure describes which computational
  427. kernel should be offloaded on the different architectures, and the task
  428. structure is a wrapper containing a codelet and the piece of data on which the
  429. codelet should operate.
  430. The optional @code{cl_arg} field is a pointer to a buffer (of size
  431. @code{cl_arg_size}) with some parameters for the kernel
  432. described by the codelet. For instance, if a codelet implements a computational
  433. kernel that multiplies its input vector by a constant, the constant could be
  434. specified by the means of this buffer, instead of registering it.
  435. Once a task has been executed, an optional callback function can be called.
  436. While the computational kernel could be offloaded on various architectures, the
  437. callback function is always executed on a CPU. The @code{callback_arg}
  438. pointer is passed as an argument of the callback. The prototype of a callback
  439. function must be:
  440. @code{void (*callback_function)(void *);}
  441. If the @code{synchronous} field is non-null, task submission will be
  442. synchronous: the @code{starpu_task_submit} function will not return until the
  443. task was executed. Note that the @code{starpu_shutdown} method does not
  444. guarantee that asynchronous tasks have been executed before it returns.
  445. @node Execution of Hello World
  446. @subsection Execution of Hello World
  447. @smallexample
  448. % make hello_world
  449. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  450. % ./hello_world
  451. Hello world (array = @{1.000000, -1.000000@} )
  452. Callback function (arg 42)
  453. @end smallexample
  454. @node Scaling a Vector
  455. @section Manipulating Data: Scaling a Vector
  456. The previous example has shown how to submit tasks. In this section,
  457. we show how StarPU tasks can manipulate data. The full source code for
  458. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  459. @menu
  460. * Source code of Vector Scaling::
  461. * Execution of Vector Scaling::
  462. @end menu
  463. @node Source code of Vector Scaling
  464. @subsection Source code of Vector Scaling
  465. Programmers can describe the data layout of their application so that StarPU is
  466. responsible for enforcing data coherency and availability across the machine.
  467. Instead of handling complex (and non-portable) mechanisms to perform data
  468. movements, programmers only declare which piece of data is accessed and/or
  469. modified by a task, and StarPU makes sure that when a computational kernel
  470. starts somewhere (e.g. on a GPU), its data are available locally.
  471. Before submitting those tasks, the programmer first needs to declare the
  472. different pieces of data to StarPU using the @code{starpu_*_data_register}
  473. functions. To ease the development of applications for StarPU, it is possible
  474. to describe multiple types of data layout. A type of data layout is called an
  475. @b{interface}. By default, there are different interfaces available in StarPU:
  476. here we will consider the @b{vector interface}.
  477. The following lines show how to declare an array of @code{NX} elements of type
  478. @code{float} using the vector interface:
  479. @cartouche
  480. @smallexample
  481. float vector[NX];
  482. starpu_data_handle vector_handle;
  483. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  484. sizeof(vector[0]));
  485. @end smallexample
  486. @end cartouche
  487. The first argument, called the @b{data handle}, is an opaque pointer which
  488. designates the array in StarPU. This is also the structure which is used to
  489. describe which data is used by a task. The second argument is the node number
  490. where the data currently resides. Here it is 0 since the @code{vector} array is in
  491. the main memory. Then comes the pointer @code{vector} where the data can be found,
  492. the number of elements in the vector and the size of each element.
  493. It is possible to construct a StarPU task that will manipulate the
  494. vector and a constant factor.
  495. @cartouche
  496. @smallexample
  497. float factor = 3.14;
  498. struct starpu_task *task = starpu_task_create();
  499. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  500. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  501. task->buffers[0].mode = STARPU_RW;
  502. task->cl_arg = &factor;
  503. task->cl_arg_size = sizeof(factor);
  504. task->synchronous = 1;
  505. starpu_task_submit(task);
  506. @end smallexample
  507. @end cartouche
  508. Since the factor is a mere float value parameter, it does not need a preliminary registration, and
  509. can just be passed through the @code{cl_arg} pointer like in the previous
  510. example. The vector parameter is described by its handle.
  511. There are two fields in each element of the @code{buffers} array.
  512. @code{handle} is the handle of the data, and @code{mode} specifies how the
  513. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  514. write-only and @code{STARPU_RW} for read and write access).
  515. The definition of the codelet can be written as follows:
  516. @cartouche
  517. @smallexample
  518. void scal_cpu_func(void *buffers[], void *cl_arg)
  519. @{
  520. unsigned i;
  521. float *factor = cl_arg;
  522. /* length of the vector */
  523. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  524. /* local copy of the vector pointer */
  525. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  526. for (i = 0; i < n; i++)
  527. val[i] *= *factor;
  528. @}
  529. starpu_codelet cl = @{
  530. .where = STARPU_CPU,
  531. .cpu_func = scal_cpu_func,
  532. .nbuffers = 1
  533. @};
  534. @end smallexample
  535. @end cartouche
  536. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  537. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  538. constant factor from this pointer. The first argument is an array that gives
  539. a description of all the buffers passed in the @code{task->buffers}@ array. The
  540. size of this array is given by the @code{nbuffers} field of the codelet
  541. structure. For the sake of generality, this array contains pointers to the
  542. different interfaces describing each buffer. In the case of the @b{vector
  543. interface}, the location of the vector (resp. its length) is accessible in the
  544. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  545. read-write fashion, any modification will automatically affect future accesses
  546. to this vector made by other tasks.
  547. @node Execution of Vector Scaling
  548. @subsection Execution of Vector Scaling
  549. @smallexample
  550. % make vector_scal
  551. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  552. % ./vector_scal
  553. 0.000000 3.000000 6.000000 9.000000 12.000000
  554. @end smallexample
  555. @node Vector Scaling on an Hybrid CPU/GPU Machine
  556. @section Vector Scaling on an Hybrid CPU/GPU Machine
  557. Contrary to the previous examples, the task submitted in this example may not
  558. only be executed by the CPUs, but also by a CUDA device.
  559. @menu
  560. * Definition of the CUDA Codelet::
  561. * Definition of the OpenCL Codelet::
  562. * Definition of the Main Code::
  563. * Execution of Hybrid Vector Scaling::
  564. @end menu
  565. @node Definition of the CUDA Codelet
  566. @subsection Definition of the CUDA Codelet
  567. The CUDA implementation can be written as follows. It needs to be
  568. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  569. driver.
  570. @cartouche
  571. @smallexample
  572. #include <starpu.h>
  573. static __global__ void vector_mult_cuda(float *val, unsigned n,
  574. float factor)
  575. @{
  576. unsigned i;
  577. for(i = 0 ; i < n ; i++)
  578. val[i] *= factor;
  579. @}
  580. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  581. @{
  582. float *factor = (float *)_args;
  583. /* length of the vector */
  584. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  585. /* local copy of the vector pointer */
  586. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  587. @i{ vector_mult_cuda<<<1,1>>>(val, n, *factor);}
  588. @i{ cudaThreadSynchronize();}
  589. @}
  590. @end smallexample
  591. @end cartouche
  592. @node Definition of the OpenCL Codelet
  593. @subsection Definition of the OpenCL Codelet
  594. The OpenCL implementation can be written as follows. StarPU provides
  595. tools to compile a OpenCL codelet stored in a file.
  596. @cartouche
  597. @smallexample
  598. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  599. @{
  600. const int i = get_global_id(0);
  601. if (i < nx) @{
  602. val[i] *= factor;
  603. @}
  604. @}
  605. @end smallexample
  606. @end cartouche
  607. @cartouche
  608. @smallexample
  609. #include <starpu.h>
  610. @i{#include <starpu_opencl.h>}
  611. @i{extern struct starpu_opencl_program programs;}
  612. void scal_opencl_func(void *buffers[], void *_args)
  613. @{
  614. float *factor = _args;
  615. @i{ int id, devid, err;}
  616. @i{ cl_kernel kernel;}
  617. @i{ cl_command_queue queue;}
  618. /* length of the vector */
  619. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  620. /* local copy of the vector pointer */
  621. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  622. @i{ id = starpu_worker_get_id();}
  623. @i{ devid = starpu_worker_get_devid(id);}
  624. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  625. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  626. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  627. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  628. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  629. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  630. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  631. @i{ @{}
  632. @i{ size_t global=1;}
  633. @i{ size_t local=1;}
  634. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, NULL);}
  635. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  636. @i{ @}}
  637. @i{ clFinish(queue);}
  638. @i{ starpu_opencl_release_kernel(kernel);}
  639. @}
  640. @end smallexample
  641. @end cartouche
  642. @node Definition of the Main Code
  643. @subsection Definition of the Main Code
  644. The CPU implementation is the same as in the previous section.
  645. Here is the source of the main application. You can notice the value of the
  646. field @code{where} for the codelet. We specify
  647. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  648. can be executed either on a CPU or on a CUDA or an OpenCL device.
  649. @cartouche
  650. @smallexample
  651. #include <starpu.h>
  652. #define NX 2048
  653. extern void scal_cuda_func(void *buffers[], void *_args);
  654. extern void scal_cpu_func(void *buffers[], void *_args);
  655. extern void scal_opencl_func(void *buffers[], void *_args);
  656. /* @b{Definition of the codelet} */
  657. static starpu_codelet cl = @{
  658. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  659. /* @b{on a CUDA device, or on an OpenCL device} */
  660. .cuda_func = scal_cuda_func;
  661. .cpu_func = scal_cpu_func;
  662. .opencl_func = scal_opencl_func;
  663. .nbuffers = 1;
  664. @}
  665. #ifdef STARPU_USE_OPENCL
  666. /* @b{The compiled version of the OpenCL program} */
  667. struct starpu_opencl_program programs;
  668. #endif
  669. int main(int argc, char **argv)
  670. @{
  671. float *vector;
  672. int i, ret;
  673. float factor=3.0;
  674. struct starpu_task *task;
  675. starpu_data_handle vector_handle;
  676. starpu_init(NULL); /* @b{Initialising StarPU} */
  677. #ifdef STARPU_USE_OPENCL
  678. starpu_opencl_load_opencl_from_file("examples/basic_examples/vector_scal_opencl_codelet.cl",
  679. &programs);
  680. #endif
  681. vector = malloc(NX*sizeof(vector[0]));
  682. assert(vector);
  683. for(i=0 ; i<NX ; i++) vector[i] = i;
  684. @end smallexample
  685. @end cartouche
  686. @cartouche
  687. @smallexample
  688. /* @b{Registering data within StarPU} */
  689. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  690. NX, sizeof(vector[0]));
  691. /* @b{Definition of the task} */
  692. task = starpu_task_create();
  693. task->cl = &cl;
  694. task->buffers[0].handle = vector_handle;
  695. task->buffers[0].mode = STARPU_RW;
  696. task->cl_arg = &factor;
  697. task->cl_arg_size = sizeof(factor);
  698. @end smallexample
  699. @end cartouche
  700. @cartouche
  701. @smallexample
  702. /* @b{Submitting the task} */
  703. ret = starpu_task_submit(task);
  704. if (ret == -ENODEV) @{
  705. fprintf(stderr, "No worker may execute this task\n");
  706. return 1;
  707. @}
  708. /* @b{Waiting for its termination} */
  709. starpu_task_wait_for_all();
  710. /* @b{Update the vector in RAM} */
  711. starpu_data_acquire(vector_handle, STARPU_R);
  712. @end smallexample
  713. @end cartouche
  714. @cartouche
  715. @smallexample
  716. /* @b{Access the data} */
  717. for(i=0 ; i<NX; i++) @{
  718. fprintf(stderr, "%f ", vector[i]);
  719. @}
  720. fprintf(stderr, "\n");
  721. /* @b{Release the data and shutdown StarPU} */
  722. starpu_data_release(vector_handle);
  723. starpu_shutdown();
  724. return 0;
  725. @}
  726. @end smallexample
  727. @end cartouche
  728. @node Execution of Hybrid Vector Scaling
  729. @subsection Execution of Hybrid Vector Scaling
  730. The Makefile given at the beginning of the section must be extended to
  731. give the rules to compile the CUDA source code. Note that the source
  732. file of the OpenCL codelet does not need to be compiled now, it will
  733. be compiled at run-time when calling the function
  734. @code{starpu_opencl_load_opencl_from_file} (@pxref{starpu_opencl_load_opencl_from_file}).
  735. @cartouche
  736. @smallexample
  737. CFLAGS += $(shell pkg-config --cflags libstarpu)
  738. LDFLAGS += $(shell pkg-config --libs libstarpu)
  739. CC = gcc
  740. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  741. %.o: %.cu
  742. nvcc $(CFLAGS) $< -c $@
  743. clean:
  744. rm -f vector_scal *.o
  745. @end smallexample
  746. @end cartouche
  747. @smallexample
  748. % make
  749. @end smallexample
  750. and to execute it, with the default configuration:
  751. @smallexample
  752. % ./vector_scal
  753. 0.000000 3.000000 6.000000 9.000000 12.000000
  754. @end smallexample
  755. or for example, by disabling CPU devices:
  756. @smallexample
  757. % STARPU_NCPUS=0 ./vector_scal
  758. 0.000000 3.000000 6.000000 9.000000 12.000000
  759. @end smallexample
  760. or by disabling CUDA devices:
  761. @smallexample
  762. % STARPU_NCUDA=0 ./vector_scal
  763. 0.000000 3.000000 6.000000 9.000000 12.000000
  764. @end smallexample
  765. @node Task and Worker Profiling
  766. @section Task and Worker Profiling
  767. A full example showing how to use the profiling API is available in
  768. the StarPU sources in the directory @code{examples/profiling/}.
  769. @cartouche
  770. @smallexample
  771. struct starpu_task *task = starpu_task_create();
  772. task->cl = &cl;
  773. task->synchronous = 1;
  774. /* We will destroy the task structure by hand so that we can
  775. * query the profiling info before the task is destroyed. */
  776. task->destroy = 0;
  777. starpu_task_submit(task);
  778. /* The task is finished, get profiling information */
  779. struct starpu_task_profiling_info *info = task->profiling_info;
  780. /* How much time did it take before the task started ? */
  781. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  782. /* How long was the task execution ? */
  783. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  784. /* We don't need the task structure anymore */
  785. starpu_task_destroy(task);
  786. @end smallexample
  787. @end cartouche
  788. @cartouche
  789. @smallexample
  790. /* Display the occupancy of all workers during the test */
  791. int worker;
  792. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  793. @{
  794. struct starpu_worker_profiling_info worker_info;
  795. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  796. STARPU_ASSERT(!ret);
  797. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  798. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  799. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  800. float executing_ratio = 100.0*executing_time/total_time;
  801. float sleeping_ratio = 100.0*sleeping_time/total_time;
  802. char workername[128];
  803. starpu_worker_get_name(worker, workername, 128);
  804. fprintf(stderr, "Worker %s:\n", workername);
  805. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  806. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  807. executing_ratio);
  808. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  809. sleeping_ratio);
  810. @}
  811. @end smallexample
  812. @end cartouche
  813. @node Partitioning Data
  814. @section Partitioning Data
  815. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  816. @cartouche
  817. @smallexample
  818. int vector[NX];
  819. starpu_data_handle handle;
  820. /* Declare data to StarPU */
  821. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  822. /* Partition the vector in PARTS sub-vectors */
  823. starpu_filter f =
  824. @{
  825. .filter_func = starpu_block_filter_func_vector,
  826. .nchildren = PARTS,
  827. .get_nchildren = NULL,
  828. .get_child_ops = NULL
  829. @};
  830. starpu_data_partition(handle, &f);
  831. @end smallexample
  832. @end cartouche
  833. @cartouche
  834. @smallexample
  835. /* Submit a task on each sub-vector */
  836. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  837. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  838. struct starpu_task *task = starpu_task_create();
  839. task->buffers[0].handle = sub_handle;
  840. task->buffers[0].mode = STARPU_RW;
  841. task->cl = &cl;
  842. task->synchronous = 1;
  843. task->cl_arg = &factor;
  844. task->cl_arg_size = sizeof(factor);
  845. starpu_task_submit(task);
  846. @}
  847. @end smallexample
  848. @end cartouche
  849. Partitioning can be applied several times, see
  850. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  851. @node Performance model example
  852. @section Performance model example
  853. To achieve good scheduling, StarPU scheduling policies need to be able to
  854. estimate in advance the duration of a task. This is done by giving to codelets a
  855. performance model. There are several kinds of performance models.
  856. @itemize
  857. @item
  858. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  859. see for instance
  860. @code{examples/common/blas_model.c} and @code{examples/common/blas_model.h}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  861. @item
  862. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  863. given set of data input/output sizes, the performance will always be about the
  864. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  865. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  866. few different sets of data input/output sizes. StarPU will then keep record of
  867. the average time of previous executions on the various processing units, and use
  868. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  869. for further executions. The following is a small code example.
  870. @cartouche
  871. @smallexample
  872. static struct starpu_perfmodel_t mult_perf_model = @{
  873. .type = STARPU_HISTORY_BASED,
  874. .symbol = "mult_perf_model"
  875. @};
  876. starpu_codelet cl = @{
  877. .where = STARPU_CPU,
  878. .cpu_func = cpu_mult,
  879. .nbuffers = 3,
  880. /* for the scheduling policy to be able to use performance models */
  881. .model = &mult_perf_model
  882. @};
  883. @end smallexample
  884. @end cartouche
  885. @item
  886. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  887. type). This still assumes performance regularity, but can work with various data
  888. input sizes, by applying a*n^b+c regression over observed execution times.
  889. @end itemize
  890. @node Theoretical lower bound on execution time
  891. @section Theoretical lower bound on execution time
  892. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  893. bound for the execution time of a whole set of tasks. See for
  894. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  895. call @code{starpu_bound_start}, and after complete execution, call
  896. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  897. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  898. problem corresponding to the schedule of your tasks. Run it through
  899. @code{lp_solve} or any other linear programming solver, and that will give you a
  900. lower bound for the total execution time of your tasks. If StarPU was compiled
  901. with the glpk library installed, @code{starpu_bound_compute} can be used to
  902. solve it immediately and get the optimized minimum. Its @code{integer}
  903. parameter allows to decide whether integer resolution should be computed
  904. and returned.
  905. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  906. dependencies into account. It must be understood that the linear programming
  907. problem size is quadratic with the number of tasks and thus the time to solve it
  908. will be very long, it could be minutes for just a few dozen tasks. You should
  909. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  910. problem to MPS format and then use a better solver, @code{glpsol} might be
  911. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  912. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  913. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  914. of @code{lp_solve}. For instance, we often just use
  915. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  916. the @code{-gr} option can also be quite useful.
  917. Setting @code{deps} to 0 will only take into account the actual computations
  918. on processing units. It however still properly takes into account the varying
  919. performances of kernels and processing units, which is quite more accurate than
  920. just comparing StarPU performances with the fastest of the kernels being used.
  921. The @code{prio} parameter tells StarPU whether to simulate taking into account
  922. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  923. tasks before less prioritized tasks, to check to which extend this results
  924. to a less optimal solution. This increases even more computation time.
  925. Note that all this however doesn't take into account data transfer, which is
  926. assumed to be completely overlapped.
  927. @node More examples
  928. @section More examples
  929. More examples are available in the StarPU sources in the @code{examples/}
  930. directory. Simple examples include:
  931. @table @asis
  932. @item @code{incrementer/}:
  933. Trivial incrementation test.
  934. @item @code{basic_examples/}:
  935. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  936. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  937. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  938. interface, and an example using the variable data interface.
  939. @item @code{matvecmult/}:
  940. OpenCL example from NVidia, adapted to StarPU.
  941. @item @code{axpy/}:
  942. AXPY CUBLAS operation adapted to StarPU.
  943. @item @code{fortran/}:
  944. Example of Fortran bindings.
  945. @end table
  946. More advanced examples include:
  947. @table @asis
  948. @item @code{filters/}:
  949. Examples using filters, as shown in @ref{Partitioning Data}.
  950. @item @code{lu/}:
  951. LU matrix factorization.
  952. @end table
  953. @c ---------------------------------------------------------------------
  954. @c Configuration options
  955. @c ---------------------------------------------------------------------
  956. @node Configuring StarPU
  957. @chapter Configuring StarPU
  958. @menu
  959. * Compilation configuration::
  960. * Execution configuration through environment variables::
  961. @end menu
  962. @node Compilation configuration
  963. @section Compilation configuration
  964. The following arguments can be given to the @code{configure} script.
  965. @menu
  966. * Common configuration::
  967. * Configuring workers::
  968. * Advanced configuration::
  969. @end menu
  970. @node Common configuration
  971. @subsection Common configuration
  972. @menu
  973. * --enable-debug::
  974. * --enable-fast::
  975. * --enable-verbose::
  976. * --enable-coverage::
  977. @end menu
  978. @node --enable-debug
  979. @subsubsection @code{--enable-debug}
  980. @table @asis
  981. @item @emph{Description}:
  982. Enable debugging messages.
  983. @end table
  984. @node --enable-fast
  985. @subsubsection @code{--enable-fast}
  986. @table @asis
  987. @item @emph{Description}:
  988. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  989. @end table
  990. @node --enable-verbose
  991. @subsubsection @code{--enable-verbose}
  992. @table @asis
  993. @item @emph{Description}:
  994. Augment the verbosity of the debugging messages.
  995. @end table
  996. @node --enable-coverage
  997. @subsubsection @code{--enable-coverage}
  998. @table @asis
  999. @item @emph{Description}:
  1000. Enable flags for the coverage tool.
  1001. @end table
  1002. @node Configuring workers
  1003. @subsection Configuring workers
  1004. @menu
  1005. * --enable-nmaxcpus::
  1006. * --disable-cpu::
  1007. * --enable-maxcudadev::
  1008. * --disable-cuda::
  1009. * --with-cuda-dir::
  1010. * --enable-maxopencldev::
  1011. * --disable-opencl::
  1012. * --with-opencl-dir::
  1013. * --enable-gordon::
  1014. * --with-gordon-dir::
  1015. @end menu
  1016. @node --enable-nmaxcpus
  1017. @subsubsection @code{--enable-nmaxcpus=<number>}
  1018. @table @asis
  1019. @item @emph{Description}:
  1020. Defines the maximum number of CPU cores that StarPU will support, then
  1021. available as the @code{STARPU_NMAXCPUS} macro.
  1022. @end table
  1023. @node --disable-cpu
  1024. @subsubsection @code{--disable-cpu}
  1025. @table @asis
  1026. @item @emph{Description}:
  1027. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1028. @end table
  1029. @node --enable-maxcudadev
  1030. @subsubsection @code{--enable-maxcudadev=<number>}
  1031. @table @asis
  1032. @item @emph{Description}:
  1033. Defines the maximum number of CUDA devices that StarPU will support, then
  1034. available as the @code{STARPU_MAXCUDADEVS} macro.
  1035. @end table
  1036. @node --disable-cuda
  1037. @subsubsection @code{--disable-cuda}
  1038. @table @asis
  1039. @item @emph{Description}:
  1040. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1041. @end table
  1042. @node --with-cuda-dir
  1043. @subsubsection @code{--with-cuda-dir=<path>}
  1044. @table @asis
  1045. @item @emph{Description}:
  1046. Specify the directory where CUDA is installed. This directory should notably contain
  1047. @code{include/cuda.h}.
  1048. @end table
  1049. @node --enable-maxopencldev
  1050. @subsubsection @code{--enable-maxopencldev=<number>}
  1051. @table @asis
  1052. @item @emph{Description}:
  1053. Defines the maximum number of OpenCL devices that StarPU will support, then
  1054. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1055. @end table
  1056. @node --disable-opencl
  1057. @subsubsection @code{--disable-opencl}
  1058. @table @asis
  1059. @item @emph{Description}:
  1060. Disable the use of OpenCL, even if the SDK is detected.
  1061. @end table
  1062. @node --with-opencl-dir
  1063. @subsubsection @code{--with-opencl-dir=<path>}
  1064. @table @asis
  1065. @item @emph{Description}:
  1066. Specify the location of the OpenCL SDK. This directory should notably contain
  1067. @code{include/CL/cl.h}.
  1068. @end table
  1069. @node --enable-gordon
  1070. @subsubsection @code{--enable-gordon}
  1071. @table @asis
  1072. @item @emph{Description}:
  1073. Enable the use of the Gordon runtime for Cell SPUs.
  1074. @c TODO: rather default to enabled when detected
  1075. @end table
  1076. @node --with-gordon-dir
  1077. @subsubsection @code{--with-gordon-dir=<path>}
  1078. @table @asis
  1079. @item @emph{Description}:
  1080. Specify the location of the Gordon SDK.
  1081. @end table
  1082. @node Advanced configuration
  1083. @subsection Advanced configuration
  1084. @menu
  1085. * --enable-perf-debug::
  1086. * --enable-model-debug::
  1087. * --enable-stats::
  1088. * --enable-maxbuffers::
  1089. * --enable-allocation-cache::
  1090. * --enable-opengl-render::
  1091. * --enable-blas-lib::
  1092. * --with-magma::
  1093. * --with-fxt::
  1094. * --with-perf-model-dir::
  1095. * --with-mpicc::
  1096. * --with-goto-dir::
  1097. * --with-atlas-dir::
  1098. @end menu
  1099. @node --enable-perf-debug
  1100. @subsubsection @code{--enable-perf-debug}
  1101. @table @asis
  1102. @item @emph{Description}:
  1103. Enable performance debugging.
  1104. @end table
  1105. @node --enable-model-debug
  1106. @subsubsection @code{--enable-model-debug}
  1107. @table @asis
  1108. @item @emph{Description}:
  1109. Enable performance model debugging.
  1110. @end table
  1111. @node --enable-stats
  1112. @subsubsection @code{--enable-stats}
  1113. @table @asis
  1114. @item @emph{Description}:
  1115. Enable statistics.
  1116. @end table
  1117. @node --enable-maxbuffers
  1118. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1119. @table @asis
  1120. @item @emph{Description}:
  1121. Define the maximum number of buffers that tasks will be able to take
  1122. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1123. @end table
  1124. @node --enable-allocation-cache
  1125. @subsubsection @code{--enable-allocation-cache}
  1126. @table @asis
  1127. @item @emph{Description}:
  1128. Enable the use of a data allocation cache to avoid the cost of it with
  1129. CUDA. Still experimental.
  1130. @end table
  1131. @node --enable-opengl-render
  1132. @subsubsection @code{--enable-opengl-render}
  1133. @table @asis
  1134. @item @emph{Description}:
  1135. Enable the use of OpenGL for the rendering of some examples.
  1136. @c TODO: rather default to enabled when detected
  1137. @end table
  1138. @node --enable-blas-lib
  1139. @subsubsection @code{--enable-blas-lib=<name>}
  1140. @table @asis
  1141. @item @emph{Description}:
  1142. Specify the blas library to be used by some of the examples. The
  1143. library has to be 'atlas' or 'goto'.
  1144. @end table
  1145. @node --with-magma
  1146. @subsubsection @code{--with-magma=<path>}
  1147. @table @asis
  1148. @item @emph{Description}:
  1149. Specify where magma is installed.
  1150. @end table
  1151. @node --with-fxt
  1152. @subsubsection @code{--with-fxt=<path>}
  1153. @table @asis
  1154. @item @emph{Description}:
  1155. Specify the location of FxT (for generating traces and rendering them
  1156. using ViTE). This directory should notably contain
  1157. @code{include/fxt/fxt.h}.
  1158. @c TODO add ref to other section
  1159. @end table
  1160. @node --with-perf-model-dir
  1161. @subsubsection @code{--with-perf-model-dir=<dir>}
  1162. @table @asis
  1163. @item @emph{Description}:
  1164. Specify where performance models should be stored (instead of defaulting to the
  1165. current user's home).
  1166. @end table
  1167. @node --with-mpicc
  1168. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1169. @table @asis
  1170. @item @emph{Description}:
  1171. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1172. @end table
  1173. @node --with-goto-dir
  1174. @subsubsection @code{--with-goto-dir=<dir>}
  1175. @table @asis
  1176. @item @emph{Description}:
  1177. Specify the location of GotoBLAS.
  1178. @end table
  1179. @node --with-atlas-dir
  1180. @subsubsection @code{--with-atlas-dir=<dir>}
  1181. @table @asis
  1182. @item @emph{Description}:
  1183. Specify the location of ATLAS. This directory should notably contain
  1184. @code{include/cblas.h}.
  1185. @end table
  1186. @c ---------------------------------------------------------------------
  1187. @c Environment variables
  1188. @c ---------------------------------------------------------------------
  1189. @node Execution configuration through environment variables
  1190. @section Execution configuration through environment variables
  1191. @menu
  1192. * Workers:: Configuring workers
  1193. * Scheduling:: Configuring the Scheduling engine
  1194. * Misc:: Miscellaneous and debug
  1195. @end menu
  1196. Note: the values given in @code{starpu_conf} structure passed when
  1197. calling @code{starpu_init} will override the values of the environment
  1198. variables.
  1199. @node Workers
  1200. @subsection Configuring workers
  1201. @menu
  1202. * STARPU_NCPUS:: Number of CPU workers
  1203. * STARPU_NCUDA:: Number of CUDA workers
  1204. * STARPU_NOPENCL:: Number of OpenCL workers
  1205. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1206. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1207. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1208. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1209. @end menu
  1210. @node STARPU_NCPUS
  1211. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1212. @table @asis
  1213. @item @emph{Description}:
  1214. Specify the maximum number of CPU workers. Note that StarPU will not allocate
  1215. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1216. the accelerators.
  1217. @end table
  1218. @node STARPU_NCUDA
  1219. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1220. @table @asis
  1221. @item @emph{Description}:
  1222. Specify the maximum number of CUDA devices that StarPU can use. If
  1223. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1224. possible to select which CUDA devices should be used by the means of the
  1225. @code{STARPU_WORKERS_CUDAID} environment variable.
  1226. @end table
  1227. @node STARPU_NOPENCL
  1228. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1229. @table @asis
  1230. @item @emph{Description}:
  1231. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1232. @end table
  1233. @node STARPU_NGORDON
  1234. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1235. @table @asis
  1236. @item @emph{Description}:
  1237. Specify the maximum number of SPUs that StarPU can use.
  1238. @end table
  1239. @node STARPU_WORKERS_CPUID
  1240. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1241. @table @asis
  1242. @item @emph{Description}:
  1243. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1244. specifies on which logical CPU the different workers should be
  1245. bound. For instance, if @code{STARPU_WORKERS_CPUID = "1 3 0 2"}, the first
  1246. worker will be bound to logical CPU #1, the second CPU worker will be bound to
  1247. logical CPU #3 and so on. Note that the logical ordering of the CPUs is either
  1248. determined by the OS, or provided by the @code{hwloc} library in case it is
  1249. available.
  1250. Note that the first workers correspond to the CUDA workers, then come the
  1251. OpenCL and the SPU, and finally the CPU workers. For example if
  1252. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1253. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1254. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1255. the logical CPUs #1 and #3 will be used by the CPU workers.
  1256. If the number of workers is larger than the array given in
  1257. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1258. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1259. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1260. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1261. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1262. @end table
  1263. @node STARPU_WORKERS_CUDAID
  1264. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1265. @table @asis
  1266. @item @emph{Description}:
  1267. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1268. possible to select which CUDA devices should be used by StarPU. On a machine
  1269. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1270. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1271. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1272. the one reported by CUDA).
  1273. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1274. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1275. @end table
  1276. @node STARPU_WORKERS_OPENCLID
  1277. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1278. @table @asis
  1279. @item @emph{Description}:
  1280. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1281. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1282. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1283. @end table
  1284. @node Scheduling
  1285. @subsection Configuring the Scheduling engine
  1286. @menu
  1287. * STARPU_SCHED:: Scheduling policy
  1288. * STARPU_CALIBRATE:: Calibrate performance models
  1289. * STARPU_PREFETCH:: Use data prefetch
  1290. * STARPU_SCHED_ALPHA:: Computation factor
  1291. * STARPU_SCHED_BETA:: Communication factor
  1292. @end menu
  1293. @node STARPU_SCHED
  1294. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1295. @table @asis
  1296. @item @emph{Description}:
  1297. This chooses between the different scheduling policies proposed by StarPU: work
  1298. random, stealing, greedy, with performance models, etc.
  1299. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1300. @end table
  1301. @node STARPU_CALIBRATE
  1302. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1303. @table @asis
  1304. @item @emph{Description}:
  1305. If this variable is set to 1, the performance models are calibrated during
  1306. the execution. If it is set to 2, the previous values are dropped to restart
  1307. calibration from scratch.
  1308. Note: this currently only applies to dm and dmda scheduling policies.
  1309. @end table
  1310. @node STARPU_PREFETCH
  1311. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1312. @table @asis
  1313. @item @emph{Description}:
  1314. This variable indicates whether data prefetching should be enabled (0 means
  1315. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1316. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1317. advance, so that data is already present on the GPU when the task starts. As a
  1318. result, computation and data transfers are overlapped.
  1319. @end table
  1320. @node STARPU_SCHED_ALPHA
  1321. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1322. @table @asis
  1323. @item @emph{Description}:
  1324. To estimate the cost of a task StarPU takes into account the estimated
  1325. computation time (obtained thanks to performance models). The alpha factor is
  1326. the coefficient to be applied to it before adding it to the communication part.
  1327. @end table
  1328. @node STARPU_SCHED_BETA
  1329. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1330. @table @asis
  1331. @item @emph{Description}:
  1332. To estimate the cost of a task StarPU takes into account the estimated
  1333. data transfer time (obtained thanks to performance models). The beta factor is
  1334. the coefficient to be applied to it before adding it to the computation part.
  1335. @end table
  1336. @node Misc
  1337. @subsection Miscellaneous and debug
  1338. @menu
  1339. * STARPU_LOGFILENAME:: Select debug file name
  1340. * STARPU_FXT_PREFIX:: FxT trace location
  1341. @end menu
  1342. @node STARPU_LOGFILENAME
  1343. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1344. @table @asis
  1345. @item @emph{Description}:
  1346. This variable specifies in which file the debugging output should be saved to.
  1347. @end table
  1348. @node STARPU_FXT_PREFIX
  1349. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1350. @table @asis
  1351. @item @emph{Description}
  1352. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1353. @end table
  1354. @c ---------------------------------------------------------------------
  1355. @c StarPU API
  1356. @c ---------------------------------------------------------------------
  1357. @node StarPU API
  1358. @chapter StarPU API
  1359. @menu
  1360. * Initialization and Termination:: Initialization and Termination methods
  1361. * Workers' Properties:: Methods to enumerate workers' properties
  1362. * Data Library:: Methods to manipulate data
  1363. * Data Interfaces::
  1364. * Data Partition::
  1365. * Codelets and Tasks:: Methods to construct tasks
  1366. * Explicit Dependencies:: Explicit Dependencies
  1367. * Implicit Data Dependencies:: Implicit Data Dependencies
  1368. * Performance Model API::
  1369. * Profiling API:: Profiling API
  1370. * CUDA extensions:: CUDA extensions
  1371. * OpenCL extensions:: OpenCL extensions
  1372. * Cell extensions:: Cell extensions
  1373. * Miscellaneous helpers::
  1374. @end menu
  1375. @node Initialization and Termination
  1376. @section Initialization and Termination
  1377. @menu
  1378. * starpu_init:: Initialize StarPU
  1379. * struct starpu_conf:: StarPU runtime configuration
  1380. * starpu_shutdown:: Terminate StarPU
  1381. @end menu
  1382. @node starpu_init
  1383. @subsection @code{starpu_init} -- Initialize StarPU
  1384. @table @asis
  1385. @item @emph{Description}:
  1386. This is StarPU initialization method, which must be called prior to any other
  1387. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1388. policy, number of cores, ...) by passing a non-null argument. Default
  1389. configuration is used if the passed argument is @code{NULL}.
  1390. @item @emph{Return value}:
  1391. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1392. indicates that no worker was available (so that StarPU was not initialized).
  1393. @item @emph{Prototype}:
  1394. @code{int starpu_init(struct starpu_conf *conf);}
  1395. @end table
  1396. @node struct starpu_conf
  1397. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1398. @table @asis
  1399. @item @emph{Description}:
  1400. This structure is passed to the @code{starpu_init} function in order
  1401. to configure StarPU.
  1402. When the default value is used, StarPU automatically selects the number
  1403. of processing units and takes the default scheduling policy. This parameter
  1404. overwrites the equivalent environment variables.
  1405. @item @emph{Fields}:
  1406. @table @asis
  1407. @item @code{sched_policy_name} (default = NULL):
  1408. This is the name of the scheduling policy. This can also be specified with the
  1409. @code{STARPU_SCHED} environment variable.
  1410. @item @code{sched_policy} (default = NULL):
  1411. This is the definition of the scheduling policy. This field is ignored
  1412. if @code{sched_policy_name} is set.
  1413. @item @code{ncpus} (default = -1):
  1414. This is the maximum number of CPU cores that StarPU can use. This can also be
  1415. specified with the @code{STARPU_NCPUS} environment variable.
  1416. @item @code{ncuda} (default = -1):
  1417. This is the maximum number of CUDA devices that StarPU can use. This can also be
  1418. specified with the @code{STARPU_NCUDA} environment variable.
  1419. @item @code{nopencl} (default = -1):
  1420. This is the maximum number of OpenCL devices that StarPU can use. This can also be
  1421. specified with the @code{STARPU_NOPENCL} environment variable.
  1422. @item @code{nspus} (default = -1):
  1423. This is the maximum number of Cell SPUs that StarPU can use. This can also be
  1424. specified with the @code{STARPU_NGORDON} environment variable.
  1425. @item @code{use_explicit_workers_bindid} (default = 0)
  1426. If this flag is set, the @code{workers_bindid} array indicates where the
  1427. different workers are bound, otherwise StarPU automatically selects where to
  1428. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1429. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1430. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1431. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1432. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1433. where to bind the different workers. The i-th entry of the
  1434. @code{workers_bindid} indicates the logical identifier of the processor which
  1435. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1436. either determined by the OS, or provided by the @code{hwloc} library in case it
  1437. is available.
  1438. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1439. ignored.
  1440. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1441. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1442. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1443. CUDA devices in a round-robin fashion.
  1444. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1445. ignored.
  1446. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1447. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1448. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1449. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1450. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1451. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1452. OpenCL devices in a round-robin fashion.
  1453. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1454. @item @code{calibrate} (default = 0):
  1455. If this flag is set, StarPU will calibrate the performance models when
  1456. executing tasks. If this value is equal to -1, the default value is used. The
  1457. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1458. variable when it is set.
  1459. @end table
  1460. @end table
  1461. @node starpu_shutdown
  1462. @subsection @code{starpu_shutdown} -- Terminate StarPU
  1463. @table @asis
  1464. @item @emph{Description}:
  1465. This is StarPU termination method. It must be called at the end of the
  1466. application: statistics and other post-mortem debugging information are not
  1467. guaranteed to be available until this method has been called.
  1468. @item @emph{Prototype}:
  1469. @code{void starpu_shutdown(void);}
  1470. @end table
  1471. @node Workers' Properties
  1472. @section Workers' Properties
  1473. @menu
  1474. * starpu_worker_get_count:: Get the number of processing units
  1475. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  1476. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  1477. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  1478. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  1479. * starpu_worker_get_id:: Get the identifier of the current worker
  1480. * starpu_worker_get_devid:: Get the device identifier of a worker
  1481. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  1482. * starpu_worker_get_name:: Get the name of a worker
  1483. * starpu_worker_get_memory_node:: Get the memory node of a worker
  1484. @end menu
  1485. @node starpu_worker_get_count
  1486. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  1487. @table @asis
  1488. @item @emph{Description}:
  1489. This function returns the number of workers (i.e. processing units executing
  1490. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  1491. @item @emph{Prototype}:
  1492. @code{unsigned starpu_worker_get_count(void);}
  1493. @end table
  1494. @node starpu_cpu_worker_get_count
  1495. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  1496. @table @asis
  1497. @item @emph{Description}:
  1498. This function returns the number of CPUs controlled by StarPU. The returned
  1499. value should be at most @code{STARPU_NMAXCPUS}.
  1500. @item @emph{Prototype}:
  1501. @code{unsigned starpu_cpu_worker_get_count(void);}
  1502. @end table
  1503. @node starpu_cuda_worker_get_count
  1504. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  1505. @table @asis
  1506. @item @emph{Description}:
  1507. This function returns the number of CUDA devices controlled by StarPU. The returned
  1508. value should be at most @code{STARPU_MAXCUDADEVS}.
  1509. @item @emph{Prototype}:
  1510. @code{unsigned starpu_cuda_worker_get_count(void);}
  1511. @end table
  1512. @node starpu_opencl_worker_get_count
  1513. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  1514. @table @asis
  1515. @item @emph{Description}:
  1516. This function returns the number of OpenCL devices controlled by StarPU. The returned
  1517. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  1518. @item @emph{Prototype}:
  1519. @code{unsigned starpu_opencl_worker_get_count(void);}
  1520. @end table
  1521. @node starpu_spu_worker_get_count
  1522. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  1523. @table @asis
  1524. @item @emph{Description}:
  1525. This function returns the number of Cell SPUs controlled by StarPU.
  1526. @item @emph{Prototype}:
  1527. @code{unsigned starpu_opencl_worker_get_count(void);}
  1528. @end table
  1529. @node starpu_worker_get_id
  1530. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  1531. @table @asis
  1532. @item @emph{Description}:
  1533. This function returns the identifier of the worker associated to the calling
  1534. thread. The returned value is either -1 if the current context is not a StarPU
  1535. worker (i.e. when called from the application outside a task or a callback), or
  1536. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  1537. @item @emph{Prototype}:
  1538. @code{int starpu_worker_get_id(void);}
  1539. @end table
  1540. @node starpu_worker_get_devid
  1541. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  1542. @table @asis
  1543. @item @emph{Description}:
  1544. This functions returns the device id of the worker associated to an identifier
  1545. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  1546. CUDA worker, this device identifier is the logical device identifier exposed by
  1547. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  1548. identifier of a CPU worker is the logical identifier of the core on which the
  1549. worker was bound; this identifier is either provided by the OS or by the
  1550. @code{hwloc} library in case it is available.
  1551. @item @emph{Prototype}:
  1552. @code{int starpu_worker_get_devid(int id);}
  1553. @end table
  1554. @node starpu_worker_get_type
  1555. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  1556. @table @asis
  1557. @item @emph{Description}:
  1558. This function returns the type of worker associated to an identifier (as
  1559. returned by the @code{starpu_worker_get_id} function). The returned value
  1560. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  1561. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  1562. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  1563. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  1564. identifier is unspecified.
  1565. @item @emph{Prototype}:
  1566. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  1567. @end table
  1568. @node starpu_worker_get_name
  1569. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  1570. @table @asis
  1571. @item @emph{Description}:
  1572. StarPU associates a unique human readable string to each processing unit. This
  1573. function copies at most the @code{maxlen} first bytes of the unique string
  1574. associated to a worker identified by its identifier @code{id} into the
  1575. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  1576. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  1577. function on an invalid identifier results in an unspecified behaviour.
  1578. @item @emph{Prototype}:
  1579. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  1580. @end table
  1581. @node starpu_worker_get_memory_node
  1582. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  1583. @table @asis
  1584. @item @emph{Description}:
  1585. This function returns the identifier of the memory node associated to the
  1586. worker identified by @code{workerid}.
  1587. @item @emph{Prototype}:
  1588. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  1589. @end table
  1590. @node Data Library
  1591. @section Data Library
  1592. This section describes the data management facilities provided by StarPU.
  1593. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  1594. design their own data interfaces if required.
  1595. @menu
  1596. * starpu_access_mode:: starpu_access_mode
  1597. * unsigned memory_node:: Memory node
  1598. * starpu_data_handle:: StarPU opaque data handle
  1599. * void *interface:: StarPU data interface
  1600. * starpu_data_register:: Register a piece of data to StarPU
  1601. * starpu_data_unregister:: Unregister a piece of data from StarPU
  1602. * starpu_data_invalidate:: Invalidate all data replicates
  1603. * starpu_data_acquire:: Access registered data from the application
  1604. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  1605. * starpu_data_release:: Release registered data from the application
  1606. @end menu
  1607. @node starpu_access_mode
  1608. @subsection @code{starpu_access_mode} -- Data access mode
  1609. This datatype describes a data access mode. The different available modes are:
  1610. @table @asis
  1611. @table @asis
  1612. @item @code{STARPU_R} read-only mode.
  1613. @item @code{STARPU_W} write-only mode.
  1614. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  1615. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency.
  1616. @end table
  1617. @end table
  1618. @node unsigned memory_node
  1619. @subsection @code{unsigned memory_node} -- Memory node
  1620. @table @asis
  1621. @item @emph{Description}:
  1622. Every worker is associated to a memory node which is a logical abstraction of
  1623. the address space from which the processing unit gets its data. For instance,
  1624. the memory node associated to the different CPU workers represents main memory
  1625. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  1626. Every memory node is identified by a logical index which is accessible from the
  1627. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  1628. to StarPU, the specified memory node indicates where the piece of data
  1629. initially resides (we also call this memory node the home node of a piece of
  1630. data).
  1631. @end table
  1632. @node starpu_data_handle
  1633. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  1634. @table @asis
  1635. @item @emph{Description}:
  1636. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  1637. data. Once a piece of data has been registered to StarPU, it is associated to a
  1638. @code{starpu_data_handle} which keeps track of the state of the piece of data
  1639. over the entire machine, so that we can maintain data consistency and locate
  1640. data replicates for instance.
  1641. @end table
  1642. @node void *interface
  1643. @subsection @code{void *interface} -- StarPU data interface
  1644. @table @asis
  1645. @item @emph{Description}:
  1646. Data management is done at a high-level in StarPU: rather than accessing a mere
  1647. list of contiguous buffers, the tasks may manipulate data that are described by
  1648. a high-level construct which we call data interface.
  1649. An example of data interface is the "vector" interface which describes a
  1650. contiguous data array on a spefic memory node. This interface is a simple
  1651. structure containing the number of elements in the array, the size of the
  1652. elements, and the address of the array in the appropriate address space (this
  1653. address may be invalid if there is no valid copy of the array in the memory
  1654. node). More informations on the data interfaces provided by StarPU are
  1655. given in @ref{Data Interfaces}.
  1656. When a piece of data managed by StarPU is used by a task, the task
  1657. implementation is given a pointer to an interface describing a valid copy of
  1658. the data that is accessible from the current processing unit.
  1659. @end table
  1660. @node starpu_data_register
  1661. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  1662. @table @asis
  1663. @item @emph{Description}:
  1664. Register a piece of data into the handle located at the @code{handleptr}
  1665. address. The @code{interface} buffer contains the initial description of the
  1666. data in the home node. The @code{ops} argument is a pointer to a structure
  1667. describing the different methods used to manipulate this type of interface. See
  1668. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  1669. If @code{home_node} is not a valid memory node, StarPU will automatically
  1670. allocate the memory described by the interface the data handle is used for the
  1671. first time in write-only mode. Once such data handle has been automatically
  1672. allocated, it is possible to access it using any access mode.
  1673. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  1674. matrix) which can be registered by the means of helper functions (e.g.
  1675. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  1676. @item @emph{Prototype}:
  1677. @code{void starpu_data_register(starpu_data_handle *handleptr,
  1678. uint32_t home_node,
  1679. void *interface,
  1680. struct starpu_data_interface_ops_t *ops);}
  1681. @end table
  1682. @node starpu_data_unregister
  1683. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  1684. @table @asis
  1685. @item @emph{Description}:
  1686. This function unregisters a data handle from StarPU. If the data was
  1687. automatically allocated by StarPU because the home node was not valid, all
  1688. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  1689. is put back into the home node in the buffer that was initially registered.
  1690. Using a data handle that has been unregistered from StarPU results in an
  1691. undefined behaviour.
  1692. @item @emph{Prototype}:
  1693. @code{void starpu_data_unregister(starpu_data_handle handle);}
  1694. @end table
  1695. @node starpu_data_invalidate
  1696. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  1697. @table @asis
  1698. @item @emph{Description}:
  1699. Destroy all replicates of the data handle. After data invalidation, the first
  1700. access to the handle must be performed in write-only mode. Accessing an
  1701. invalidated data in read-mode results in undefined behaviour.
  1702. @item @emph{Prototype}:
  1703. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  1704. @end table
  1705. @c TODO create a specific sections about user interaction with the DSM ?
  1706. @node starpu_data_acquire
  1707. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  1708. @table @asis
  1709. @item @emph{Description}:
  1710. The application must call this function prior to accessing registered data from
  1711. main memory outside tasks. StarPU ensures that the application will get an
  1712. up-to-date copy of the data in main memory located where the data was
  1713. originally registered, and that all concurrent accesses (e.g. from tasks) will
  1714. be consistent with the access mode specified in the @code{mode} argument.
  1715. @code{starpu_data_release} must be called once the application does not need to
  1716. access the piece of data anymore.
  1717. Note that implicit data dependencies are also enforced by
  1718. @code{starpu_data_acquire} in case they are enabled.
  1719. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  1720. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  1721. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  1722. @item @emph{Prototype}:
  1723. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  1724. @end table
  1725. @node starpu_data_acquire_cb
  1726. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  1727. @table @asis
  1728. @item @emph{Description}:
  1729. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  1730. @code{starpu_data_release}. When the data specified in the first argument is
  1731. available in the appropriate access mode, the callback function is executed.
  1732. The application may access the requested data during the execution of this
  1733. callback. The callback function must call @code{starpu_data_release} once the
  1734. application does not need to access the piece of data anymore.
  1735. Note that implicit data dependencies are also enforced by
  1736. @code{starpu_data_acquire} in case they are enabled.
  1737. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  1738. be called from task callbacks. Upon successful completion, this function
  1739. returns 0.
  1740. @item @emph{Prototype}:
  1741. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  1742. @end table
  1743. @node starpu_data_release
  1744. @subsection @code{starpu_data_release} -- Release registered data from the application
  1745. @table @asis
  1746. @item @emph{Description}:
  1747. This function releases the piece of data acquired by the application either by
  1748. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  1749. @item @emph{Prototype}:
  1750. @code{void starpu_data_release(starpu_data_handle handle);}
  1751. @end table
  1752. @node Data Interfaces
  1753. @section Data Interfaces
  1754. @menu
  1755. * Variable Interface::
  1756. * Vector Interface::
  1757. * Matrix Interface::
  1758. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  1759. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  1760. * Block Interface::
  1761. @end menu
  1762. @node Variable Interface
  1763. @subsection Variable Interface
  1764. @table @asis
  1765. @item @emph{Description}:
  1766. @item @emph{Prototype}:
  1767. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  1768. uint32_t home_node,
  1769. uintptr_t ptr, size_t elemsize);}
  1770. @item @emph{Example}:
  1771. @cartouche
  1772. @smallexample
  1773. float var;
  1774. starpu_data_handle var_handle;
  1775. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  1776. @end smallexample
  1777. @end cartouche
  1778. @end table
  1779. @node Vector Interface
  1780. @subsection Vector Interface
  1781. @table @asis
  1782. @item @emph{Description}:
  1783. @item @emph{Prototype}:
  1784. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  1785. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  1786. @item @emph{Example}:
  1787. @cartouche
  1788. @smallexample
  1789. float vector[NX];
  1790. starpu_data_handle vector_handle;
  1791. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  1792. sizeof(vector[0]));
  1793. @end smallexample
  1794. @end cartouche
  1795. @end table
  1796. @node Matrix Interface
  1797. @subsection Matrix Interface
  1798. @table @asis
  1799. @item @emph{Description}:
  1800. @item @emph{Prototype}:
  1801. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  1802. uintptr_t ptr, uint32_t ld, uint32_t nx,
  1803. uint32_t ny, size_t elemsize);}
  1804. @item @emph{Example}:
  1805. @cartouche
  1806. @smallexample
  1807. float *matrix;
  1808. starpu_data_handle matrix_handle;
  1809. matrix = (float*)malloc(width * height * sizeof(float));
  1810. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  1811. width, width, height, sizeof(float));
  1812. @end smallexample
  1813. @end cartouche
  1814. @end table
  1815. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  1816. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  1817. @table @asis
  1818. @item @emph{Description}:
  1819. @item @emph{Prototype}:
  1820. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  1821. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  1822. @item @emph{Example}:
  1823. @cartouche
  1824. @smallexample
  1825. @end smallexample
  1826. @end cartouche
  1827. @end table
  1828. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  1829. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  1830. @table @asis
  1831. @item @emph{Description}:
  1832. @item @emph{Prototype}:
  1833. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  1834. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  1835. @item @emph{Example}:
  1836. @cartouche
  1837. @smallexample
  1838. @end smallexample
  1839. @end cartouche
  1840. @end table
  1841. @node Block Interface
  1842. @subsection Block Interface
  1843. @table @asis
  1844. @item @emph{Description}:
  1845. @item @emph{Prototype}:
  1846. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  1847. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  1848. uint32_t ny, uint32_t nz, size_t elemsize);}
  1849. @item @emph{Example}:
  1850. @cartouche
  1851. @smallexample
  1852. float *block;
  1853. starpu_data_handle block_handle;
  1854. block = (float*)malloc(nx*ny*nz*sizeof(float));
  1855. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  1856. nx, nx*ny, nx, ny, nz, sizeof(float));
  1857. @end smallexample
  1858. @end cartouche
  1859. @end table
  1860. @node Data Partition
  1861. @section Data Partition
  1862. @menu
  1863. * struct starpu_data_filter:: StarPU filter structure
  1864. * starpu_data_partition:: Partition Data
  1865. * starpu_data_unpartition:: Unpartition Data
  1866. * starpu_data_get_nb_children::
  1867. * starpu_data_get_sub_data::
  1868. * Predefined filter functions::
  1869. @end menu
  1870. @node struct starpu_data_filter
  1871. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  1872. @table @asis
  1873. @item @emph{Description}:
  1874. The filter structure describes a data partitioning function.
  1875. @item @emph{Fields}:
  1876. @table @asis
  1877. @item @code{filter_func}:
  1878. TODO
  1879. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  1880. @item @code{get_nchildren}:
  1881. TODO
  1882. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  1883. @item @code{get_child_ops}:
  1884. TODO
  1885. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  1886. @item @code{filter_arg}:
  1887. TODO
  1888. @item @code{nchildren}:
  1889. TODO
  1890. @item @code{filter_arg_ptr}:
  1891. TODO
  1892. @end table
  1893. @end table
  1894. @node starpu_data_partition
  1895. @subsection starpu_data_partition -- Partition Data
  1896. @table @asis
  1897. @item @emph{Description}:
  1898. TODO
  1899. @item @emph{Prototype}:
  1900. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  1901. @end table
  1902. @node starpu_data_unpartition
  1903. @subsection starpu_data_unpartition -- Unpartition data
  1904. @table @asis
  1905. @item @emph{Description}:
  1906. TODO
  1907. @item @emph{Prototype}:
  1908. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  1909. @end table
  1910. @node starpu_data_get_nb_children
  1911. @subsection starpu_data_get_nb_children
  1912. @table @asis
  1913. @item @emph{Description}:
  1914. TODO
  1915. @item @emph{Return value}:
  1916. This function returns returns the number of children.
  1917. @item @emph{Prototype}:
  1918. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  1919. @end table
  1920. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  1921. @node starpu_data_get_sub_data
  1922. @subsection starpu_data_get_sub_data
  1923. @table @asis
  1924. @item @emph{Description}:
  1925. TODO
  1926. @item @emph{Return value}:
  1927. TODO
  1928. @item @emph{Prototype}:
  1929. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  1930. @end table
  1931. @node Predefined filter functions
  1932. @subsection Predefined filter functions
  1933. @menu
  1934. * Partitioning BCSR Data::
  1935. * Partitioning BLAS interface::
  1936. * Partitioning Vector Data::
  1937. * Partitioning Block Data::
  1938. @end menu
  1939. This section gives a list of the predefined partitioning functions.
  1940. Examples on how to use them are shown in @ref{Partitioning Data}.
  1941. @node Partitioning BCSR Data
  1942. @subsubsection Partitioning BCSR Data
  1943. @itemize
  1944. @item
  1945. TODO
  1946. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1947. @item
  1948. TODO
  1949. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1950. @end itemize
  1951. @node Partitioning BLAS interface
  1952. @subsubsection Partitioning BLAS interface
  1953. @itemize
  1954. @item
  1955. TODO
  1956. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1957. @item
  1958. TODO
  1959. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1960. @end itemize
  1961. @node Partitioning Vector Data
  1962. @subsubsection Partitioning Vector Data
  1963. @itemize
  1964. @item
  1965. TODO
  1966. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1967. @item
  1968. TODO
  1969. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1970. @item
  1971. TODO
  1972. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1973. @end itemize
  1974. @node Partitioning Block Data
  1975. @subsubsection Partitioning Block Data
  1976. @itemize
  1977. @item
  1978. TODO
  1979. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  1980. @end itemize
  1981. @node Codelets and Tasks
  1982. @section Codelets and Tasks
  1983. @menu
  1984. * struct starpu_codelet:: StarPU codelet structure
  1985. * struct starpu_task:: StarPU task structure
  1986. * starpu_task_init:: Initialize a Task
  1987. * starpu_task_create:: Allocate and Initialize a Task
  1988. * starpu_task_deinit:: Release all the resources used by a Task
  1989. * starpu_task_destroy:: Destroy a dynamically allocated Task
  1990. * starpu_task_wait:: Wait for the termination of a Task
  1991. * starpu_task_submit:: Submit a Task
  1992. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  1993. * starpu_get_current_task:: Return the task currently executed by the worker
  1994. * starpu_display_codelet_stats:: Display statistics
  1995. @end menu
  1996. @node struct starpu_codelet
  1997. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  1998. @table @asis
  1999. @item @emph{Description}:
  2000. The codelet structure describes a kernel that is possibly implemented on
  2001. various targets.
  2002. @item @emph{Fields}:
  2003. @table @asis
  2004. @item @code{where}:
  2005. Indicates which types of processing units are able to execute the codelet.
  2006. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2007. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2008. indicates that it is only available on Cell SPUs.
  2009. @item @code{cpu_func} (optional):
  2010. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2011. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2012. argument being the array of data managed by the data management library, and
  2013. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2014. field of the @code{starpu_task} structure.
  2015. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2016. the @code{where} field, it must be non-null otherwise.
  2017. @item @code{cuda_func} (optional):
  2018. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2019. must be a host-function written in the CUDA runtime API}. Its prototype must
  2020. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2021. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2022. field, it must be non-null otherwise.
  2023. @item @code{opencl_func} (optional):
  2024. Is a function pointer to the OpenCL implementation of the codelet. Its
  2025. prototype must be:
  2026. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2027. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2028. @code{where} field, it must be non-null otherwise.
  2029. @item @code{gordon_func} (optional):
  2030. This is the index of the Cell SPU implementation within the Gordon library.
  2031. See Gordon documentation for more details on how to register a kernel and
  2032. retrieve its index.
  2033. @item @code{nbuffers}:
  2034. Specifies the number of arguments taken by the codelet. These arguments are
  2035. managed by the DSM and are accessed from the @code{void *buffers[]}
  2036. array. The constant argument passed with the @code{cl_arg} field of the
  2037. @code{starpu_task} structure is not counted in this number. This value should
  2038. not be above @code{STARPU_NMAXBUFS}.
  2039. @item @code{model} (optional):
  2040. This is a pointer to the performance model associated to this codelet. This
  2041. optional field is ignored when set to @code{NULL}. TODO
  2042. @end table
  2043. @end table
  2044. @node struct starpu_task
  2045. @subsection @code{struct starpu_task} -- StarPU task structure
  2046. @table @asis
  2047. @item @emph{Description}:
  2048. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2049. processing units managed by StarPU. It instantiates a codelet. It can either be
  2050. allocated dynamically with the @code{starpu_task_create} method, or declared
  2051. statically. In the latter case, the programmer has to zero the
  2052. @code{starpu_task} structure and to fill the different fields properly. The
  2053. indicated default values correspond to the configuration of a task allocated
  2054. with @code{starpu_task_create}.
  2055. @item @emph{Fields}:
  2056. @table @asis
  2057. @item @code{cl}:
  2058. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2059. describes where the kernel should be executed, and supplies the appropriate
  2060. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2061. such empty tasks can be useful for synchronization purposes.
  2062. @item @code{buffers}:
  2063. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2064. different pieces of data accessed by the task, and how they should be accessed.
  2065. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2066. @code{handle} field specifies the handle of the piece of data, and the
  2067. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2068. of entries in this array must be specified in the @code{nbuffers} field of the
  2069. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2070. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2071. option when configuring StarPU.
  2072. @item @code{cl_arg} (optional) (default = NULL):
  2073. This pointer is passed to the codelet through the second argument
  2074. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2075. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2076. argument.
  2077. @item @code{cl_arg_size} (optional, Cell specific):
  2078. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2079. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2080. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2081. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2082. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2083. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2084. codelets.
  2085. @item @code{callback_func} (optional) (default = @code{NULL}):
  2086. This is a function pointer of prototype @code{void (*f)(void *)} which
  2087. specifies a possible callback. If this pointer is non-null, the callback
  2088. function is executed @emph{on the host} after the execution of the task. The
  2089. callback is passed the value contained in the @code{callback_arg} field. No
  2090. callback is executed if the field is set to @code{NULL}.
  2091. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2092. This is the pointer passed to the callback function. This field is ignored if
  2093. the @code{callback_func} is set to @code{NULL}.
  2094. @item @code{use_tag} (optional) (default = 0):
  2095. If set, this flag indicates that the task should be associated with the tag
  2096. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2097. with the task and to express task dependencies easily.
  2098. @item @code{tag_id}:
  2099. This fields contains the tag associated to the task if the @code{use_tag} field
  2100. was set, it is ignored otherwise.
  2101. @item @code{synchronous}:
  2102. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2103. returns only when the task has been executed (or if no worker is able to
  2104. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2105. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2106. This field indicates a level of priority for the task. This is an integer value
  2107. that must be set between the return values of the
  2108. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2109. and that of the @code{starpu_sched_get_max_priority} for the most important
  2110. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2111. are provided for convenience and respectively returns value of
  2112. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2113. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2114. order to allow static task initialization. Scheduling strategies that take
  2115. priorities into account can use this parameter to take better scheduling
  2116. decisions, but the scheduling policy may also ignore it.
  2117. @item @code{execute_on_a_specific_worker} (default = 0):
  2118. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2119. task to the worker specified by the @code{workerid} field.
  2120. @item @code{workerid} (optional):
  2121. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2122. which is the identifier of the worker that should process this task (as
  2123. returned by @code{starpu_worker_get_id}). This field is ignored if
  2124. @code{execute_on_a_specific_worker} field is set to 0.
  2125. @item @code{detach} (optional) (default = 1):
  2126. If this flag is set, it is not possible to synchronize with the task
  2127. by the means of @code{starpu_task_wait} later on. Internal data structures
  2128. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2129. flag is not set.
  2130. @item @code{destroy} (optional) (default = 1):
  2131. If this flag is set, the task structure will automatically be freed, either
  2132. after the execution of the callback if the task is detached, or during
  2133. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2134. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2135. called explicitly. Setting this flag for a statically allocated task structure
  2136. will result in undefined behaviour.
  2137. @item @code{predicted} (output field):
  2138. Predicted duration of the task. This field is only set if the scheduling
  2139. strategy used performance models.
  2140. @end table
  2141. @end table
  2142. @node starpu_task_init
  2143. @subsection @code{starpu_task_init} -- Initialize a Task
  2144. @table @asis
  2145. @item @emph{Description}:
  2146. Initialize a task structure with default values. This function is implicitly
  2147. called by @code{starpu_task_create}. By default, tasks initialized with
  2148. @code{starpu_task_init} must be deinitialized explicitly with
  2149. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2150. constant @code{STARPU_TASK_INITIALIZER}.
  2151. @item @emph{Prototype}:
  2152. @code{void starpu_task_init(struct starpu_task *task);}
  2153. @end table
  2154. @node starpu_task_create
  2155. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2156. @table @asis
  2157. @item @emph{Description}:
  2158. Allocate a task structure and initialize it with default values. Tasks
  2159. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2160. task is terminated. If the destroy flag is explicitly unset, the resources used
  2161. by the task are freed by calling
  2162. @code{starpu_task_destroy}.
  2163. @item @emph{Prototype}:
  2164. @code{struct starpu_task *starpu_task_create(void);}
  2165. @end table
  2166. @node starpu_task_deinit
  2167. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2168. @table @asis
  2169. @item @emph{Description}:
  2170. Release all the structures automatically allocated to execute the task. This is
  2171. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2172. freed. This should be used for statically allocated tasks for instance.
  2173. @item @emph{Prototype}:
  2174. @code{void starpu_task_deinit(struct starpu_task *task);}
  2175. @end table
  2176. @node starpu_task_destroy
  2177. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2178. @table @asis
  2179. @item @emph{Description}:
  2180. Free the resource allocated during @code{starpu_task_create}. This function can be
  2181. called automatically after the execution of a task by setting the
  2182. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2183. Calling this function on a statically allocated task results in an undefined
  2184. behaviour.
  2185. @item @emph{Prototype}:
  2186. @code{void starpu_task_destroy(struct starpu_task *task);}
  2187. @end table
  2188. @node starpu_task_wait
  2189. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2190. @table @asis
  2191. @item @emph{Description}:
  2192. This function blocks until the task has been executed. It is not possible to
  2193. synchronize with a task more than once. It is not possible to wait for
  2194. synchronous or detached tasks.
  2195. @item @emph{Return value}:
  2196. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2197. indicates that the specified task was either synchronous or detached.
  2198. @item @emph{Prototype}:
  2199. @code{int starpu_task_wait(struct starpu_task *task);}
  2200. @end table
  2201. @node starpu_task_submit
  2202. @subsection @code{starpu_task_submit} -- Submit a Task
  2203. @table @asis
  2204. @item @emph{Description}:
  2205. This function submits a task to StarPU. Calling this function does
  2206. not mean that the task will be executed immediately as there can be data or task
  2207. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2208. scheduling this task with respect to such dependencies.
  2209. This function returns immediately if the @code{synchronous} field of the
  2210. @code{starpu_task} structure was set to 0, and block until the termination of
  2211. the task otherwise. It is also possible to synchronize the application with
  2212. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2213. function for instance.
  2214. @item @emph{Return value}:
  2215. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2216. means that there is no worker able to process this task (e.g. there is no GPU
  2217. available and this task is only implemented for CUDA devices).
  2218. @item @emph{Prototype}:
  2219. @code{int starpu_task_submit(struct starpu_task *task);}
  2220. @end table
  2221. @node starpu_task_wait_for_all
  2222. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2223. @table @asis
  2224. @item @emph{Description}:
  2225. This function blocks until all the tasks that were submitted are terminated.
  2226. @item @emph{Prototype}:
  2227. @code{void starpu_task_wait_for_all(void);}
  2228. @end table
  2229. @node starpu_get_current_task
  2230. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2231. @table @asis
  2232. @item @emph{Description}:
  2233. This function returns the task currently executed by the worker, or
  2234. NULL if it is called either from a thread that is not a task or simply
  2235. because there is no task being executed at the moment.
  2236. @item @emph{Prototype}:
  2237. @code{struct starpu_task *starpu_get_current_task(void);}
  2238. @end table
  2239. @node starpu_display_codelet_stats
  2240. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2241. @table @asis
  2242. @item @emph{Description}:
  2243. TODO
  2244. @item @emph{Prototype}:
  2245. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2246. @end table
  2247. @c Callbacks : what can we put in callbacks ?
  2248. @node Explicit Dependencies
  2249. @section Explicit Dependencies
  2250. @menu
  2251. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2252. * starpu_tag_t:: Task logical identifier
  2253. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2254. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2255. * starpu_tag_wait:: Block until a Tag is terminated
  2256. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2257. * starpu_tag_remove:: Destroy a Tag
  2258. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2259. @end menu
  2260. @node starpu_task_declare_deps_array
  2261. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2262. @table @asis
  2263. @item @emph{Description}:
  2264. Declare task dependencies between a @code{task} and an array of tasks of length
  2265. @code{ndeps}. This function must be called prior to the submission of the task,
  2266. but it may called after the submission or the execution of the tasks in the
  2267. array provided the tasks are still valid (ie. they were not automatically
  2268. destroyed). Calling this function on a task that was already submitted or with
  2269. an entry of @code{task_array} that is not a valid task anymore results in an
  2270. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2271. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2272. same task, in this case, the dependencies are added. It is possible to have
  2273. redundancy in the task dependencies.
  2274. @item @emph{Prototype}:
  2275. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2276. @end table
  2277. @node starpu_tag_t
  2278. @subsection @code{starpu_tag_t} -- Task logical identifier
  2279. @table @asis
  2280. @item @emph{Description}:
  2281. It is possible to associate a task with a unique ``tag'' and to express
  2282. dependencies between tasks by the means of those tags. To do so, fill the
  2283. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2284. be arbitrary) and set the @code{use_tag} field to 1.
  2285. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2286. not be started until the tasks which holds the declared dependency tags are
  2287. completed.
  2288. @end table
  2289. @node starpu_tag_declare_deps
  2290. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2291. @table @asis
  2292. @item @emph{Description}:
  2293. Specify the dependencies of the task identified by tag @code{id}. The first
  2294. argument specifies the tag which is configured, the second argument gives the
  2295. number of tag(s) on which @code{id} depends. The following arguments are the
  2296. tags which have to be terminated to unlock the task.
  2297. This function must be called before the associated task is submitted to StarPU
  2298. with @code{starpu_task_submit}.
  2299. @item @emph{Remark}
  2300. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2301. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2302. typically need to be explicitly casted. Using the
  2303. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2304. @item @emph{Prototype}:
  2305. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2306. @item @emph{Example}:
  2307. @cartouche
  2308. @example
  2309. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2310. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2311. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2312. @end example
  2313. @end cartouche
  2314. @end table
  2315. @node starpu_tag_declare_deps_array
  2316. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2317. @table @asis
  2318. @item @emph{Description}:
  2319. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2320. does not take a variable number of arguments but an array of tags of size
  2321. @code{ndeps}.
  2322. @item @emph{Prototype}:
  2323. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2324. @item @emph{Example}:
  2325. @cartouche
  2326. @example
  2327. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2328. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2329. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2330. @end example
  2331. @end cartouche
  2332. @end table
  2333. @node starpu_tag_wait
  2334. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2335. @table @asis
  2336. @item @emph{Description}:
  2337. This function blocks until the task associated to tag @code{id} has been
  2338. executed. This is a blocking call which must therefore not be called within
  2339. tasks or callbacks, but only from the application directly. It is possible to
  2340. synchronize with the same tag multiple times, as long as the
  2341. @code{starpu_tag_remove} function is not called. Note that it is still
  2342. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2343. data structure was freed (e.g. if the @code{destroy} flag of the
  2344. @code{starpu_task} was enabled).
  2345. @item @emph{Prototype}:
  2346. @code{void starpu_tag_wait(starpu_tag_t id);}
  2347. @end table
  2348. @node starpu_tag_wait_array
  2349. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  2350. @table @asis
  2351. @item @emph{Description}:
  2352. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2353. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  2354. terminated.
  2355. @item @emph{Prototype}:
  2356. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  2357. @end table
  2358. @node starpu_tag_remove
  2359. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  2360. @table @asis
  2361. @item @emph{Description}:
  2362. This function releases the resources associated to tag @code{id}. It can be
  2363. called once the corresponding task has been executed and when there is
  2364. no other tag that depend on this tag anymore.
  2365. @item @emph{Prototype}:
  2366. @code{void starpu_tag_remove(starpu_tag_t id);}
  2367. @end table
  2368. @node starpu_tag_notify_from_apps
  2369. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  2370. @table @asis
  2371. @item @emph{Description}:
  2372. This function explicitly unlocks tag @code{id}. It may be useful in the
  2373. case of applications which execute part of their computation outside StarPU
  2374. tasks (e.g. third-party libraries). It is also provided as a
  2375. convenient tool for the programmer, for instance to entirely construct the task
  2376. DAG before actually giving StarPU the opportunity to execute the tasks.
  2377. @item @emph{Prototype}:
  2378. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  2379. @end table
  2380. @node Implicit Data Dependencies
  2381. @section Implicit Data Dependencies
  2382. @menu
  2383. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  2384. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  2385. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  2386. @end menu
  2387. In this section, we describe how StarPU makes it possible to insert implicit
  2388. task dependencies in order to enforce sequential data consistency. When this
  2389. data consistency is enabled on a specific data handle, any data access will
  2390. appear as sequentially consistent from the application. For instance, if the
  2391. application submits two tasks that access the same piece of data in read-only
  2392. mode, and then a third task that access it in write mode, dependencies will be
  2393. added between the two first tasks and the third one. Implicit data dependencies
  2394. are also inserted in the case of data accesses from the application.
  2395. @node starpu_data_set_default_sequential_consistency_flag
  2396. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  2397. @table @asis
  2398. @item @emph{Description}:
  2399. Set the default sequential consistency flag. If a non-zero value is passed, a
  2400. sequential data consistency will be enforced for all handles registered after
  2401. this function call, otherwise it is disabled. By default, StarPU enables
  2402. sequential data consistency. It is also possible to select the data consistency
  2403. mode of a specific data handle with the
  2404. @code{starpu_data_set_sequential_consistency_flag} function.
  2405. @item @emph{Prototype}:
  2406. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  2407. @end table
  2408. @node starpu_data_get_default_sequential_consistency_flag
  2409. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  2410. @table @asis
  2411. @item @emph{Description}:
  2412. This function returns the current default sequential consistency flag.
  2413. @item @emph{Prototype}:
  2414. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  2415. @end table
  2416. @node starpu_data_set_sequential_consistency_flag
  2417. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  2418. @table @asis
  2419. @item @emph{Description}:
  2420. Select the data consistency mode associated to a data handle. The consistency
  2421. mode set using this function has the priority over the default mode which can
  2422. be set with @code{starpu_data_set_sequential_consistency_flag}.
  2423. @item @emph{Prototype}:
  2424. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  2425. @end table
  2426. @node Performance Model API
  2427. @section Performance Model API
  2428. @menu
  2429. * starpu_load_history_debug::
  2430. * starpu_perfmodel_debugfilepath::
  2431. * starpu_perfmodel_get_arch_name::
  2432. * starpu_force_bus_sampling::
  2433. @end menu
  2434. @node starpu_load_history_debug
  2435. @subsection @code{starpu_load_history_debug}
  2436. @table @asis
  2437. @item @emph{Description}:
  2438. TODO
  2439. @item @emph{Prototype}:
  2440. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  2441. @end table
  2442. @node starpu_perfmodel_debugfilepath
  2443. @subsection @code{starpu_perfmodel_debugfilepath}
  2444. @table @asis
  2445. @item @emph{Description}:
  2446. TODO
  2447. @item @emph{Prototype}:
  2448. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  2449. @end table
  2450. @node starpu_perfmodel_get_arch_name
  2451. @subsection @code{starpu_perfmodel_get_arch_name}
  2452. @table @asis
  2453. @item @emph{Description}:
  2454. TODO
  2455. @item @emph{Prototype}:
  2456. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  2457. @end table
  2458. @node starpu_force_bus_sampling
  2459. @subsection @code{starpu_force_bus_sampling}
  2460. @table @asis
  2461. @item @emph{Description}:
  2462. TODO
  2463. @item @emph{Prototype}:
  2464. @code{void starpu_force_bus_sampling(void);}
  2465. @end table
  2466. @node Profiling API
  2467. @section Profiling API
  2468. @menu
  2469. * starpu_profiling_status_set:: starpu_profiling_status_set
  2470. * starpu_profiling_status_get:: starpu_profiling_status_get
  2471. * struct starpu_task_profiling_info:: task profiling information
  2472. * struct starpu_worker_profiling_info:: worker profiling information
  2473. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  2474. * struct starpu_bus_profiling_info:: bus profiling information
  2475. * starpu_bus_get_count::
  2476. * starpu_bus_get_id::
  2477. * starpu_bus_get_src::
  2478. * starpu_bus_get_dst::
  2479. * starpu_timing_timespec_delay_us::
  2480. * starpu_timing_timespec_to_us::
  2481. * starpu_bus_profiling_helper_display_summary::
  2482. @end menu
  2483. @node starpu_profiling_status_set
  2484. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  2485. @table @asis
  2486. @item @emph{Description}:
  2487. Thie function sets the profiling status. Profiling is activated by passing
  2488. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  2489. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  2490. resets all profiling measurements. When profiling is enabled, the
  2491. @code{profiling_info} field of the @code{struct starpu_task} structure points
  2492. to a valid @code{struct starpu_task_profiling_info} structure containing
  2493. information about the execution of the task.
  2494. @item @emph{Return value}:
  2495. Negative return values indicate an error, otherwise the previous status is
  2496. returned.
  2497. @item @emph{Prototype}:
  2498. @code{int starpu_profiling_status_set(int status);}
  2499. @end table
  2500. @node starpu_profiling_status_get
  2501. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  2502. @table @asis
  2503. @item @emph{Description}:
  2504. Return the current profiling status or a negative value in case there was an error.
  2505. @item @emph{Prototype}:
  2506. @code{int starpu_profiling_status_get(void);}
  2507. @end table
  2508. @node struct starpu_task_profiling_info
  2509. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  2510. @table @asis
  2511. @item @emph{Description}:
  2512. This structure contains information about the execution of a task. It is
  2513. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  2514. structure if profiling was enabled.
  2515. @item @emph{Fields}:
  2516. @table @asis
  2517. @item @code{submit_time}:
  2518. Date of task submission (relative to the initialization of StarPU).
  2519. @item @code{start_time}:
  2520. Date of task execution beginning (relative to the initialization of StarPU).
  2521. @item @code{end_time}:
  2522. Date of task execution termination (relative to the initialization of StarPU).
  2523. @item @code{workerid}:
  2524. Identifier of the worker which has executed the task.
  2525. @end table
  2526. @end table
  2527. @node struct starpu_worker_profiling_info
  2528. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  2529. @table @asis
  2530. @item @emph{Description}:
  2531. This structure contains the profiling information associated to a worker.
  2532. @item @emph{Fields}:
  2533. @table @asis
  2534. @item @code{start_time}:
  2535. Starting date for the reported profiling measurements.
  2536. @item @code{total_time}:
  2537. Duration of the profiling measurement interval.
  2538. @item @code{executing_time}:
  2539. Time spent by the worker to execute tasks during the profiling measurement interval.
  2540. @item @code{sleeping_time}:
  2541. Time spent idling by the worker during the profiling measurement interval.
  2542. @item @code{executed_tasks}:
  2543. Number of tasks executed by the worker during the profiling measurement interval.
  2544. @end table
  2545. @end table
  2546. @node starpu_worker_get_profiling_info
  2547. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  2548. @table @asis
  2549. @item @emph{Description}:
  2550. Get the profiling info associated to the worker identified by @code{workerid},
  2551. and reset the profiling measurements. If the @code{worker_info} argument is
  2552. NULL, only reset the counters associated to worker @code{workerid}.
  2553. @item @emph{Return value}:
  2554. Upon successful completion, this function returns 0. Otherwise, a negative
  2555. value is returned.
  2556. @item @emph{Prototype}:
  2557. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  2558. @end table
  2559. @node struct starpu_bus_profiling_info
  2560. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  2561. @table @asis
  2562. @item @emph{Description}:
  2563. TODO
  2564. @item @emph{Fields}:
  2565. @table @asis
  2566. @item @code{start_time}:
  2567. TODO
  2568. @item @code{total_time}:
  2569. TODO
  2570. @item @code{transferred_bytes}:
  2571. TODO
  2572. @item @code{transfer_count}:
  2573. TODO
  2574. @end table
  2575. @end table
  2576. @node starpu_bus_get_count
  2577. @subsection @code{starpu_bus_get_count}
  2578. @table @asis
  2579. @item @emph{Description}:
  2580. TODO
  2581. @item @emph{Prototype}:
  2582. @code{int starpu_bus_get_count(void);}
  2583. @end table
  2584. @node starpu_bus_get_id
  2585. @subsection @code{starpu_bus_get_id}
  2586. @table @asis
  2587. @item @emph{Description}:
  2588. TODO
  2589. @item @emph{Prototype}:
  2590. @code{int starpu_bus_get_id(int src, int dst);}
  2591. @end table
  2592. @node starpu_bus_get_src
  2593. @subsection @code{starpu_bus_get_src}
  2594. @table @asis
  2595. @item @emph{Description}:
  2596. TODO
  2597. @item @emph{Prototype}:
  2598. @code{int starpu_bus_get_src(int busid);}
  2599. @end table
  2600. @node starpu_bus_get_dst
  2601. @subsection @code{starpu_bus_get_dst}
  2602. @table @asis
  2603. @item @emph{Description}:
  2604. TODO
  2605. @item @emph{Prototype}:
  2606. @code{int starpu_bus_get_dst(int busid);}
  2607. @end table
  2608. @node starpu_timing_timespec_delay_us
  2609. @subsection @code{starpu_timing_timespec_delay_us}
  2610. @table @asis
  2611. @item @emph{Description}:
  2612. TODO
  2613. @item @emph{Prototype}:
  2614. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  2615. @end table
  2616. @node starpu_timing_timespec_to_us
  2617. @subsection @code{starpu_timing_timespec_to_us}
  2618. @table @asis
  2619. @item @emph{Description}:
  2620. TODO
  2621. @item @emph{Prototype}:
  2622. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  2623. @end table
  2624. @node starpu_bus_profiling_helper_display_summary
  2625. @subsection @code{starpu_bus_profiling_helper_display_summary}
  2626. @table @asis
  2627. @item @emph{Description}:
  2628. TODO
  2629. @item @emph{Prototype}:
  2630. @code{void starpu_bus_profiling_helper_display_summary(void);}
  2631. @end table
  2632. @node CUDA extensions
  2633. @section CUDA extensions
  2634. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  2635. @menu
  2636. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  2637. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  2638. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  2639. @end menu
  2640. @node starpu_cuda_get_local_stream
  2641. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  2642. @table @asis
  2643. @item @emph{Description}:
  2644. StarPU provides a stream for every CUDA device controlled by StarPU. This
  2645. function is only provided for convenience so that programmers can easily use
  2646. asynchronous operations within codelets without having to create a stream by
  2647. hand. Note that the application is not forced to use the stream provided by
  2648. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  2649. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  2650. the likelihood of having all transfers overlapped.
  2651. @item @emph{Prototype}:
  2652. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  2653. @end table
  2654. @node starpu_helper_cublas_init
  2655. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  2656. @table @asis
  2657. @item @emph{Description}:
  2658. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2659. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  2660. controlled by StarPU. This call blocks until CUBLAS has been properly
  2661. initialized on every device.
  2662. @item @emph{Prototype}:
  2663. @code{void starpu_helper_cublas_init(void);}
  2664. @end table
  2665. @node starpu_helper_cublas_shutdown
  2666. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  2667. @table @asis
  2668. @item @emph{Description}:
  2669. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2670. @item @emph{Prototype}:
  2671. @code{void starpu_helper_cublas_shutdown(void);}
  2672. @end table
  2673. @node OpenCL extensions
  2674. @section OpenCL extensions
  2675. @menu
  2676. * Enabling OpenCL:: Enabling OpenCL
  2677. * Compiling OpenCL codelets:: Compiling OpenCL codelets
  2678. * Loading OpenCL codelets:: Loading OpenCL codelets
  2679. @end menu
  2680. @node Enabling OpenCL
  2681. @subsection Enabling OpenCL
  2682. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  2683. enabled by default. To enable OpenCL, you need either to disable CUDA
  2684. when configuring StarPU:
  2685. @example
  2686. % ./configure --disable-cuda
  2687. @end example
  2688. or when running applications:
  2689. @example
  2690. % STARPU_NCUDA=0 ./application
  2691. @end example
  2692. OpenCL will automatically be started on any device not yet used by
  2693. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  2694. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  2695. so:
  2696. @example
  2697. % STARPU_NCUDA=2 ./application
  2698. @end example
  2699. @node Compiling OpenCL codelets
  2700. @subsection Compiling OpenCL codelets
  2701. Source codes for OpenCL codelets can be stored in a file or in a
  2702. string. StarPU provides functions to build the program executable for
  2703. each available OpenCL device as a @code{cl_program} object. This
  2704. program executable can then be loaded within a specific queue as
  2705. explained in the next section. These are only helpers, Applications
  2706. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2707. use (e.g. different programs on the different OpenCL devices, for
  2708. relocation purpose for instance).
  2709. @menu
  2710. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  2711. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  2712. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  2713. @end menu
  2714. @node starpu_opencl_load_opencl_from_file
  2715. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  2716. @table @asis
  2717. @item @emph{Description}:
  2718. TODO
  2719. @item @emph{Prototype}:
  2720. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  2721. @end table
  2722. @node starpu_opencl_load_opencl_from_string
  2723. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  2724. @table @asis
  2725. @item @emph{Description}:
  2726. TODO
  2727. @item @emph{Prototype}:
  2728. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  2729. @end table
  2730. @node starpu_opencl_unload_opencl
  2731. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  2732. @table @asis
  2733. @item @emph{Description}:
  2734. TODO
  2735. @item @emph{Prototype}:
  2736. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  2737. @end table
  2738. @node Loading OpenCL codelets
  2739. @subsection Loading OpenCL codelets
  2740. @menu
  2741. * starpu_opencl_load_kernel:: Loading a kernel
  2742. * starpu_opencl_relase_kernel:: Releasing a kernel
  2743. @end menu
  2744. @node starpu_opencl_load_kernel
  2745. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  2746. @table @asis
  2747. @item @emph{Description}:
  2748. TODO
  2749. @item @emph{Prototype}:
  2750. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  2751. }
  2752. @end table
  2753. @node starpu_opencl_relase_kernel
  2754. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  2755. @table @asis
  2756. @item @emph{Description}:
  2757. TODO
  2758. @item @emph{Prototype}:
  2759. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  2760. @end table
  2761. @node Cell extensions
  2762. @section Cell extensions
  2763. nothing yet.
  2764. @node Miscellaneous helpers
  2765. @section Miscellaneous helpers
  2766. @menu
  2767. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  2768. @end menu
  2769. @node starpu_execute_on_each_worker
  2770. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  2771. @table @asis
  2772. @item @emph{Description}:
  2773. When calling this method, the offloaded function specified by the first argument is
  2774. executed by every StarPU worker that may execute the function.
  2775. The second argument is passed to the offloaded function.
  2776. The last argument specifies on which types of processing units the function
  2777. should be executed. Similarly to the @code{where} field of the
  2778. @code{starpu_codelet} structure, it is possible to specify that the function
  2779. should be executed on every CUDA device and every CPU by passing
  2780. @code{STARPU_CPU|STARPU_CUDA}.
  2781. This function blocks until the function has been executed on every appropriate
  2782. processing units, so that it may not be called from a callback function for
  2783. instance.
  2784. @item @emph{Prototype}:
  2785. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  2786. @end table
  2787. @c ---------------------------------------------------------------------
  2788. @c Advanced Topics
  2789. @c ---------------------------------------------------------------------
  2790. @node Advanced Topics
  2791. @chapter Advanced Topics
  2792. @menu
  2793. * Defining a new data interface::
  2794. * Defining a new scheduling policy::
  2795. @end menu
  2796. @node Defining a new data interface
  2797. @section Defining a new data interface
  2798. @menu
  2799. * struct starpu_data_interface_ops_t:: Per-interface methods
  2800. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  2801. * An example of data interface:: An example of data interface
  2802. @end menu
  2803. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  2804. @node struct starpu_data_interface_ops_t
  2805. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  2806. @table @asis
  2807. @item @emph{Description}:
  2808. TODO describe all the different fields
  2809. @end table
  2810. @node struct starpu_data_copy_methods
  2811. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  2812. @table @asis
  2813. @item @emph{Description}:
  2814. TODO describe all the different fields
  2815. @end table
  2816. @node An example of data interface
  2817. @subsection An example of data interface
  2818. @table @asis
  2819. TODO
  2820. @end table
  2821. @node Defining a new scheduling policy
  2822. @section Defining a new scheduling policy
  2823. TODO
  2824. A full example showing how to define a new scheduling policy is available in
  2825. the StarPU sources in the directory @code{examples/scheduler/}.
  2826. @menu
  2827. * struct starpu_sched_policy_s::
  2828. * starpu_worker_set_sched_condition::
  2829. * starpu_sched_set_min_priority:: Set the minimum priority level
  2830. * starpu_sched_set_max_priority:: Set the maximum priority level
  2831. * Source code::
  2832. @end menu
  2833. @node struct starpu_sched_policy_s
  2834. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  2835. @table @asis
  2836. @item @emph{Description}:
  2837. This structure contains all the methods that implement a scheduling policy. An
  2838. application may specify which scheduling strategy in the @code{sched_policy}
  2839. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  2840. function.
  2841. @item @emph{Fields}:
  2842. @table @asis
  2843. @item @code{init_sched}:
  2844. Initialize the scheduling policy.
  2845. @item @code{deinit_sched}:
  2846. Cleanup the scheduling policy.
  2847. @item @code{push_task}:
  2848. Insert a task into the scheduler.
  2849. @item @code{push_prio_task}:
  2850. Insert a priority task into the scheduler.
  2851. @item @code{pop_task}:
  2852. Get a task from the scheduler. The mutex associated to the worker is already
  2853. taken when this method is called.
  2854. @item @code{pop_every_task}:
  2855. Remove all available tasks from the scheduler (tasks are chained by the means
  2856. of the prev and next fields of the starpu_task structure). The mutex associated
  2857. to the worker is already taken when this method is called.
  2858. @item @code{post_exec_hook} (optionnal):
  2859. This method is called every time a task has been executed.
  2860. @item @code{policy_name}:
  2861. Name of the policy (optionnal).
  2862. @item @code{policy_description}:
  2863. Description of the policy (optionnal).
  2864. @end table
  2865. @end table
  2866. @node starpu_worker_set_sched_condition
  2867. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  2868. @table @asis
  2869. @item @emph{Description}:
  2870. When there is no available task for a worker, StarPU blocks this worker on a
  2871. condition variable. This function specifies which condition variable (and the
  2872. associated mutex) should be used to block (and to wake up) a worker. Note that
  2873. multiple workers may use the same condition variable. For instance, in the case
  2874. of a scheduling strategy with a single task queue, the same condition variable
  2875. would be used to block and wake up all workers.
  2876. The initialization method of a scheduling strategy (@code{init_sched}) must
  2877. call this function once per worker.
  2878. @item @emph{Prototype}:
  2879. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  2880. @end table
  2881. @node starpu_sched_set_min_priority
  2882. @subsection @code{starpu_sched_set_min_priority}
  2883. @table @asis
  2884. @item @emph{Description}:
  2885. Defines the minimum priority level supported by the scheduling policy. The
  2886. default minimum priority level is the same as the default priority level which
  2887. is 0 by convention. The application may access that value by calling the
  2888. @code{starpu_sched_get_min_priority} function. This function should only be
  2889. called from the initialization method of the scheduling policy, and should not
  2890. be used directly from the application.
  2891. @item @emph{Prototype}:
  2892. @code{void starpu_sched_set_min_priority(int min_prio)}
  2893. @end table
  2894. @node starpu_sched_set_max_priority
  2895. @subsection @code{starpu_sched_set_max_priority}
  2896. @table @asis
  2897. @item @emph{Description}:
  2898. Defines the maximum priority level supported by the scheduling policy. The
  2899. default maximum priority level is 1. The application may access that value by
  2900. calling the @code{starpu_sched_get_max_priority} function. This function should
  2901. only be called from the initialization method of the scheduling policy, and
  2902. should not be used directly from the application.
  2903. @item @emph{Prototype}:
  2904. @code{void starpu_sched_set_min_priority(int max_prio)}
  2905. @end table
  2906. @node Source code
  2907. @subsection Source code
  2908. @cartouche
  2909. @smallexample
  2910. static struct starpu_sched_policy_s dummy_sched_policy = @{
  2911. .init_sched = init_dummy_sched,
  2912. .deinit_sched = deinit_dummy_sched,
  2913. .push_task = push_task_dummy,
  2914. .push_prio_task = NULL,
  2915. .pop_task = pop_task_dummy,
  2916. .post_exec_hook = NULL,
  2917. .pop_every_task = NULL,
  2918. .policy_name = "dummy",
  2919. .policy_description = "dummy scheduling strategy"
  2920. @};
  2921. @end smallexample
  2922. @end cartouche
  2923. @c ---------------------------------------------------------------------
  2924. @c Performance feedback
  2925. @c ---------------------------------------------------------------------
  2926. @node Performance feedback
  2927. @chapter Performance feedback
  2928. @menu
  2929. * On-line:: On-line performance feedback
  2930. * Off-line:: Off-line performance feedback
  2931. @end menu
  2932. @node On-line
  2933. @section On-line performance feedback
  2934. @c how to enable/disable performance monitoring
  2935. @c what kind of information do we get ?
  2936. @node Off-line
  2937. @section Off-line performance feedback
  2938. @menu
  2939. * Generating traces:: Generating traces with FxT
  2940. * Gantt diagram:: Creating a Gantt Diagram
  2941. * DAG:: Creating a DAG with graphviz
  2942. * starpu-top:: Monitoring activity
  2943. @end menu
  2944. @node Generating traces
  2945. @subsection Generating traces with FxT
  2946. StarPU can use the FxT library (see
  2947. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  2948. with a limited runtime overhead.
  2949. You can either get the FxT library from CVS (autotools are required):
  2950. @example
  2951. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  2952. % ./bootstrap
  2953. @end example
  2954. If autotools are not available on your machine, or if you prefer to do so,
  2955. FxT's code is also available as a tarball:
  2956. @example
  2957. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  2958. @end example
  2959. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  2960. done following the standard procedure:
  2961. @example
  2962. % ./configure --prefix=$FXTDIR
  2963. % make
  2964. % make install
  2965. @end example
  2966. In order to have StarPU to generate traces, StarPU should be configured with
  2967. the @code{--with-fxt} option:
  2968. @example
  2969. $ ./configure --with-fxt=$FXTDIR
  2970. @end example
  2971. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  2972. @code{starpu_shutdown()}). The trace is a binary file which name has the form
  2973. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  2974. @code{YYY} is the pid of the process that used StarPU. This file is put in the
  2975. @code{/tmp/} directory by default, but it is possible to specify in which
  2976. directory the file should be created by setting the @code{STARPU_FXT_PREFIX}
  2977. environment variable.
  2978. @node Gantt diagram
  2979. @subsection Creating a Gantt Diagram
  2980. When the FxT trace file @code{filename} has been generated, it is possible to
  2981. generate a trace in the Paje format by calling:
  2982. @example
  2983. % fxt_tool -i filename
  2984. @end example
  2985. This will create a @code{paje.trace} file in the current directory that can be
  2986. inspected with the Vite trace visualizing open-source tool. More information
  2987. about Vite is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  2988. possible to open the @code{paje.trace} file with Vite by using the following
  2989. command:
  2990. @example
  2991. % vite paje.trace
  2992. @end example
  2993. @node DAG
  2994. @subsection Creating a DAG with graphviz
  2995. When the FxT trace file @code{filename} has been generated, it is possible to
  2996. generate a trace in the Paje format by calling:
  2997. @example
  2998. $ fxt_tool -i filename
  2999. @end example
  3000. This will create a @code{dag.dot} file in the current directory. This file is a
  3001. task graph described using the DOT language. It is possible to display this
  3002. graph by the means of the graphviz library:
  3003. @example
  3004. $ dot -Tpdf dag.dot -o output.pdf
  3005. @end example
  3006. @node starpu-top
  3007. @subsection Monitoring activity
  3008. When the FxT trace file @code{filename} has been generated, it is possible to
  3009. generate a trace in the Paje format by calling:
  3010. @example
  3011. $ fxt_tool -i filename
  3012. @end example
  3013. This will create an @code{activity.data} file in the current directory. A profile of the application showing the activity of StarPU during the execution of the program can be generated:
  3014. @example
  3015. $ starpu_top.sh activity.data
  3016. @end example
  3017. This will create a file named @code{activity.eps} in the current directory.
  3018. This picture is composed of two parts.
  3019. The first part shows the activity of the different workers. The green sections
  3020. indicate which proportion of the time was spent executed kernels on the
  3021. processing unit. The red sections indicate the proportion of time spent in
  3022. StartPU: an important overhead may indicate that the granularity may be too
  3023. low, and that bigger tasks may be appropriate to use the processing unit more
  3024. efficiently. The black sections indicate that the processing unit was blocked
  3025. because there was no task to process: this may indicate a lack of parallelism
  3026. which may be alleviated by creating more tasks when it is possible.
  3027. The second part of the @code{activity.eps} picture is a graph showing the
  3028. evolution of the number of tasks available in the system during the execution.
  3029. Ready tasks are shown in black, and tasks that are submitted but not
  3030. schedulable yet are shown in grey.
  3031. @c ---------------------------------------------------------------------
  3032. @c Appendices
  3033. @c ---------------------------------------------------------------------
  3034. @c ---------------------------------------------------------------------
  3035. @c Full source code for the 'Scaling a Vector' example
  3036. @c ---------------------------------------------------------------------
  3037. @node Full source code for the 'Scaling a Vector' example
  3038. @appendix Full source code for the 'Scaling a Vector' example
  3039. @menu
  3040. * Main application::
  3041. * CPU Codelet::
  3042. * CUDA Codelet::
  3043. * OpenCL Codelet::
  3044. @end menu
  3045. @node Main application
  3046. @section Main application
  3047. @smallexample
  3048. @include vector_scal_c.texi
  3049. @end smallexample
  3050. @node CPU Codelet
  3051. @section CPU Codelet
  3052. @smallexample
  3053. @include vector_scal_cpu.texi
  3054. @end smallexample
  3055. @node CUDA Codelet
  3056. @section CUDA Codelet
  3057. @smallexample
  3058. @include vector_scal_cuda.texi
  3059. @end smallexample
  3060. @node OpenCL Codelet
  3061. @section OpenCL Codelet
  3062. @menu
  3063. * Invoking the kernel::
  3064. * Source of the kernel::
  3065. @end menu
  3066. @node Invoking the kernel
  3067. @subsection Invoking the kernel
  3068. @smallexample
  3069. @include vector_scal_opencl.texi
  3070. @end smallexample
  3071. @node Source of the kernel
  3072. @subsection Source of the kernel
  3073. @smallexample
  3074. @include vector_scal_opencl_codelet.texi
  3075. @end smallexample
  3076. @bye