starpu.texi 193 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @include version.texi
  7. @copying
  8. Copyright @copyright{} 2009--2011 Universit@'e de Bordeaux 1
  9. @noindent
  10. Copyright @copyright{} 2010, 2011 Centre National de la Recherche Scientifique
  11. @noindent
  12. Copyright @copyright{} 2011 Institut National de Recherche en Informatique et Automatique
  13. @quotation
  14. Permission is granted to copy, distribute and/or modify this document
  15. under the terms of the GNU Free Documentation License, Version 1.3
  16. or any later version published by the Free Software Foundation;
  17. with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
  18. Texts. A copy of the license is included in the section entitled ``GNU
  19. Free Documentation License''.
  20. @end quotation
  21. @end copying
  22. @setchapternewpage odd
  23. @dircategory Development
  24. @direntry
  25. * StarPU: (starpu). StarPU Handbook
  26. @end direntry
  27. @titlepage
  28. @title StarPU Handbook
  29. @subtitle for StarPU @value{VERSION}
  30. @page
  31. @vskip 0pt plus 1fill
  32. @insertcopying
  33. @end titlepage
  34. @c @summarycontents
  35. @contents
  36. @page
  37. @node Top
  38. @top Preface
  39. This manual documents the usage of StarPU version @value{VERSION}. It
  40. was last updated on @value{UPDATED}.
  41. @ifnottex
  42. @insertcopying
  43. @end ifnottex
  44. @comment
  45. @comment When you add a new menu item, please keep the right hand
  46. @comment aligned to the same column. Do not use tabs. This provides
  47. @comment better formatting.
  48. @comment
  49. @menu
  50. * Introduction:: A basic introduction to using StarPU
  51. * Installing StarPU:: How to configure, build and install StarPU
  52. * Using StarPU:: How to run StarPU application
  53. * Basic Examples:: Basic examples of the use of StarPU
  54. * Performance optimization:: How to optimize performance with StarPU
  55. * Performance feedback:: Performance debugging tools
  56. * StarPU MPI support:: How to combine StarPU with MPI
  57. * Configuring StarPU:: How to configure StarPU
  58. * StarPU API:: The API to use StarPU
  59. * Advanced Topics:: Advanced use of StarPU
  60. * C Extensions:: Easier StarPU programming with GCC
  61. * Full source code for the 'Scaling a Vector' example::
  62. * Function Index:: Index of C functions.
  63. * GNU Free Documentation License:: How you can copy and share this manual.
  64. @end menu
  65. @c ---------------------------------------------------------------------
  66. @c Introduction to StarPU
  67. @c ---------------------------------------------------------------------
  68. @node Introduction
  69. @chapter Introduction to StarPU
  70. @menu
  71. * Motivation:: Why StarPU ?
  72. * StarPU in a Nutshell:: The Fundamentals of StarPU
  73. @end menu
  74. @node Motivation
  75. @section Motivation
  76. @c complex machines with heterogeneous cores/devices
  77. The use of specialized hardware such as accelerators or coprocessors offers an
  78. interesting approach to overcome the physical limits encountered by processor
  79. architects. As a result, many machines are now equipped with one or several
  80. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  81. efforts have been devoted to offload computation onto such accelerators, very
  82. little attention as been paid to portability concerns on the one hand, and to the
  83. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  84. StarPU is a runtime system that offers support for heterogeneous multicore
  85. architectures, it not only offers a unified view of the computational resources
  86. (i.e. CPUs and accelerators at the same time), but it also takes care of
  87. efficiently mapping and executing tasks onto an heterogeneous machine while
  88. transparently handling low-level issues such as data transfers in a portable
  89. fashion.
  90. @c this leads to a complicated distributed memory design
  91. @c which is not (easily) manageable by hand
  92. @c added value/benefits of StarPU
  93. @c - portability
  94. @c - scheduling, perf. portability
  95. @node StarPU in a Nutshell
  96. @section StarPU in a Nutshell
  97. @menu
  98. * Codelet and Tasks::
  99. * StarPU Data Management Library::
  100. * Glossary::
  101. * Research Papers::
  102. @end menu
  103. From a programming point of view, StarPU is not a new language but a library
  104. that executes tasks explicitly submitted by the application. The data that a
  105. task manipulates are automatically transferred onto the accelerator so that the
  106. programmer does not have to take care of complex data movements. StarPU also
  107. takes particular care of scheduling those tasks efficiently and allows
  108. scheduling experts to implement custom scheduling policies in a portable
  109. fashion.
  110. @c explain the notion of codelet and task (i.e. g(A, B)
  111. @node Codelet and Tasks
  112. @subsection Codelet and Tasks
  113. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  114. computational kernel that can possibly be implemented on multiple architectures
  115. such as a CPU, a CUDA device or a Cell's SPU.
  116. @c TODO insert illustration f : f_spu, f_cpu, ...
  117. Another important data structure is the @b{task}. Executing a StarPU task
  118. consists in applying a codelet on a data set, on one of the architectures on
  119. which the codelet is implemented. A task thus describes the codelet that it
  120. uses, but also which data are accessed, and how they are
  121. accessed during the computation (read and/or write).
  122. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  123. operation. The task structure can also specify a @b{callback} function that is
  124. called once StarPU has properly executed the task. It also contains optional
  125. fields that the application may use to give hints to the scheduler (such as
  126. priority levels).
  127. By default, task dependencies are inferred from data dependency (sequential
  128. coherence) by StarPU. The application can however disable sequential coherency
  129. for some data, and dependencies be expressed by hand.
  130. A task may be identified by a unique 64-bit number chosen by the application
  131. which we refer as a @b{tag}.
  132. Task dependencies can be enforced by hand either by the means of callback functions, by
  133. submitting other tasks, or by expressing dependencies
  134. between tags (which can thus correspond to tasks that have not been submitted
  135. yet).
  136. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  137. @c DSM
  138. @node StarPU Data Management Library
  139. @subsection StarPU Data Management Library
  140. Because StarPU schedules tasks at runtime, data transfers have to be
  141. done automatically and ``just-in-time'' between processing units,
  142. relieving the application programmer from explicit data transfers.
  143. Moreover, to avoid unnecessary transfers, StarPU keeps data
  144. where it was last needed, even if was modified there, and it
  145. allows multiple copies of the same data to reside at the same time on
  146. several processing units as long as it is not modified.
  147. @node Glossary
  148. @subsection Glossary
  149. A @b{codelet} records pointers to various implementations of the same
  150. theoretical function.
  151. A @b{memory node} can be either the main RAM or GPU-embedded memory.
  152. A @b{bus} is a link between memory nodes.
  153. A @b{data handle} keeps track of replicates of the same data (@b{registered} by the
  154. application) over various memory nodes. The data management library manages
  155. keeping them coherent.
  156. The @b{home} memory node of a data handle is the memory node from which the data
  157. was registered (usually the main memory node).
  158. A @b{task} represents a scheduled execution of a codelet on some data handles.
  159. A @b{tag} is a rendez-vous point. Tasks typically have their own tag, and can
  160. depend on other tags. The value is chosen by the application.
  161. A @b{worker} execute tasks. There is typically one per CPU computation core and
  162. one per accelerator (for which a whole CPU core is dedicated).
  163. A @b{driver} drives a given kind of workers. There are currently CPU, CUDA,
  164. OpenCL and Gordon drivers. They usually start several workers to actually drive
  165. them.
  166. A @b{performance model} is a (dynamic or static) model of the performance of a
  167. given codelet. Codelets can have execution time performance model as well as
  168. power consumption performance models.
  169. A data @b{interface} describes the layout of the data: for a vector, a pointer
  170. for the start, the number of elements and the size of elements ; for a matrix, a
  171. pointer for the start, the number of elements per row, the offset between rows,
  172. and the size of each element ; etc. To access their data, codelet functions are
  173. given interfaces for the local memory node replicates of the data handles of the
  174. scheduled task.
  175. @b{Partitioning} data means dividing the data of a given data handle (called
  176. @b{father}) into a series of @b{children} data handles which designate various
  177. portions of the former.
  178. A @b{filter} is the function which computes children data handles from a father
  179. data handle, and thus describes how the partitioning should be done (horizontal,
  180. vertical, etc.)
  181. @b{Acquiring} a data handle can be done from the main application, to safely
  182. access the data of a data handle from its home node, without having to
  183. unregister it.
  184. @node Research Papers
  185. @subsection Research Papers
  186. Research papers about StarPU can be found at
  187. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  188. Notably a good overview in the research report
  189. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  190. @c ---------------------------------------------------------------------
  191. @c Installing StarPU
  192. @c ---------------------------------------------------------------------
  193. @node Installing StarPU
  194. @chapter Installing StarPU
  195. @menu
  196. * Downloading StarPU::
  197. * Configuration of StarPU::
  198. * Building and Installing StarPU::
  199. @end menu
  200. StarPU can be built and installed by the standard means of the GNU
  201. autotools. The following chapter is intended to briefly remind how these tools
  202. can be used to install StarPU.
  203. @node Downloading StarPU
  204. @section Downloading StarPU
  205. @menu
  206. * Getting Sources::
  207. * Optional dependencies::
  208. @end menu
  209. @node Getting Sources
  210. @subsection Getting Sources
  211. The simplest way to get StarPU sources is to download the latest official
  212. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  213. or the latest nightly snapshot from
  214. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  215. how to get the very latest version from the subversion repository itself, it
  216. should be needed only if you need the very latest changes (i.e. less than a
  217. day!)
  218. The source code is managed by a Subversion server hosted by the
  219. InriaGforge. To get the source code, you need:
  220. @itemize
  221. @item
  222. To install the client side of the software Subversion if it is
  223. not already available on your system. The software can be obtained from
  224. @indicateurl{http://subversion.tigris.org} . If you are running
  225. on Windows, you will probably prefer to use TortoiseSVN from
  226. @indicateurl{http://tortoisesvn.tigris.org/} .
  227. @item
  228. You can check out the project's SVN repository through anonymous
  229. access. This will provide you with a read access to the
  230. repository.
  231. If you need to have write access on the StarPU project, you can also choose to
  232. become a member of the project @code{starpu}. For this, you first need to get
  233. an account to the gForge server. You can then send a request to join the project
  234. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  235. @item
  236. More information on how to get a gForge account, to become a member of
  237. a project, or on any other related task can be obtained from the
  238. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  239. thing is to upload your public SSH key on the gForge server (see the
  240. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  241. instructions).
  242. @end itemize
  243. You can now check out the latest version from the Subversion server:
  244. @itemize
  245. @item
  246. using the anonymous access via svn:
  247. @example
  248. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  249. @end example
  250. @item
  251. using the anonymous access via https:
  252. @example
  253. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  254. @end example
  255. The password is @code{anonsvn}.
  256. @item
  257. using your gForge account
  258. @example
  259. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  260. @end example
  261. @end itemize
  262. The following step requires the availability of @code{autoconf} and
  263. @code{automake} to generate the @code{./configure} script. This is
  264. done by calling @code{./autogen.sh}. The required version for
  265. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  266. @example
  267. % ./autogen.sh
  268. @end example
  269. If the autotools are not available on your machine or not recent
  270. enough, you can choose to download the latest nightly tarball, which
  271. is provided with a @code{configure} script.
  272. @example
  273. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  274. @end example
  275. @node Optional dependencies
  276. @subsection Optional dependencies
  277. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  278. but strongly recommended. It allows to increase performance, and to
  279. perform some topology aware scheduling.
  280. @code{hwloc} is available in major distributions and for most OSes and can be
  281. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  282. @node Configuration of StarPU
  283. @section Configuration of StarPU
  284. @menu
  285. * Generating Makefiles and configuration scripts::
  286. * Running the configuration::
  287. @end menu
  288. @node Generating Makefiles and configuration scripts
  289. @subsection Generating Makefiles and configuration scripts
  290. This step is not necessary when using the tarball releases of StarPU. If you
  291. are using the source code from the svn repository, you first need to generate
  292. the configure scripts and the Makefiles.
  293. @example
  294. % ./autogen.sh
  295. @end example
  296. @node Running the configuration
  297. @subsection Running the configuration
  298. @example
  299. % ./configure
  300. @end example
  301. Details about options that are useful to give to @code{./configure} are given in
  302. @ref{Compilation configuration}.
  303. @node Building and Installing StarPU
  304. @section Building and Installing StarPU
  305. @menu
  306. * Building::
  307. * Sanity Checks::
  308. * Installing::
  309. @end menu
  310. @node Building
  311. @subsection Building
  312. @example
  313. % make
  314. @end example
  315. @node Sanity Checks
  316. @subsection Sanity Checks
  317. In order to make sure that StarPU is working properly on the system, it is also
  318. possible to run a test suite.
  319. @example
  320. % make check
  321. @end example
  322. @node Installing
  323. @subsection Installing
  324. In order to install StarPU at the location that was specified during
  325. configuration:
  326. @example
  327. % make install
  328. @end example
  329. @c ---------------------------------------------------------------------
  330. @c Using StarPU
  331. @c ---------------------------------------------------------------------
  332. @node Using StarPU
  333. @chapter Using StarPU
  334. @menu
  335. * Setting flags for compiling and linking applications::
  336. * Running a basic StarPU application::
  337. * Kernel threads started by StarPU::
  338. * Enabling OpenCL::
  339. @end menu
  340. @node Setting flags for compiling and linking applications
  341. @section Setting flags for compiling and linking applications
  342. Compiling and linking an application against StarPU may require to use
  343. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  344. To this end, it is possible to use the @code{pkg-config} tool.
  345. If StarPU was not installed at some standard location, the path of StarPU's
  346. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  347. that @code{pkg-config} can find it. For example if StarPU was installed in
  348. @code{$prefix_dir}:
  349. @example
  350. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  351. @end example
  352. The flags required to compile or link against StarPU are then
  353. accessible with the following commands:
  354. @example
  355. % pkg-config --cflags libstarpu # options for the compiler
  356. % pkg-config --libs libstarpu # options for the linker
  357. @end example
  358. @node Running a basic StarPU application
  359. @section Running a basic StarPU application
  360. Basic examples using StarPU are built in the directory
  361. @code{examples/basic_examples/} (and installed in
  362. @code{$prefix_dir/lib/starpu/examples/}). You can for example run the example
  363. @code{vector_scal}.
  364. @example
  365. % ./examples/basic_examples/vector_scal
  366. BEFORE : First element was 1.000000
  367. AFTER First element is 3.140000
  368. %
  369. @end example
  370. When StarPU is used for the first time, the directory
  371. @code{$HOME/.starpu/} is created, performance models will be stored in
  372. that directory.
  373. Please note that buses are benchmarked when StarPU is launched for the
  374. first time. This may take a few minutes, or less if @code{hwloc} is
  375. installed. This step is done only once per user and per machine.
  376. @node Kernel threads started by StarPU
  377. @section Kernel threads started by StarPU
  378. StarPU automatically binds one thread per CPU core. It does not use
  379. SMT/hyperthreading because kernels are usually already optimized for using a
  380. full core, and using hyperthreading would make kernel calibration rather random.
  381. Since driving GPUs is a CPU-consuming task, StarPU dedicates one core per GPU
  382. While StarPU tasks are executing, the application is not supposed to do
  383. computations in the threads it starts itself, tasks should be used instead.
  384. TODO: add a StarPU function to bind an application thread (e.g. the main thread)
  385. to a dedicated core (and thus disable the corresponding StarPU CPU worker).
  386. @node Enabling OpenCL
  387. @section Enabling OpenCL
  388. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  389. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  390. This design choice was necessary as OpenCL and CUDA can not run at the
  391. same time on the same NVIDIA GPU, as there is currently no interoperability
  392. between them.
  393. To enable OpenCL, you need either to disable CUDA when configuring StarPU:
  394. @example
  395. % ./configure --disable-cuda
  396. @end example
  397. or when running applications:
  398. @example
  399. % STARPU_NCUDA=0 ./application
  400. @end example
  401. OpenCL will automatically be started on any device not yet used by
  402. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  403. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  404. so:
  405. @example
  406. % STARPU_NCUDA=2 ./application
  407. @end example
  408. @c ---------------------------------------------------------------------
  409. @c Basic Examples
  410. @c ---------------------------------------------------------------------
  411. @node Basic Examples
  412. @chapter Basic Examples
  413. @menu
  414. * Compiling and linking options::
  415. * Hello World:: Submitting Tasks
  416. * Scaling a Vector:: Manipulating Data
  417. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  418. * Using multiple implementations of a codelet::
  419. * Task and Worker Profiling::
  420. * Partitioning Data:: Partitioning Data
  421. * Performance model example::
  422. * Theoretical lower bound on execution time::
  423. * Insert Task Utility::
  424. * More examples:: More examples shipped with StarPU
  425. * Debugging:: When things go wrong.
  426. @end menu
  427. @node Compiling and linking options
  428. @section Compiling and linking options
  429. Let's suppose StarPU has been installed in the directory
  430. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  431. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  432. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  433. libraries at runtime.
  434. @example
  435. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  436. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  437. @end example
  438. The Makefile could for instance contain the following lines to define which
  439. options must be given to the compiler and to the linker:
  440. @cartouche
  441. @example
  442. CFLAGS += $$(pkg-config --cflags libstarpu)
  443. LDFLAGS += $$(pkg-config --libs libstarpu)
  444. @end example
  445. @end cartouche
  446. @node Hello World
  447. @section Hello World
  448. @menu
  449. * Required Headers::
  450. * Defining a Codelet::
  451. * Submitting a Task::
  452. * Execution of Hello World::
  453. @end menu
  454. In this section, we show how to implement a simple program that submits a task to StarPU.
  455. @node Required Headers
  456. @subsection Required Headers
  457. The @code{starpu.h} header should be included in any code using StarPU.
  458. @cartouche
  459. @smallexample
  460. #include <starpu.h>
  461. @end smallexample
  462. @end cartouche
  463. @node Defining a Codelet
  464. @subsection Defining a Codelet
  465. @cartouche
  466. @smallexample
  467. struct params @{
  468. int i;
  469. float f;
  470. @};
  471. void cpu_func(void *buffers[], void *cl_arg)
  472. @{
  473. struct params *params = cl_arg;
  474. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  475. @}
  476. starpu_codelet cl =
  477. @{
  478. .where = STARPU_CPU,
  479. .cpu_func = cpu_func,
  480. .nbuffers = 0
  481. @};
  482. @end smallexample
  483. @end cartouche
  484. A codelet is a structure that represents a computational kernel. Such a codelet
  485. may contain an implementation of the same kernel on different architectures
  486. (e.g. CUDA, Cell's SPU, x86, ...).
  487. The @code{nbuffers} field specifies the number of data buffers that are
  488. manipulated by the codelet: here the codelet does not access or modify any data
  489. that is controlled by our data management library. Note that the argument
  490. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  491. structure) does not count as a buffer since it is not managed by our data
  492. management library, but just contain trivial parameters.
  493. @c TODO need a crossref to the proper description of "where" see bla for more ...
  494. We create a codelet which may only be executed on the CPUs. The @code{where}
  495. field is a bitmask that defines where the codelet may be executed. Here, the
  496. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  497. (@pxref{Codelets and Tasks} for more details on this field).
  498. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  499. which @emph{must} have the following prototype:
  500. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  501. In this example, we can ignore the first argument of this function which gives a
  502. description of the input and output buffers (e.g. the size and the location of
  503. the matrices) since there is none.
  504. The second argument is a pointer to a buffer passed as an
  505. argument to the codelet by the means of the @code{cl_arg} field of the
  506. @code{starpu_task} structure.
  507. @c TODO rewrite so that it is a little clearer ?
  508. Be aware that this may be a pointer to a
  509. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  510. if the codelet modifies this buffer, there is no guarantee that the initial
  511. buffer will be modified as well: this for instance implies that the buffer
  512. cannot be used as a synchronization medium. If synchronization is needed, data
  513. has to be registered to StarPU, see @ref{Scaling a Vector}.
  514. @node Submitting a Task
  515. @subsection Submitting a Task
  516. @cartouche
  517. @smallexample
  518. void callback_func(void *callback_arg)
  519. @{
  520. printf("Callback function (arg %x)\n", callback_arg);
  521. @}
  522. int main(int argc, char **argv)
  523. @{
  524. /* @b{initialize StarPU} */
  525. starpu_init(NULL);
  526. struct starpu_task *task = starpu_task_create();
  527. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  528. struct params params = @{ 1, 2.0f @};
  529. task->cl_arg = &params;
  530. task->cl_arg_size = sizeof(params);
  531. task->callback_func = callback_func;
  532. task->callback_arg = 0x42;
  533. /* @b{starpu_task_submit will be a blocking call} */
  534. task->synchronous = 1;
  535. /* @b{submit the task to StarPU} */
  536. starpu_task_submit(task);
  537. /* @b{terminate StarPU} */
  538. starpu_shutdown();
  539. return 0;
  540. @}
  541. @end smallexample
  542. @end cartouche
  543. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  544. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  545. be submitted after the termination of StarPU by a call to
  546. @code{starpu_shutdown}.
  547. In the example above, a task structure is allocated by a call to
  548. @code{starpu_task_create}. This function only allocates and fills the
  549. corresponding structure with the default settings (@pxref{Codelets and
  550. Tasks, starpu_task_create}), but it does not submit the task to StarPU.
  551. @c not really clear ;)
  552. The @code{cl} field is a pointer to the codelet which the task will
  553. execute: in other words, the codelet structure describes which computational
  554. kernel should be offloaded on the different architectures, and the task
  555. structure is a wrapper containing a codelet and the piece of data on which the
  556. codelet should operate.
  557. The optional @code{cl_arg} field is a pointer to a buffer (of size
  558. @code{cl_arg_size}) with some parameters for the kernel
  559. described by the codelet. For instance, if a codelet implements a computational
  560. kernel that multiplies its input vector by a constant, the constant could be
  561. specified by the means of this buffer, instead of registering it as a StarPU
  562. data. It must however be noted that StarPU avoids making copy whenever possible
  563. and rather passes the pointer as such, so the buffer which is pointed at must
  564. kept allocated until the task terminates, and if several tasks are submitted
  565. with various parameters, each of them must be given a pointer to their own
  566. buffer.
  567. Once a task has been executed, an optional callback function is be called.
  568. While the computational kernel could be offloaded on various architectures, the
  569. callback function is always executed on a CPU. The @code{callback_arg}
  570. pointer is passed as an argument of the callback. The prototype of a callback
  571. function must be:
  572. @code{void (*callback_function)(void *);}
  573. If the @code{synchronous} field is non-zero, task submission will be
  574. synchronous: the @code{starpu_task_submit} function will not return until the
  575. task was executed. Note that the @code{starpu_shutdown} method does not
  576. guarantee that asynchronous tasks have been executed before it returns,
  577. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  578. unregistered (@code{starpu_data_unregister(vector_handle);}), which will
  579. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  580. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  581. @code{starpu_data_set_sequential_consistency_flag}.
  582. @node Execution of Hello World
  583. @subsection Execution of Hello World
  584. @smallexample
  585. % make hello_world
  586. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  587. % ./hello_world
  588. Hello world (params = @{1, 2.000000@} )
  589. Callback function (arg 42)
  590. @end smallexample
  591. @node Scaling a Vector
  592. @section Manipulating Data: Scaling a Vector
  593. The previous example has shown how to submit tasks. In this section,
  594. we show how StarPU tasks can manipulate data. The full source code for
  595. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  596. @menu
  597. * Source code of Vector Scaling::
  598. * Execution of Vector Scaling::
  599. @end menu
  600. @node Source code of Vector Scaling
  601. @subsection Source code of Vector Scaling
  602. Programmers can describe the data layout of their application so that StarPU is
  603. responsible for enforcing data coherency and availability across the machine.
  604. Instead of handling complex (and non-portable) mechanisms to perform data
  605. movements, programmers only declare which piece of data is accessed and/or
  606. modified by a task, and StarPU makes sure that when a computational kernel
  607. starts somewhere (e.g. on a GPU), its data are available locally.
  608. Before submitting those tasks, the programmer first needs to declare the
  609. different pieces of data to StarPU using the @code{starpu_*_data_register}
  610. functions. To ease the development of applications for StarPU, it is possible
  611. to describe multiple types of data layout. A type of data layout is called an
  612. @b{interface}. There are different predefined interfaces available in StarPU:
  613. here we will consider the @b{vector interface}.
  614. The following lines show how to declare an array of @code{NX} elements of type
  615. @code{float} using the vector interface:
  616. @cartouche
  617. @smallexample
  618. float vector[NX];
  619. starpu_data_handle vector_handle;
  620. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  621. sizeof(vector[0]));
  622. @end smallexample
  623. @end cartouche
  624. The first argument, called the @b{data handle}, is an opaque pointer which
  625. designates the array in StarPU. This is also the structure which is used to
  626. describe which data is used by a task. The second argument is the node number
  627. where the data originally resides. Here it is 0 since the @code{vector} array is in
  628. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  629. the number of elements in the vector and the size of each element.
  630. The following shows how to construct a StarPU task that will manipulate the
  631. vector and a constant factor.
  632. @cartouche
  633. @smallexample
  634. float factor = 3.14;
  635. struct starpu_task *task = starpu_task_create();
  636. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  637. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  638. task->buffers[0].mode = STARPU_RW;
  639. task->cl_arg = &factor;
  640. task->cl_arg_size = sizeof(factor);
  641. task->synchronous = 1;
  642. starpu_task_submit(task);
  643. @end smallexample
  644. @end cartouche
  645. Since the factor is a mere constant float value parameter,
  646. it does not need a preliminary registration, and
  647. can just be passed through the @code{cl_arg} pointer like in the previous
  648. example. The vector parameter is described by its handle.
  649. There are two fields in each element of the @code{buffers} array.
  650. @code{handle} is the handle of the data, and @code{mode} specifies how the
  651. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  652. write-only and @code{STARPU_RW} for read and write access).
  653. The definition of the codelet can be written as follows:
  654. @cartouche
  655. @smallexample
  656. void scal_cpu_func(void *buffers[], void *cl_arg)
  657. @{
  658. unsigned i;
  659. float *factor = cl_arg;
  660. /* length of the vector */
  661. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  662. /* CPU copy of the vector pointer */
  663. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  664. for (i = 0; i < n; i++)
  665. val[i] *= *factor;
  666. @}
  667. starpu_codelet cl = @{
  668. .where = STARPU_CPU,
  669. .cpu_func = scal_cpu_func,
  670. .nbuffers = 1
  671. @};
  672. @end smallexample
  673. @end cartouche
  674. The first argument is an array that gives
  675. a description of all the buffers passed in the @code{task->buffers}@ array. The
  676. size of this array is given by the @code{nbuffers} field of the codelet
  677. structure. For the sake of genericity, this array contains pointers to the
  678. different interfaces describing each buffer. In the case of the @b{vector
  679. interface}, the location of the vector (resp. its length) is accessible in the
  680. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  681. read-write fashion, any modification will automatically affect future accesses
  682. to this vector made by other tasks.
  683. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  684. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  685. constant factor from this pointer.
  686. @node Execution of Vector Scaling
  687. @subsection Execution of Vector Scaling
  688. @smallexample
  689. % make vector_scal
  690. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  691. % ./vector_scal
  692. 0.000000 3.000000 6.000000 9.000000 12.000000
  693. @end smallexample
  694. @node Vector Scaling on an Hybrid CPU/GPU Machine
  695. @section Vector Scaling on an Hybrid CPU/GPU Machine
  696. Contrary to the previous examples, the task submitted in this example may not
  697. only be executed by the CPUs, but also by a CUDA device.
  698. @menu
  699. * Definition of the CUDA Kernel::
  700. * Definition of the OpenCL Kernel::
  701. * Definition of the Main Code::
  702. * Execution of Hybrid Vector Scaling::
  703. @end menu
  704. @node Definition of the CUDA Kernel
  705. @subsection Definition of the CUDA Kernel
  706. The CUDA implementation can be written as follows. It needs to be compiled with
  707. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  708. that the vector pointer returned by STARPU_VECTOR_GET_PTR is here a pointer in GPU
  709. memory, so that it can be passed as such to the @code{vector_mult_cuda} kernel
  710. call.
  711. @cartouche
  712. @smallexample
  713. #include <starpu.h>
  714. #include <starpu_cuda.h>
  715. static __global__ void vector_mult_cuda(float *val, unsigned n,
  716. float factor)
  717. @{
  718. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  719. if (i < n)
  720. val[i] *= factor;
  721. @}
  722. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  723. @{
  724. float *factor = (float *)_args;
  725. /* length of the vector */
  726. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  727. /* CUDA copy of the vector pointer */
  728. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  729. unsigned threads_per_block = 64;
  730. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  731. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  732. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  733. @}
  734. @end smallexample
  735. @end cartouche
  736. @node Definition of the OpenCL Kernel
  737. @subsection Definition of the OpenCL Kernel
  738. The OpenCL implementation can be written as follows. StarPU provides
  739. tools to compile a OpenCL kernel stored in a file.
  740. @cartouche
  741. @smallexample
  742. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  743. @{
  744. const int i = get_global_id(0);
  745. if (i < nx) @{
  746. val[i] *= factor;
  747. @}
  748. @}
  749. @end smallexample
  750. @end cartouche
  751. Similarly to CUDA, the pointer returned by @code{STARPU_VECTOR_GET_PTR} is here
  752. a device pointer, so that it is passed as such to the OpenCL kernel.
  753. @cartouche
  754. @smallexample
  755. #include <starpu.h>
  756. @i{#include <starpu_opencl.h>}
  757. @i{extern struct starpu_opencl_program programs;}
  758. void scal_opencl_func(void *buffers[], void *_args)
  759. @{
  760. float *factor = _args;
  761. @i{ int id, devid, err;}
  762. @i{ cl_kernel kernel;}
  763. @i{ cl_command_queue queue;}
  764. @i{ cl_event event;}
  765. /* length of the vector */
  766. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  767. /* OpenCL copy of the vector pointer */
  768. cl_mem val = (cl_mem) STARPU_VECTOR_GET_PTR(buffers[0]);
  769. @i{ id = starpu_worker_get_id();}
  770. @i{ devid = starpu_worker_get_devid(id);}
  771. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  772. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  773. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  774. @i{ err = clSetKernelArg(kernel, 0, sizeof(val), &val);}
  775. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  776. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  777. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  778. @i{ @{}
  779. @i{ size_t global=1;}
  780. @i{ size_t local=1;}
  781. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  782. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  783. @i{ @}}
  784. @i{ clFinish(queue);}
  785. @i{ starpu_opencl_collect_stats(event);}
  786. @i{ clReleaseEvent(event);}
  787. @i{ starpu_opencl_release_kernel(kernel);}
  788. @}
  789. @end smallexample
  790. @end cartouche
  791. @node Definition of the Main Code
  792. @subsection Definition of the Main Code
  793. The CPU implementation is the same as in the previous section.
  794. Here is the source of the main application. You can notice the value of the
  795. field @code{where} for the codelet. We specify
  796. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  797. can be executed either on a CPU or on a CUDA or an OpenCL device.
  798. @cartouche
  799. @smallexample
  800. #include <starpu.h>
  801. #define NX 2048
  802. extern void scal_cuda_func(void *buffers[], void *_args);
  803. extern void scal_cpu_func(void *buffers[], void *_args);
  804. extern void scal_opencl_func(void *buffers[], void *_args);
  805. /* @b{Definition of the codelet} */
  806. static starpu_codelet cl = @{
  807. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  808. /* @b{on a CUDA device, or on an OpenCL device} */
  809. .cuda_func = scal_cuda_func,
  810. .cpu_func = scal_cpu_func,
  811. .opencl_func = scal_opencl_func,
  812. .nbuffers = 1
  813. @}
  814. #ifdef STARPU_USE_OPENCL
  815. /* @b{The compiled version of the OpenCL program} */
  816. struct starpu_opencl_program programs;
  817. #endif
  818. int main(int argc, char **argv)
  819. @{
  820. float *vector;
  821. int i, ret;
  822. float factor=3.0;
  823. struct starpu_task *task;
  824. starpu_data_handle vector_handle;
  825. starpu_init(NULL); /* @b{Initialising StarPU} */
  826. #ifdef STARPU_USE_OPENCL
  827. starpu_opencl_load_opencl_from_file(
  828. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  829. &programs, NULL);
  830. #endif
  831. vector = malloc(NX*sizeof(vector[0]));
  832. assert(vector);
  833. for(i=0 ; i<NX ; i++) vector[i] = i;
  834. @end smallexample
  835. @end cartouche
  836. @cartouche
  837. @smallexample
  838. /* @b{Registering data within StarPU} */
  839. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  840. NX, sizeof(vector[0]));
  841. /* @b{Definition of the task} */
  842. task = starpu_task_create();
  843. task->cl = &cl;
  844. task->buffers[0].handle = vector_handle;
  845. task->buffers[0].mode = STARPU_RW;
  846. task->cl_arg = &factor;
  847. task->cl_arg_size = sizeof(factor);
  848. @end smallexample
  849. @end cartouche
  850. @cartouche
  851. @smallexample
  852. /* @b{Submitting the task} */
  853. ret = starpu_task_submit(task);
  854. if (ret == -ENODEV) @{
  855. fprintf(stderr, "No worker may execute this task\n");
  856. return 1;
  857. @}
  858. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  859. /* @b{Waiting for its termination} */
  860. starpu_task_wait_for_all();
  861. /* @b{Update the vector in RAM} */
  862. starpu_data_acquire(vector_handle, STARPU_R);
  863. @end smallexample
  864. @end cartouche
  865. @cartouche
  866. @smallexample
  867. /* @b{Access the data} */
  868. for(i=0 ; i<NX; i++) @{
  869. fprintf(stderr, "%f ", vector[i]);
  870. @}
  871. fprintf(stderr, "\n");
  872. /* @b{Release the RAM view of the data before unregistering it and shutting down StarPU} */
  873. starpu_data_release(vector_handle);
  874. starpu_data_unregister(vector_handle);
  875. starpu_shutdown();
  876. return 0;
  877. @}
  878. @end smallexample
  879. @end cartouche
  880. @node Execution of Hybrid Vector Scaling
  881. @subsection Execution of Hybrid Vector Scaling
  882. The Makefile given at the beginning of the section must be extended to
  883. give the rules to compile the CUDA source code. Note that the source
  884. file of the OpenCL kernel does not need to be compiled now, it will
  885. be compiled at run-time when calling the function
  886. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  887. @cartouche
  888. @smallexample
  889. CFLAGS += $(shell pkg-config --cflags libstarpu)
  890. LDFLAGS += $(shell pkg-config --libs libstarpu)
  891. CC = gcc
  892. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  893. %.o: %.cu
  894. nvcc $(CFLAGS) $< -c $@
  895. clean:
  896. rm -f vector_scal *.o
  897. @end smallexample
  898. @end cartouche
  899. @smallexample
  900. % make
  901. @end smallexample
  902. and to execute it, with the default configuration:
  903. @smallexample
  904. % ./vector_scal
  905. 0.000000 3.000000 6.000000 9.000000 12.000000
  906. @end smallexample
  907. or for example, by disabling CPU devices:
  908. @smallexample
  909. % STARPU_NCPUS=0 ./vector_scal
  910. 0.000000 3.000000 6.000000 9.000000 12.000000
  911. @end smallexample
  912. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  913. see @ref{Enabling OpenCL}):
  914. @smallexample
  915. % STARPU_NCUDA=0 ./vector_scal
  916. 0.000000 3.000000 6.000000 9.000000 12.000000
  917. @end smallexample
  918. @node Using multiple implementations of a codelet
  919. @section Using multiple implementations of a codelet
  920. One may want to write multiple implementations of a codelet for a single type of
  921. device and let StarPU choose which one to run. As an example, we will show how
  922. to use SSE to scale a vector. The codelet can be written as follows :
  923. @cartouche
  924. @smallexample
  925. #include <xmmintrin.h>
  926. void scal_sse_func(void *buffers[], void *cl_arg)
  927. @{
  928. float *vector = (float *) STARPU_VECTOR_GET_PTR(buffers[0]);
  929. unsigned int n = STARPU_VECTOR_GET_NX(buffers[0]);
  930. unsigned int n_iterations = n/4;
  931. if (n % 4 != 0)
  932. n_iterations++;
  933. __m128 *VECTOR = (__m128*) vector;
  934. __m128 factor __attribute__((aligned(16)));
  935. factor = _mm_set1_ps(*(float *) cl_arg);
  936. unsigned int i;
  937. for (i = 0; i < n_iterations; i++)
  938. VECTOR[i] = _mm_mul_ps(factor, VECTOR[i]);
  939. @}
  940. @end smallexample
  941. @end cartouche
  942. The @code{cpu_func} field of the @code{starpu_codelet} structure has to be set
  943. to the special value @code{STARPU_MULTIPLE_CPU_IMPLEMENTATIONS}. Note that
  944. @code{STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS} and
  945. @code{STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS} are also available.
  946. @cartouche
  947. @smallexample
  948. starpu_codelet cl = @{
  949. .where = STARPU_CPU,
  950. .cpu_func = STARPU_MULTIPLE_CPU_IMPLEMENTATIONS,
  951. .cpu_funcs = @{ scal_cpu_func, scal_sse_func @},
  952. .nbuffers = 1
  953. @};
  954. @end smallexample
  955. @end cartouche
  956. The scheduler will measure the performance of all the implementations it was
  957. given, and pick the one that seems to be the fastest.
  958. @node Task and Worker Profiling
  959. @section Task and Worker Profiling
  960. A full example showing how to use the profiling API is available in
  961. the StarPU sources in the directory @code{examples/profiling/}.
  962. @cartouche
  963. @smallexample
  964. struct starpu_task *task = starpu_task_create();
  965. task->cl = &cl;
  966. task->synchronous = 1;
  967. /* We will destroy the task structure by hand so that we can
  968. * query the profiling info before the task is destroyed. */
  969. task->destroy = 0;
  970. /* Submit and wait for completion (since synchronous was set to 1) */
  971. starpu_task_submit(task);
  972. /* The task is finished, get profiling information */
  973. struct starpu_task_profiling_info *info = task->profiling_info;
  974. /* How much time did it take before the task started ? */
  975. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  976. /* How long was the task execution ? */
  977. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  978. /* We don't need the task structure anymore */
  979. starpu_task_destroy(task);
  980. @end smallexample
  981. @end cartouche
  982. @cartouche
  983. @smallexample
  984. /* Display the occupancy of all workers during the test */
  985. int worker;
  986. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  987. @{
  988. struct starpu_worker_profiling_info worker_info;
  989. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  990. STARPU_ASSERT(!ret);
  991. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  992. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  993. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  994. float executing_ratio = 100.0*executing_time/total_time;
  995. float sleeping_ratio = 100.0*sleeping_time/total_time;
  996. char workername[128];
  997. starpu_worker_get_name(worker, workername, 128);
  998. fprintf(stderr, "Worker %s:\n", workername);
  999. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  1000. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  1001. executing_ratio);
  1002. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  1003. sleeping_ratio);
  1004. @}
  1005. @end smallexample
  1006. @end cartouche
  1007. @node Partitioning Data
  1008. @section Partitioning Data
  1009. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  1010. @cartouche
  1011. @smallexample
  1012. int vector[NX];
  1013. starpu_data_handle handle;
  1014. /* Declare data to StarPU */
  1015. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  1016. /* Partition the vector in PARTS sub-vectors */
  1017. starpu_filter f =
  1018. @{
  1019. .filter_func = starpu_block_filter_func_vector,
  1020. .nchildren = PARTS
  1021. @};
  1022. starpu_data_partition(handle, &f);
  1023. @end smallexample
  1024. @end cartouche
  1025. @cartouche
  1026. @smallexample
  1027. /* Submit a task on each sub-vector */
  1028. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  1029. /* Get subdata number i (there is only 1 dimension) */
  1030. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  1031. struct starpu_task *task = starpu_task_create();
  1032. task->buffers[0].handle = sub_handle;
  1033. task->buffers[0].mode = STARPU_RW;
  1034. task->cl = &cl;
  1035. task->synchronous = 1;
  1036. task->cl_arg = &factor;
  1037. task->cl_arg_size = sizeof(factor);
  1038. starpu_task_submit(task);
  1039. @}
  1040. @end smallexample
  1041. @end cartouche
  1042. Partitioning can be applied several times, see
  1043. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  1044. @node Performance model example
  1045. @section Performance model example
  1046. To achieve good scheduling, StarPU scheduling policies need to be able to
  1047. estimate in advance the duration of a task. This is done by giving to codelets
  1048. a performance model, by defining a @code{starpu_perfmodel_t} structure and
  1049. providing its address in the @code{model} field of the @code{starpu_codelet}
  1050. structure. The @code{symbol} and @code{type} fields of @code{starpu_perfmodel_t}
  1051. are mandatory, to give a name to the model, and the type of the model, since
  1052. there are several kinds of performance models.
  1053. @itemize
  1054. @item
  1055. Measured at runtime (@code{STARPU_HISTORY_BASED} model type). This assumes that for a
  1056. given set of data input/output sizes, the performance will always be about the
  1057. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  1058. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  1059. few different sets of data input/output sizes. StarPU will then keep record of
  1060. the average time of previous executions on the various processing units, and use
  1061. it as an estimation. History is done per task size, by using a hash of the input
  1062. and ouput sizes as an index.
  1063. It will also save it in @code{~/.starpu/sampling/codelets}
  1064. for further executions, and can be observed by using the
  1065. @code{starpu_perfmodel_display} command, or drawn by using
  1066. the @code{starpu_perfmodel_plot}. The models are indexed by machine name. To
  1067. share the models between machines (e.g. for a homogeneous cluster), use
  1068. @code{export STARPU_HOSTNAME=some_global_name}. The following is a small code
  1069. example.
  1070. If e.g. the code is recompiled with other compilation options, or several
  1071. variants of the code are used, the symbol string should be changed to reflect
  1072. that, in order to recalibrate a new model from zero. The symbol string can even
  1073. be constructed dynamically at execution time, as long as this is done before
  1074. submitting any task using it.
  1075. @cartouche
  1076. @smallexample
  1077. static struct starpu_perfmodel_t mult_perf_model = @{
  1078. .type = STARPU_HISTORY_BASED,
  1079. .symbol = "mult_perf_model"
  1080. @};
  1081. starpu_codelet cl = @{
  1082. .where = STARPU_CPU,
  1083. .cpu_func = cpu_mult,
  1084. .nbuffers = 3,
  1085. /* for the scheduling policy to be able to use performance models */
  1086. .model = &mult_perf_model
  1087. @};
  1088. @end smallexample
  1089. @end cartouche
  1090. @item
  1091. Measured at runtime and refined by regression (@code{STARPU_REGRESSION_*_BASED}
  1092. model type). This still assumes performance regularity, but can work
  1093. with various data input sizes, by applying regression over observed
  1094. execution times. STARPU_REGRESSION_BASED uses an a*n^b regression
  1095. form, STARPU_NL_REGRESSION_BASED uses an a*n^b+c (more precise than
  1096. STARPU_REGRESSION_BASED, but costs a lot more to compute). For instance,
  1097. @code{tests/perfmodels/regression_based.c} uses a regression-based performance
  1098. model for the @code{memset} operation.
  1099. @item
  1100. Provided as an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  1101. see for instance
  1102. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}.
  1103. @item
  1104. Provided explicitly by the application (@code{STARPU_PER_ARCH} model type): the
  1105. @code{.per_arch[i].cost_model} fields have to be filled with pointers to
  1106. functions which return the expected duration of the task in micro-seconds, one
  1107. per architecture.
  1108. @end itemize
  1109. How to use schedulers which can benefit from such performance model is explained
  1110. in @ref{Task scheduling policy}.
  1111. The same can be done for task power consumption estimation, by setting the
  1112. @code{power_model} field the same way as the @code{model} field. Note: for
  1113. now, the application has to give to the power consumption performance model
  1114. a name which is different from the execution time performance model.
  1115. The application can request time estimations from the StarPU performance
  1116. models by filling a task structure as usual without actually submitting
  1117. it. The data handles can be created by calling @code{starpu_data_register}
  1118. functions with a @code{NULL} pointer (and need to be unregistered as usual)
  1119. and the desired data sizes. The @code{starpu_task_expected_length} and
  1120. @code{starpu_task_expected_power} functions can then be called to get an
  1121. estimation of the task duration on a given arch. @code{starpu_task_destroy}
  1122. needs to be called to destroy the dummy task afterwards. See
  1123. @code{tests/perfmodels/regression_based.c} for an example.
  1124. @node Theoretical lower bound on execution time
  1125. @section Theoretical lower bound on execution time
  1126. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  1127. bound for the execution time of a whole set of tasks. See for
  1128. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  1129. call @code{starpu_bound_start}, and after complete execution, call
  1130. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  1131. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  1132. problem corresponding to the schedule of your tasks. Run it through
  1133. @code{lp_solve} or any other linear programming solver, and that will give you a
  1134. lower bound for the total execution time of your tasks. If StarPU was compiled
  1135. with the glpk library installed, @code{starpu_bound_compute} can be used to
  1136. solve it immediately and get the optimized minimum. Its @code{integer}
  1137. parameter allows to decide whether integer resolution should be computed
  1138. and returned.
  1139. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  1140. dependencies into account. It must be understood that the linear programming
  1141. problem size is quadratic with the number of tasks and thus the time to solve it
  1142. will be very long, it could be minutes for just a few dozen tasks. You should
  1143. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  1144. problem to MPS format and then use a better solver, @code{glpsol} might be
  1145. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  1146. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  1147. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  1148. of @code{lp_solve}. For instance, we often just use
  1149. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  1150. the @code{-gr} option can also be quite useful.
  1151. Setting @code{deps} to 0 will only take into account the actual computations
  1152. on processing units. It however still properly takes into account the varying
  1153. performances of kernels and processing units, which is quite more accurate than
  1154. just comparing StarPU performances with the fastest of the kernels being used.
  1155. The @code{prio} parameter tells StarPU whether to simulate taking into account
  1156. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  1157. tasks before less prioritized tasks, to check to which extend this results
  1158. to a less optimal solution. This increases even more computation time.
  1159. Note that for simplicity, all this however doesn't take into account data
  1160. transfers, which are assumed to be completely overlapped.
  1161. @node Insert Task Utility
  1162. @section Insert Task Utility
  1163. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  1164. the creation and submission of tasks.
  1165. @deftypefun int starpu_insert_task (starpu_codelet *@var{cl}, ...)
  1166. Create and submit a task corresponding to @var{cl} with the following
  1167. arguments. The argument list must be zero-terminated.
  1168. The arguments following the codelets can be of the following types:
  1169. @itemize
  1170. @item
  1171. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1172. @item
  1173. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1174. the size of the constant;
  1175. @item
  1176. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1177. @item
  1178. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1179. argument to the callback function;
  1180. @item
  1181. @code{STARPU_CALLBACK_WITH_ARG} followed by two pointers: one to a callback
  1182. function, and the other to be given as an argument to the callback
  1183. function; this is equivalent to using both @code{STARPU_CALLBACK} and
  1184. @code{STARPU_CALLBACK_WITH_ARG}
  1185. @item
  1186. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1187. @end itemize
  1188. Parameters to be passed to the codelet implementation are defined
  1189. through the type @code{STARPU_VALUE}. The function
  1190. @code{starpu_unpack_cl_args} must be called within the codelet
  1191. implementation to retrieve them.
  1192. @end deftypefun
  1193. Here the implementation of the codelet:
  1194. @smallexample
  1195. void func_cpu(void *descr[], void *_args)
  1196. @{
  1197. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1198. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1199. int ifactor;
  1200. float ffactor;
  1201. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1202. *x0 = *x0 * ifactor;
  1203. *x1 = *x1 * ffactor;
  1204. @}
  1205. starpu_codelet mycodelet = @{
  1206. .where = STARPU_CPU,
  1207. .cpu_func = func_cpu,
  1208. .nbuffers = 2
  1209. @};
  1210. @end smallexample
  1211. And the call to the @code{starpu_insert_task} wrapper:
  1212. @smallexample
  1213. starpu_insert_task(&mycodelet,
  1214. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1215. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1216. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1217. 0);
  1218. @end smallexample
  1219. The call to @code{starpu_insert_task} is equivalent to the following
  1220. code:
  1221. @smallexample
  1222. struct starpu_task *task = starpu_task_create();
  1223. task->cl = &mycodelet;
  1224. task->buffers[0].handle = data_handles[0];
  1225. task->buffers[0].mode = STARPU_RW;
  1226. task->buffers[1].handle = data_handles[1];
  1227. task->buffers[1].mode = STARPU_RW;
  1228. char *arg_buffer;
  1229. size_t arg_buffer_size;
  1230. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1231. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1232. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1233. 0);
  1234. task->cl_arg = arg_buffer;
  1235. task->cl_arg_size = arg_buffer_size;
  1236. int ret = starpu_task_submit(task);
  1237. @end smallexample
  1238. If some part of the task insertion depends on the value of some computation,
  1239. the @code{STARPU_DATA_ACQUIRE_CB} macro can be very convenient. For
  1240. instance, assuming that the index variable @code{i} was registered as handle
  1241. @code{i_handle}:
  1242. @smallexample
  1243. /* Compute which portion we will work on, e.g. pivot */
  1244. starpu_insert_task(&which_index, STARPU_W, i_handle, 0);
  1245. /* And submit the corresponding task */
  1246. STARPU_DATA_ACQUIRE_CB(i_handle, STARPU_R, starpu_insert_task(&work, STARPU_RW, A_handle[i], 0));
  1247. @end smallexample
  1248. The @code{STARPU_DATA_ACQUIRE_CB} macro submits an asynchronous request for
  1249. acquiring data @code{i} for the main application, and will execute the code
  1250. given as third parameter when it is acquired. In other words, as soon as the
  1251. value of @code{i} computed by the @code{which_index} codelet can be read, the
  1252. portion of code passed as third parameter of @code{STARPU_DATA_ACQUIRE_CB} will
  1253. be executed, and is allowed to read from @code{i} to use it e.g. as an
  1254. index. Note that this macro is only avaible when compiling StarPU with
  1255. the compiler @code{gcc}.
  1256. @node Debugging
  1257. @section Debugging
  1258. StarPU provides several tools to help debugging aplications. Execution traces
  1259. can be generated and displayed graphically, see @ref{Generating traces}. Some
  1260. gdb helpers are also provided to show the whole StarPU state:
  1261. @smallexample
  1262. (gdb) source tools/gdbinit
  1263. (gdb) help starpu
  1264. @end smallexample
  1265. @node More examples
  1266. @section More examples
  1267. More examples are available in the StarPU sources in the @code{examples/}
  1268. directory. Simple examples include:
  1269. @table @asis
  1270. @item @code{incrementer/}:
  1271. Trivial incrementation test.
  1272. @item @code{basic_examples/}:
  1273. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1274. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1275. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1276. interface, and an example using the variable data interface.
  1277. @item @code{matvecmult/}:
  1278. OpenCL example from NVidia, adapted to StarPU.
  1279. @item @code{axpy/}:
  1280. AXPY CUBLAS operation adapted to StarPU.
  1281. @item @code{fortran/}:
  1282. Example of Fortran bindings.
  1283. @end table
  1284. More advanced examples include:
  1285. @table @asis
  1286. @item @code{filters/}:
  1287. Examples using filters, as shown in @ref{Partitioning Data}.
  1288. @item @code{lu/}:
  1289. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1290. @item @code{cholesky/}:
  1291. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1292. @end table
  1293. @c ---------------------------------------------------------------------
  1294. @c Performance options
  1295. @c ---------------------------------------------------------------------
  1296. @node Performance optimization
  1297. @chapter How to optimize performance with StarPU
  1298. TODO: improve!
  1299. @menu
  1300. * Data management::
  1301. * Task submission::
  1302. * Task priorities::
  1303. * Task scheduling policy::
  1304. * Performance model calibration::
  1305. * Task distribution vs Data transfer::
  1306. * Data prefetch::
  1307. * Power-based scheduling::
  1308. * Profiling::
  1309. * CUDA-specific optimizations::
  1310. @end menu
  1311. Simply encapsulating application kernels into tasks already permits to
  1312. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1313. few additional changes are needed.
  1314. @node Data management
  1315. @section Data management
  1316. When the application allocates data, whenever possible it should use the
  1317. @code{starpu_malloc} function, which will ask CUDA or
  1318. OpenCL to make the allocation itself and pin the corresponding allocated
  1319. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1320. transfer to overlap with computations. Otherwise, the trace will show that the
  1321. @code{DriverCopyAsync} state takes a lot of time, this is because CUDA or OpenCL
  1322. then reverts to synchronous transfers.
  1323. By default, StarPU leaves replicates of data wherever they were used, in case they
  1324. will be re-used by other tasks, thus saving the data transfer time. When some
  1325. task modifies some data, all the other replicates are invalidated, and only the
  1326. processing unit which ran that task will have a valid replicate of the data. If the application knows
  1327. that this data will not be re-used by further tasks, it should advise StarPU to
  1328. immediately replicate it to a desired list of memory nodes (given through a
  1329. bitmask). This can be understood like the write-through mode of CPU caches.
  1330. @example
  1331. starpu_data_set_wt_mask(img_handle, 1<<0);
  1332. @end example
  1333. will for instance request to always automatically transfer a replicate into the
  1334. main memory (node 0), as bit 0 of the write-through bitmask is being set.
  1335. @example
  1336. starpu_data_set_wt_mask(img_handle, ~0U);
  1337. @end example
  1338. will request to always automatically broadcast the updated data to all memory
  1339. nodes.
  1340. @node Task submission
  1341. @section Task submission
  1342. To let StarPU make online optimizations, tasks should be submitted
  1343. asynchronously as much as possible. Ideally, all the tasks should be
  1344. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1345. @code{starpu_data_unregister} be done to wait for
  1346. termination. StarPU will then be able to rework the whole schedule, overlap
  1347. computation with communication, manage accelerator local memory usage, etc.
  1348. @node Task priorities
  1349. @section Task priorities
  1350. By default, StarPU will consider the tasks in the order they are submitted by
  1351. the application. If the application programmer knows that some tasks should
  1352. be performed in priority (for instance because their output is needed by many
  1353. other tasks and may thus be a bottleneck if not executed early enough), the
  1354. @code{priority} field of the task structure should be set to transmit the
  1355. priority information to StarPU.
  1356. @node Task scheduling policy
  1357. @section Task scheduling policy
  1358. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1359. because it provides correct load balance even if the application codelets do not
  1360. have performance models. If your application codelets have performance models
  1361. (@pxref{Performance model example} for examples showing how to do it),
  1362. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1363. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1364. the list of available schedulers.
  1365. The @b{eager} scheduler uses a central task queue, from which workers draw tasks
  1366. to work on. This however does not permit to prefetch data since the scheduling
  1367. decision is taken late. If a task has a non-0 priority, it is put at the front of the queue.
  1368. The @b{prio} scheduler also uses a central task queue, but sorts tasks by
  1369. priority (between -5 and 5).
  1370. The @b{random} scheduler distributes tasks randomly according to assumed worker
  1371. overall performance.
  1372. The @b{ws} (work stealing) scheduler schedules tasks on the local worker by
  1373. default. When a worker becomes idle, it steals a task from the most loaded
  1374. worker.
  1375. The @b{dm} (deque model) scheduler uses task execution performance models into account to
  1376. perform an HEFT-similar scheduling strategy: it schedules tasks where their
  1377. termination time will be minimal.
  1378. The @b{dmda} (deque model data aware) scheduler is similar to dm, it also takes
  1379. into account data transfer time.
  1380. The @b{dmdar} (deque model data aware ready) scheduler is similar to dmda,
  1381. it also sorts tasks on per-worker queues by number of already-available data
  1382. buffers.
  1383. The @b{dmdas} (deque model data aware sorted) scheduler is similar to dmda, it
  1384. also supports arbitrary priority values.
  1385. The @b{heft} (HEFT) scheduler is similar to dmda, it also supports task bundles.
  1386. The @b{pheft} (parallel HEFT) scheduler is similar to heft, it also supports
  1387. parallel tasks (still experimental).
  1388. The @b{pgreedy} (parallel greedy) scheduler is similar to greedy, it also
  1389. supports parallel tasks (still experimental).
  1390. @node Performance model calibration
  1391. @section Performance model calibration
  1392. Most schedulers are based on an estimation of codelet duration on each kind
  1393. of processing unit. For this to be possible, the application programmer needs
  1394. to configure a performance model for the codelets of the application (see
  1395. @ref{Performance model example} for instance). History-based performance models
  1396. use on-line calibration. StarPU will automatically calibrate codelets
  1397. which have never been calibrated yet, and save the result in
  1398. @code{~/.starpu/sampling/codelets}.
  1399. The models are indexed by machine name. To share the models between machines (e.g. for a homogeneous cluster), use @code{export STARPU_HOSTNAME=some_global_name}. To force continuing calibration, use
  1400. @code{export STARPU_CALIBRATE=1} . This may be necessary if your application
  1401. has not-so-stable performance. StarPU will force calibration (and thus ignore
  1402. the current result) until 10 (STARPU_CALIBRATION_MINIMUM) measurements have been
  1403. made on each architecture, to avoid badly scheduling tasks just because the
  1404. first measurements were not so good. Details on the current performance model status
  1405. can be obtained from the @code{starpu_perfmodel_display} command: the @code{-l}
  1406. option lists the available performance models, and the @code{-s} option permits
  1407. to choose the performance model to be displayed. The result looks like:
  1408. @example
  1409. $ starpu_perfmodel_display -s starpu_dlu_lu_model_22
  1410. performance model for cpu
  1411. # hash size mean dev n
  1412. 880805ba 98304 2.731309e+02 6.010210e+01 1240
  1413. b50b6605 393216 1.469926e+03 1.088828e+02 1240
  1414. 5c6c3401 1572864 1.125983e+04 3.265296e+03 1240
  1415. @end example
  1416. Which shows that for the LU 22 kernel with a 1.5MiB matrix, the average
  1417. execution time on CPUs was about 12ms, with a 2ms standard deviation, over
  1418. 1240 samples. It is a good idea to check this before doing actual performance
  1419. measurements.
  1420. A graph can be drawn by using the @code{starpu_perfmodel_plot}:
  1421. @example
  1422. $ starpu_perfmodel_plot -s starpu_dlu_lu_model_22
  1423. 98304 393216 1572864
  1424. $ gnuplot starpu_starpu_dlu_lu_model_22.gp
  1425. $ gv starpu_starpu_dlu_lu_model_22.eps
  1426. @end example
  1427. If a kernel source code was modified (e.g. performance improvement), the
  1428. calibration information is stale and should be dropped, to re-calibrate from
  1429. start. This can be done by using @code{export STARPU_CALIBRATE=2}.
  1430. Note: due to CUDA limitations, to be able to measure kernel duration,
  1431. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1432. disables data transfer / computation overlapping, and should thus not be used
  1433. for eventual benchmarks. Note 2: history-based performance models get calibrated
  1434. only if a performance-model-based scheduler is chosen.
  1435. @node Task distribution vs Data transfer
  1436. @section Task distribution vs Data transfer
  1437. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1438. thus needs to find a balance between both. The target function that the
  1439. @code{dmda} scheduler of StarPU
  1440. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1441. @code{T_execution} is the estimated execution time of the codelet (usually
  1442. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1443. latter is estimated based on bus calibration before execution start,
  1444. i.e. with an idle machine, thus without contention. You can force bus re-calibration by running
  1445. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1446. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance,
  1447. since during real application execution, contention makes transfer times bigger.
  1448. This is of course imprecise, but in practice, a rough estimation already gives
  1449. the good results that a precise estimation would give.
  1450. @node Data prefetch
  1451. @section Data prefetch
  1452. The @code{heft}, @code{dmda} and @code{pheft} scheduling policies perform data prefetch (see @ref{STARPU_PREFETCH}):
  1453. as soon as a scheduling decision is taken for a task, requests are issued to
  1454. transfer its required data to the target processing unit, if needeed, so that
  1455. when the processing unit actually starts the task, its data will hopefully be
  1456. already available and it will not have to wait for the transfer to finish.
  1457. The application may want to perform some manual prefetching, for several reasons
  1458. such as excluding initial data transfers from performance measurements, or
  1459. setting up an initial statically-computed data distribution on the machine
  1460. before submitting tasks, which will thus guide StarPU toward an initial task
  1461. distribution (since StarPU will try to avoid further transfers).
  1462. This can be achieved by giving the @code{starpu_data_prefetch_on_node} function
  1463. the handle and the desired target memory node.
  1464. @node Power-based scheduling
  1465. @section Power-based scheduling
  1466. If the application can provide some power performance model (through
  1467. the @code{power_model} field of the codelet structure), StarPU will
  1468. take it into account when distributing tasks. The target function that
  1469. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1470. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1471. is the estimated task consumption in Joules. To tune this parameter, use
  1472. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1473. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1474. @code{alpha} and @code{beta} to zero permits to only take into account power consumption.
  1475. This is however not sufficient to correctly optimize power: the scheduler would
  1476. simply tend to run all computations on the most energy-conservative processing
  1477. unit. To account for the consumption of the whole machine (including idle
  1478. processing units), the idle power of the machine should be given by setting
  1479. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1480. be obtained from the machine power supplier.
  1481. The power actually consumed by the total execution can be displayed by setting
  1482. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1483. @node Profiling
  1484. @section Profiling
  1485. A quick view of how many tasks each worker has executed can be obtained by setting
  1486. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1487. execution did happen on accelerators without penalizing performance with
  1488. the profiling overhead.
  1489. A quick view of how much data transfers have been issued can be obtained by setting
  1490. @code{export STARPU_BUS_STATS=1} .
  1491. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1492. calling @code{starpu_profiling_status_set} from the source code.
  1493. Statistics on the execution can then be obtained by using @code{export
  1494. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1495. More details on performance feedback are provided by the next chapter.
  1496. @node CUDA-specific optimizations
  1497. @section CUDA-specific optimizations
  1498. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1499. communications and the codelet computations if the application does not use a
  1500. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1501. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1502. operations. For instance:
  1503. @example
  1504. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1505. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1506. @end example
  1507. StarPU already does appropriate calls for the CUBLAS library.
  1508. Unfortunately, some CUDA libraries do not have stream variants of
  1509. kernels. That will lower the potential for overlapping.
  1510. @c ---------------------------------------------------------------------
  1511. @c Performance feedback
  1512. @c ---------------------------------------------------------------------
  1513. @node Performance feedback
  1514. @chapter Performance feedback
  1515. @menu
  1516. * On-line:: On-line performance feedback
  1517. * Off-line:: Off-line performance feedback
  1518. * Codelet performance:: Performance of codelets
  1519. @end menu
  1520. @node On-line
  1521. @section On-line performance feedback
  1522. @menu
  1523. * Enabling monitoring:: Enabling on-line performance monitoring
  1524. * Task feedback:: Per-task feedback
  1525. * Codelet feedback:: Per-codelet feedback
  1526. * Worker feedback:: Per-worker feedback
  1527. * Bus feedback:: Bus-related feedback
  1528. * StarPU-Top:: StarPU-Top interface
  1529. @end menu
  1530. @node Enabling monitoring
  1531. @subsection Enabling on-line performance monitoring
  1532. In order to enable online performance monitoring, the application can call
  1533. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1534. detect whether monitoring is already enabled or not by calling
  1535. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1536. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1537. can also be set to 1 to achieve the same effect.
  1538. Likewise, performance monitoring is stopped by calling
  1539. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1540. does not reset the performance counters so that the application may consult
  1541. them later on.
  1542. More details about the performance monitoring API are available in section
  1543. @ref{Profiling API}.
  1544. @node Task feedback
  1545. @subsection Per-task feedback
  1546. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1547. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1548. structure when a task terminates.
  1549. This structure is automatically destroyed when the task structure is destroyed,
  1550. either automatically or by calling @code{starpu_task_destroy}.
  1551. The @code{starpu_task_profiling_info} structure indicates the date when the
  1552. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1553. terminated (@code{end_time}), relative to the initialization of
  1554. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1555. that has executed the task (@code{workerid}).
  1556. These date are stored as @code{timespec} structures which the user may convert
  1557. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1558. function.
  1559. It it worth noting that the application may directly access this structure from
  1560. the callback executed at the end of the task. The @code{starpu_task} structure
  1561. associated to the callback currently being executed is indeed accessible with
  1562. the @code{starpu_get_current_task()} function.
  1563. @node Codelet feedback
  1564. @subsection Per-codelet feedback
  1565. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1566. an array of counters. The i-th entry of the array is incremented every time a
  1567. task implementing the codelet is executed on the i-th worker.
  1568. This array is not reinitialized when profiling is enabled or disabled.
  1569. @node Worker feedback
  1570. @subsection Per-worker feedback
  1571. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1572. function is a @code{starpu_worker_profiling_info} structure that gives
  1573. statistics about the specified worker. This structure specifies when StarPU
  1574. started collecting profiling information for that worker (@code{start_time}),
  1575. the duration of the profiling measurement interval (@code{total_time}), the
  1576. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1577. because there is no task to execute at all (@code{sleeping_time}), and the
  1578. number of tasks that were executed while profiling was enabled.
  1579. These values give an estimation of the proportion of time spent do real work,
  1580. and the time spent either sleeping because there are not enough executable
  1581. tasks or simply wasted in pure StarPU overhead.
  1582. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1583. information associated to a worker.
  1584. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1585. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1586. generate a graphic showing the evolution of these values during the time, for
  1587. the different workers.
  1588. @node Bus feedback
  1589. @subsection Bus-related feedback
  1590. TODO
  1591. @c how to enable/disable performance monitoring
  1592. @c what kind of information do we get ?
  1593. The bus speed measured by StarPU can be displayed by using the
  1594. @code{starpu_machine_display} tool, for instance:
  1595. @example
  1596. StarPU has found :
  1597. 3 CUDA devices
  1598. CUDA 0 (Tesla C2050 02:00.0)
  1599. CUDA 1 (Tesla C2050 03:00.0)
  1600. CUDA 2 (Tesla C2050 84:00.0)
  1601. from to RAM to CUDA 0 to CUDA 1 to CUDA 2
  1602. RAM 0.000000 5176.530428 5176.492994 5191.710722
  1603. CUDA 0 4523.732446 0.000000 2414.074751 2417.379201
  1604. CUDA 1 4523.718152 2414.078822 0.000000 2417.375119
  1605. CUDA 2 4534.229519 2417.069025 2417.060863 0.000000
  1606. @end example
  1607. @node StarPU-Top
  1608. @subsection StarPU-Top interface
  1609. StarPU-Top is an interface which remotely displays the on-line state of a StarPU
  1610. application and permits the user to change parameters on the fly.
  1611. Variables to be monitored can be registered by calling the
  1612. @code{starputop_add_data_boolean}, @code{starputop_add_data_integer},
  1613. @code{starputop_add_data_float} functions, e.g.:
  1614. @example
  1615. starputop_data *data = starputop_add_data_integer("mynum", 0, 100, 1);
  1616. @end example
  1617. The application should then call @code{starputop_init_and_wait} to give its name
  1618. and wait for StarPU-Top to get a start request from the user. The name is used
  1619. by StarPU-Top to quickly reload a previously-saved layout of parameter display.
  1620. @example
  1621. starputop_init_and_wait("the application");
  1622. @end example
  1623. The new values can then be provided thanks to
  1624. @code{starputop_update_data_boolean}, @code{starputop_update_data_integer},
  1625. @code{starputop_update_data_float}, e.g.:
  1626. @example
  1627. starputop_update_data_integer(data, mynum);
  1628. @end example
  1629. Updateable parameters can be registered thanks to @code{starputop_register_parameter_boolean}, @code{starputop_register_parameter_integer}, @code{starputop_register_parameter_float}, e.g.:
  1630. @example
  1631. float apha;
  1632. starputop_register_parameter_float("alpha", &alpha, 0, 10, modif_hook);
  1633. @end example
  1634. @code{modif_hook} is a function which will be called when the parameter is being modified, it can for instance print the new value:
  1635. @example
  1636. void modif_hook(struct starputop_param_t *d) @{
  1637. fprintf(stderr,"%s has been modified: %f\n", d->name, alpha);
  1638. @}
  1639. @end example
  1640. Task schedulers should notify StarPU-Top when it has decided when a task will be
  1641. scheduled, so that it can show it in its Gantt chart, for instance:
  1642. @example
  1643. starputop_task_prevision(task, workerid, begin, end);
  1644. @end example
  1645. Starting StarPU-Top and the application can be done two ways:
  1646. @itemize
  1647. @item The application is started by hand on some machine (and thus already
  1648. waiting for the start event). In the Preference dialog of StarPU-Top, the SSH
  1649. checkbox should be unchecked, and the hostname and port (default is 2011) on
  1650. which the application is already running should be specified. Clicking on the
  1651. connection button will thus connect to the already-running application.
  1652. @item StarPU-Top is started first, and clicking on the connection button will
  1653. start the application itself (possibly on a remote machine). The SSH checkbox
  1654. should be checked, and a command line provided, e.g.:
  1655. @example
  1656. ssh myserver STARPU_SCHED=heft ./application
  1657. @end example
  1658. If port 2011 of the remote machine can not be accessed directly, an ssh port bridge should be added:
  1659. @example
  1660. ssh -L 2011:localhost:2011 myserver STARPU_SCHED=heft ./application
  1661. @end example
  1662. and "localhost" should be used as IP Address to connect to.
  1663. @end itemize
  1664. @node Off-line
  1665. @section Off-line performance feedback
  1666. @menu
  1667. * Generating traces:: Generating traces with FxT
  1668. * Gantt diagram:: Creating a Gantt Diagram
  1669. * DAG:: Creating a DAG with graphviz
  1670. * starpu-top:: Monitoring activity
  1671. @end menu
  1672. @node Generating traces
  1673. @subsection Generating traces with FxT
  1674. StarPU can use the FxT library (see
  1675. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1676. with a limited runtime overhead.
  1677. You can either get a tarball:
  1678. @example
  1679. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1680. @end example
  1681. or use the FxT library from CVS (autotools are required):
  1682. @example
  1683. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1684. % ./bootstrap
  1685. @end example
  1686. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1687. done following the standard procedure:
  1688. @example
  1689. % ./configure --prefix=$FXTDIR
  1690. % make
  1691. % make install
  1692. @end example
  1693. In order to have StarPU to generate traces, StarPU should be configured with
  1694. the @code{--with-fxt} option:
  1695. @example
  1696. $ ./configure --with-fxt=$FXTDIR
  1697. @end example
  1698. Or you can simply point the @code{PKG_CONFIG_PATH} to
  1699. @code{$FXTDIR/lib/pkgconfig} and pass @code{--with-fxt} to @code{./configure}
  1700. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1701. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1702. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1703. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1704. @code{/tmp/} directory by default, or by the directory specified by
  1705. the @code{STARPU_FXT_PREFIX} environment variable.
  1706. @node Gantt diagram
  1707. @subsection Creating a Gantt Diagram
  1708. When the FxT trace file @code{filename} has been generated, it is possible to
  1709. generate a trace in the Paje format by calling:
  1710. @example
  1711. % starpu_fxt_tool -i filename
  1712. @end example
  1713. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1714. to 1 before application execution will make StarPU do it automatically at
  1715. application shutdown.
  1716. This will create a @code{paje.trace} file in the current directory that can be
  1717. inspected with the ViTE trace visualizing open-source tool. More information
  1718. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1719. possible to open the @code{paje.trace} file with ViTE by using the following
  1720. command:
  1721. @example
  1722. % vite paje.trace
  1723. @end example
  1724. @node DAG
  1725. @subsection Creating a DAG with graphviz
  1726. When the FxT trace file @code{filename} has been generated, it is possible to
  1727. generate a task graph in the DOT format by calling:
  1728. @example
  1729. $ starpu_fxt_tool -i filename
  1730. @end example
  1731. This will create a @code{dag.dot} file in the current directory. This file is a
  1732. task graph described using the DOT language. It is possible to get a
  1733. graphical output of the graph by using the graphviz library:
  1734. @example
  1735. $ dot -Tpdf dag.dot -o output.pdf
  1736. @end example
  1737. @node starpu-top
  1738. @subsection Monitoring activity
  1739. When the FxT trace file @code{filename} has been generated, it is possible to
  1740. generate a activity trace by calling:
  1741. @example
  1742. $ starpu_fxt_tool -i filename
  1743. @end example
  1744. This will create an @code{activity.data} file in the current
  1745. directory. A profile of the application showing the activity of StarPU
  1746. during the execution of the program can be generated:
  1747. @example
  1748. $ starpu_top activity.data
  1749. @end example
  1750. This will create a file named @code{activity.eps} in the current directory.
  1751. This picture is composed of two parts.
  1752. The first part shows the activity of the different workers. The green sections
  1753. indicate which proportion of the time was spent executed kernels on the
  1754. processing unit. The red sections indicate the proportion of time spent in
  1755. StartPU: an important overhead may indicate that the granularity may be too
  1756. low, and that bigger tasks may be appropriate to use the processing unit more
  1757. efficiently. The black sections indicate that the processing unit was blocked
  1758. because there was no task to process: this may indicate a lack of parallelism
  1759. which may be alleviated by creating more tasks when it is possible.
  1760. The second part of the @code{activity.eps} picture is a graph showing the
  1761. evolution of the number of tasks available in the system during the execution.
  1762. Ready tasks are shown in black, and tasks that are submitted but not
  1763. schedulable yet are shown in grey.
  1764. @node Codelet performance
  1765. @section Performance of codelets
  1766. The performance model of codelets can be examined by using the
  1767. @code{starpu_perfmodel_display} tool:
  1768. @example
  1769. $ starpu_perfmodel_display -l
  1770. file: <malloc_pinned.hannibal>
  1771. file: <starpu_slu_lu_model_21.hannibal>
  1772. file: <starpu_slu_lu_model_11.hannibal>
  1773. file: <starpu_slu_lu_model_22.hannibal>
  1774. file: <starpu_slu_lu_model_12.hannibal>
  1775. @end example
  1776. Here, the codelets of the lu example are available. We can examine the
  1777. performance of the 22 kernel:
  1778. @example
  1779. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1780. performance model for cpu
  1781. # hash size mean dev n
  1782. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1783. performance model for cuda_0
  1784. # hash size mean dev n
  1785. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1786. performance model for cuda_1
  1787. # hash size mean dev n
  1788. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1789. performance model for cuda_2
  1790. # hash size mean dev n
  1791. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1792. @end example
  1793. We can see that for the given size, over a sample of a few hundreds of
  1794. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1795. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1796. CPUs.
  1797. The @code{starpu_regression_display} tool does the same for regression-based
  1798. performance models. It also writes a @code{.gp} file in the current directory,
  1799. to be run in the @code{gnuplot} tool, which shows the corresponding curve.
  1800. @c ---------------------------------------------------------------------
  1801. @c MPI support
  1802. @c ---------------------------------------------------------------------
  1803. @node StarPU MPI support
  1804. @chapter StarPU MPI support
  1805. The integration of MPI transfers within task parallelism is done in a
  1806. very natural way by the means of asynchronous interactions between the
  1807. application and StarPU. This is implemented in a separate libstarpumpi library
  1808. which basically provides "StarPU" equivalents of @code{MPI_*} functions, where
  1809. @code{void *} buffers are replaced with @code{starpu_data_handle}s, and all
  1810. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI. The user has to
  1811. use the usual @code{mpirun} command of the MPI implementation to start StarPU on
  1812. the different MPI nodes.
  1813. An MPI Insert Task function provides an even more seamless transition to a
  1814. distributed application, by automatically issuing all required data transfers
  1815. according to the task graph and an application-provided distribution.
  1816. @menu
  1817. * The API::
  1818. * Simple Example::
  1819. * MPI Insert Task Utility::
  1820. * MPI Collective Operations::
  1821. @end menu
  1822. @node The API
  1823. @section The API
  1824. @subsection Compilation
  1825. The flags required to compile or link against the MPI layer are then
  1826. accessible with the following commands:
  1827. @example
  1828. % pkg-config --cflags libstarpumpi # options for the compiler
  1829. % pkg-config --libs libstarpumpi # options for the linker
  1830. @end example
  1831. @subsection Initialisation
  1832. @deftypefun int starpu_mpi_initialize (void)
  1833. Initializes the starpumpi library. This must be called between calling
  1834. @code{starpu_init} and other @code{starpu_mpi} functions. This
  1835. function does not call @code{MPI_Init}, it should be called beforehand.
  1836. @end deftypefun
  1837. @deftypefun int starpu_mpi_initialize_extended (int *@var{rank}, int *@var{world_size})
  1838. Initializes the starpumpi library. This must be called between calling
  1839. @code{starpu_init} and other @code{starpu_mpi} functions.
  1840. This function calls @code{MPI_Init}, and therefore should be prefered
  1841. to the previous one for MPI implementations which are not thread-safe.
  1842. Returns the current MPI node rank and world size.
  1843. @end deftypefun
  1844. @deftypefun int starpu_mpi_shutdown (void)
  1845. Cleans the starpumpi library. This must be called between calling
  1846. @code{starpu_mpi} functions and @code{starpu_shutdown}.
  1847. @code{MPI_Finalize} will be called if StarPU-MPI has been initialized
  1848. by calling @code{starpu_mpi_initialize_extended}.
  1849. @end deftypefun
  1850. @subsection Communication
  1851. @deftypefun int starpu_mpi_send (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1852. @end deftypefun
  1853. @deftypefun int starpu_mpi_recv (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  1854. @end deftypefun
  1855. @deftypefun int starpu_mpi_isend (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1856. @end deftypefun
  1857. @deftypefun int starpu_mpi_irecv (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1858. @end deftypefun
  1859. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1860. @end deftypefun
  1861. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1862. @end deftypefun
  1863. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  1864. @end deftypefun
  1865. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  1866. @end deftypefun
  1867. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  1868. @end deftypefun
  1869. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1870. When the transfer is completed, the tag is unlocked
  1871. @end deftypefun
  1872. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1873. @end deftypefun
  1874. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1875. Asynchronously send an array of buffers, and unlocks the tag once all
  1876. of them are transmitted.
  1877. @end deftypefun
  1878. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1879. @end deftypefun
  1880. @page
  1881. @node Simple Example
  1882. @section Simple Example
  1883. @cartouche
  1884. @smallexample
  1885. void increment_token(void)
  1886. @{
  1887. struct starpu_task *task = starpu_task_create();
  1888. task->cl = &increment_cl;
  1889. task->buffers[0].handle = token_handle;
  1890. task->buffers[0].mode = STARPU_RW;
  1891. starpu_task_submit(task);
  1892. @}
  1893. @end smallexample
  1894. @end cartouche
  1895. @cartouche
  1896. @smallexample
  1897. int main(int argc, char **argv)
  1898. @{
  1899. int rank, size;
  1900. starpu_init(NULL);
  1901. starpu_mpi_initialize_extended(&rank, &size);
  1902. starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));
  1903. unsigned nloops = NITER;
  1904. unsigned loop;
  1905. unsigned last_loop = nloops - 1;
  1906. unsigned last_rank = size - 1;
  1907. @end smallexample
  1908. @end cartouche
  1909. @cartouche
  1910. @smallexample
  1911. for (loop = 0; loop < nloops; loop++) @{
  1912. int tag = loop*size + rank;
  1913. if (loop == 0 && rank == 0)
  1914. @{
  1915. token = 0;
  1916. fprintf(stdout, "Start with token value %d\n", token);
  1917. @}
  1918. else
  1919. @{
  1920. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  1921. MPI_COMM_WORLD, NULL, NULL);
  1922. @}
  1923. increment_token();
  1924. if (loop == last_loop && rank == last_rank)
  1925. @{
  1926. starpu_data_acquire(token_handle, STARPU_R);
  1927. fprintf(stdout, "Finished : token value %d\n", token);
  1928. starpu_data_release(token_handle);
  1929. @}
  1930. else
  1931. @{
  1932. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  1933. MPI_COMM_WORLD, NULL, NULL);
  1934. @}
  1935. @}
  1936. starpu_task_wait_for_all();
  1937. @end smallexample
  1938. @end cartouche
  1939. @cartouche
  1940. @smallexample
  1941. starpu_mpi_shutdown();
  1942. starpu_shutdown();
  1943. if (rank == last_rank)
  1944. @{
  1945. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  1946. STARPU_ASSERT(token == nloops*size);
  1947. @}
  1948. @end smallexample
  1949. @end cartouche
  1950. @page
  1951. @node MPI Insert Task Utility
  1952. @section MPI Insert Task Utility
  1953. To save the programmer from having to explicit all communications, StarPU
  1954. provides an "MPI Insert Task Utility". The principe is that the application
  1955. decides a distribution of the data over the MPI nodes by allocating it and
  1956. notifying StarPU of that decision, i.e. tell StarPU which MPI node "owns" which
  1957. data. All MPI nodes then process the whole task graph, and StarPU automatically
  1958. determines which node actually execute which task, as well as the required MPI
  1959. transfers.
  1960. @deftypefun int starpu_data_set_rank (starpu_data_handle @var{handle}, int @var{mpi_rank})
  1961. Tell StarPU-MPI which MPI node "owns" a given data, that is, the node which will
  1962. always keep an up-to-date value, and will by default execute tasks which write
  1963. to it.
  1964. @end deftypefun
  1965. @deftypefun int starpu_data_get_rank (starpu_data_handle @var{handle})
  1966. Returns the last value set by @code{starpu_data_set_rank}.
  1967. @end deftypefun
  1968. @deftypefun void starpu_mpi_insert_task (MPI_Comm @var{comm}, starpu_codelet *@var{cl}, ...)
  1969. Create and submit a task corresponding to @var{cl} with the following
  1970. arguments. The argument list must be zero-terminated.
  1971. The arguments following the codelets are the same types as for the
  1972. function @code{starpu_insert_task} defined in @ref{Insert Task
  1973. Utility}. The extra argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  1974. integer allows to specify the MPI node to execute the codelet. It is also
  1975. possible to specify that the node owning a specific data will execute
  1976. the codelet, by using @code{STARPU_EXECUTE_ON_DATA} followed by a data
  1977. handle.
  1978. The internal algorithm is as follows:
  1979. @enumerate
  1980. @item Find out whether we (as an MPI node) are to execute the codelet
  1981. because we own the data to be written to. If different nodes own data
  1982. to be written to, the argument @code{STARPU_EXECUTE_ON_NODE} or
  1983. @code{STARPU_EXECUTE_ON_DATA} has to be used to specify which MPI node will
  1984. execute the task.
  1985. @item Send and receive data as requested. Nodes owning data which need to be
  1986. read by the task are sending them to the MPI node which will execute it. The
  1987. latter receives them.
  1988. @item Execute the codelet. This is done by the MPI node selected in the
  1989. 1st step of the algorithm.
  1990. @item In the case when different MPI nodes own data to be written to, send
  1991. written data back to their owners.
  1992. @end enumerate
  1993. The algorithm also includes a cache mechanism that allows not to send
  1994. data twice to the same MPI node, unless the data has been modified.
  1995. @end deftypefun
  1996. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle @var{data_handle}, int @var{node})
  1997. @end deftypefun
  1998. @page
  1999. Here an stencil example showing how to use @code{starpu_mpi_insert_task}. One
  2000. first needs to define a distribution function which specifies the
  2001. locality of the data. Note that that distribution information needs to
  2002. be given to StarPU by calling @code{starpu_data_set_rank}.
  2003. @cartouche
  2004. @smallexample
  2005. /* Returns the MPI node number where data is */
  2006. int my_distrib(int x, int y, int nb_nodes) @{
  2007. /* Cyclic distrib */
  2008. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  2009. // /* Linear distrib */
  2010. // return x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * X;
  2011. @}
  2012. @end smallexample
  2013. @end cartouche
  2014. Now the data can be registered within StarPU. Data which are not
  2015. owned but will be needed for computations can be registered through
  2016. the lazy allocation mechanism, i.e. with a @code{home_node} set to -1.
  2017. StarPU will automatically allocate the memory when it is used for the
  2018. first time.
  2019. One can note an optimization here (the @code{else if} test): we only register
  2020. data which will be needed by the tasks that we will execute.
  2021. @cartouche
  2022. @smallexample
  2023. unsigned matrix[X][Y];
  2024. starpu_data_handle data_handles[X][Y];
  2025. for(x = 0; x < X; x++) @{
  2026. for (y = 0; y < Y; y++) @{
  2027. int mpi_rank = my_distrib(x, y, size);
  2028. if (mpi_rank == rank)
  2029. /* Owning data */
  2030. starpu_variable_data_register(&data_handles[x][y], 0,
  2031. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  2032. else if (rank == mpi_rank+1 || rank == mpi_rank-1)
  2033. /* I don't own that index, but will need it for my computations */
  2034. starpu_variable_data_register(&data_handles[x][y], -1,
  2035. (uintptr_t)NULL, sizeof(unsigned));
  2036. else
  2037. /* I know it's useless to allocate anything for this */
  2038. data_handles[x][y] = NULL;
  2039. if (data_handles[x][y])
  2040. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  2041. @}
  2042. @}
  2043. @end smallexample
  2044. @end cartouche
  2045. Now @code{starpu_mpi_insert_task()} can be called for the different
  2046. steps of the application.
  2047. @cartouche
  2048. @smallexample
  2049. for(loop=0 ; loop<niter; loop++)
  2050. for (x = 1; x < X-1; x++)
  2051. for (y = 1; y < Y-1; y++)
  2052. starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,
  2053. STARPU_RW, data_handles[x][y],
  2054. STARPU_R, data_handles[x-1][y],
  2055. STARPU_R, data_handles[x+1][y],
  2056. STARPU_R, data_handles[x][y-1],
  2057. STARPU_R, data_handles[x][y+1],
  2058. 0);
  2059. starpu_task_wait_for_all();
  2060. @end smallexample
  2061. @end cartouche
  2062. I.e. all MPI nodes process the whole task graph, but as mentioned above, for
  2063. each task, only the MPI node which owns the data being written to (here,
  2064. @code{data_handles[x][y]}) will actually run the task. The other MPI nodes will
  2065. automatically send the required data.
  2066. @node MPI Collective Operations
  2067. @section MPI Collective Operations
  2068. @deftypefun int starpu_mpi_scatter_detached (starpu_data_handle *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm})
  2069. Scatter data among processes of the communicator based on the ownership of
  2070. the data. For each data of the array @var{data_handles}, the
  2071. process @var{root} sends the data to the process owning this data.
  2072. Processes receiving data must have valid data handles to receive them.
  2073. @end deftypefun
  2074. @deftypefun int starpu_mpi_gather_detached (starpu_data_handle *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm})
  2075. Gather data from the different processes of the communicator onto the
  2076. process @var{root}. Each process owning data handle in the array
  2077. @var{data_handles} will send them to the process @var{root}. The
  2078. process @var{root} must have valid data handles to receive the data.
  2079. @end deftypefun
  2080. @page
  2081. @cartouche
  2082. @smallexample
  2083. if (rank == root)
  2084. @{
  2085. /* Allocate the vector */
  2086. vector = malloc(nblocks * sizeof(float *));
  2087. for(x=0 ; x<nblocks ; x++)
  2088. @{
  2089. starpu_malloc((void **)&vector[x], block_size*sizeof(float));
  2090. @}
  2091. @}
  2092. /* Allocate data handles and register data to StarPU */
  2093. data_handles = malloc(nblocks*sizeof(starpu_data_handle *));
  2094. for(x = 0; x < nblocks ; x++)
  2095. @{
  2096. int mpi_rank = my_distrib(x, nodes);
  2097. if (rank == root) @{
  2098. starpu_vector_data_register(&data_handles[x], 0, (uintptr_t)vector[x],
  2099. blocks_size, sizeof(float));
  2100. @}
  2101. else if ((mpi_rank == rank) || ((rank == mpi_rank+1 || rank == mpi_rank-1))) @{
  2102. /* I own that index, or i will need it for my computations */
  2103. starpu_vector_data_register(&data_handles[x], -1, (uintptr_t)NULL,
  2104. block_size, sizeof(float));
  2105. @}
  2106. else @{
  2107. /* I know it's useless to allocate anything for this */
  2108. data_handles[x] = NULL;
  2109. @}
  2110. if (data_handles[x]) @{
  2111. starpu_data_set_rank(data_handles[x], mpi_rank);
  2112. @}
  2113. @}
  2114. /* Scatter the matrix among the nodes */
  2115. starpu_mpi_scatter_detached(data_handles, nblocks, root, MPI_COMM_WORLD);
  2116. /* Calculation */
  2117. for(x = 0; x < nblocks ; x++) @{
  2118. if (data_handles[x]) @{
  2119. int owner = starpu_data_get_rank(data_handles[x]);
  2120. if (owner == rank) @{
  2121. starpu_insert_task(&cl, STARPU_RW, data_handles[x], 0);
  2122. @}
  2123. @}
  2124. @}
  2125. /* Gather the matrix on main node */
  2126. starpu_mpi_gather_detached(data_handles, nblocks, 0, MPI_COMM_WORLD);
  2127. @end smallexample
  2128. @end cartouche
  2129. @c ---------------------------------------------------------------------
  2130. @c Configuration options
  2131. @c ---------------------------------------------------------------------
  2132. @node Configuring StarPU
  2133. @chapter Configuring StarPU
  2134. @menu
  2135. * Compilation configuration::
  2136. * Execution configuration through environment variables::
  2137. @end menu
  2138. @node Compilation configuration
  2139. @section Compilation configuration
  2140. The following arguments can be given to the @code{configure} script.
  2141. @menu
  2142. * Common configuration::
  2143. * Configuring workers::
  2144. * Advanced configuration::
  2145. @end menu
  2146. @node Common configuration
  2147. @subsection Common configuration
  2148. @menu
  2149. * --enable-debug::
  2150. * --enable-fast::
  2151. * --enable-verbose::
  2152. * --enable-coverage::
  2153. @end menu
  2154. @node --enable-debug
  2155. @subsubsection @code{--enable-debug}
  2156. @table @asis
  2157. @item @emph{Description}:
  2158. Enable debugging messages.
  2159. @end table
  2160. @node --enable-fast
  2161. @subsubsection @code{--enable-fast}
  2162. @table @asis
  2163. @item @emph{Description}:
  2164. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  2165. @end table
  2166. @node --enable-verbose
  2167. @subsubsection @code{--enable-verbose}
  2168. @table @asis
  2169. @item @emph{Description}:
  2170. Augment the verbosity of the debugging messages. This can be disabled
  2171. at runtime by setting the environment variable @code{STARPU_SILENT} to
  2172. any value.
  2173. @smallexample
  2174. % STARPU_SILENT=1 ./vector_scal
  2175. @end smallexample
  2176. @end table
  2177. @node --enable-coverage
  2178. @subsubsection @code{--enable-coverage}
  2179. @table @asis
  2180. @item @emph{Description}:
  2181. Enable flags for the @code{gcov} coverage tool.
  2182. @end table
  2183. @node Configuring workers
  2184. @subsection Configuring workers
  2185. @menu
  2186. * --enable-maxcpus::
  2187. * --disable-cpu::
  2188. * --enable-maxcudadev::
  2189. * --disable-cuda::
  2190. * --with-cuda-dir::
  2191. * --with-cuda-include-dir::
  2192. * --with-cuda-lib-dir::
  2193. * --disable-cuda-memcpy-peer::
  2194. * --enable-maxopencldev::
  2195. * --disable-opencl::
  2196. * --with-opencl-dir::
  2197. * --with-opencl-include-dir::
  2198. * --with-opencl-lib-dir::
  2199. * --enable-gordon::
  2200. * --with-gordon-dir::
  2201. * --enable-maximplementations::
  2202. @end menu
  2203. @node --enable-maxcpus
  2204. @subsubsection @code{--enable-maxcpus=<number>}
  2205. @table @asis
  2206. @item @emph{Description}:
  2207. Defines the maximum number of CPU cores that StarPU will support, then
  2208. available as the @code{STARPU_MAXCPUS} macro.
  2209. @end table
  2210. @node --disable-cpu
  2211. @subsubsection @code{--disable-cpu}
  2212. @table @asis
  2213. @item @emph{Description}:
  2214. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  2215. @end table
  2216. @node --enable-maxcudadev
  2217. @subsubsection @code{--enable-maxcudadev=<number>}
  2218. @table @asis
  2219. @item @emph{Description}:
  2220. Defines the maximum number of CUDA devices that StarPU will support, then
  2221. available as the @code{STARPU_MAXCUDADEVS} macro.
  2222. @end table
  2223. @node --disable-cuda
  2224. @subsubsection @code{--disable-cuda}
  2225. @table @asis
  2226. @item @emph{Description}:
  2227. Disable the use of CUDA, even if a valid CUDA installation was detected.
  2228. @end table
  2229. @node --with-cuda-dir
  2230. @subsubsection @code{--with-cuda-dir=<path>}
  2231. @table @asis
  2232. @item @emph{Description}:
  2233. Specify the directory where CUDA is installed. This directory should notably contain
  2234. @code{include/cuda.h}.
  2235. @end table
  2236. @node --with-cuda-include-dir
  2237. @subsubsection @code{--with-cuda-include-dir=<path>}
  2238. @table @asis
  2239. @item @emph{Description}:
  2240. Specify the directory where CUDA headers are installed. This directory should
  2241. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  2242. value given to @code{--with-cuda-dir}.
  2243. @end table
  2244. @node --with-cuda-lib-dir
  2245. @subsubsection @code{--with-cuda-lib-dir=<path>}
  2246. @table @asis
  2247. @item @emph{Description}:
  2248. Specify the directory where the CUDA library is installed. This directory should
  2249. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  2250. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  2251. @end table
  2252. @node --disable-cuda-memcpy-peer
  2253. @subsubsection @code{--disable-cuda-memcpy-peer}
  2254. @table @asis
  2255. @item @emph{Description}
  2256. Explicitely disables peer transfers when using CUDA 4.0
  2257. @end table
  2258. @node --enable-maxopencldev
  2259. @subsubsection @code{--enable-maxopencldev=<number>}
  2260. @table @asis
  2261. @item @emph{Description}:
  2262. Defines the maximum number of OpenCL devices that StarPU will support, then
  2263. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  2264. @end table
  2265. @node --disable-opencl
  2266. @subsubsection @code{--disable-opencl}
  2267. @table @asis
  2268. @item @emph{Description}:
  2269. Disable the use of OpenCL, even if the SDK is detected.
  2270. @end table
  2271. @node --with-opencl-dir
  2272. @subsubsection @code{--with-opencl-dir=<path>}
  2273. @table @asis
  2274. @item @emph{Description}:
  2275. Specify the location of the OpenCL SDK. This directory should notably contain
  2276. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  2277. @end table
  2278. @node --with-opencl-include-dir
  2279. @subsubsection @code{--with-opencl-include-dir=<path>}
  2280. @table @asis
  2281. @item @emph{Description}:
  2282. Specify the location of OpenCL headers. This directory should notably contain
  2283. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  2284. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  2285. @end table
  2286. @node --with-opencl-lib-dir
  2287. @subsubsection @code{--with-opencl-lib-dir=<path>}
  2288. @table @asis
  2289. @item @emph{Description}:
  2290. Specify the location of the OpenCL library. This directory should notably
  2291. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  2292. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  2293. @end table
  2294. @node --enable-gordon
  2295. @subsubsection @code{--enable-gordon}
  2296. @table @asis
  2297. @item @emph{Description}:
  2298. Enable the use of the Gordon runtime for Cell SPUs.
  2299. @c TODO: rather default to enabled when detected
  2300. @end table
  2301. @node --with-gordon-dir
  2302. @subsubsection @code{--with-gordon-dir=<path>}
  2303. @table @asis
  2304. @item @emph{Description}:
  2305. Specify the location of the Gordon SDK.
  2306. @end table
  2307. @node --enable-maximplementations
  2308. @subsubsection @code{--enable-maximplementations=<number>}
  2309. @table @asis
  2310. @item @emph{Description}:
  2311. Defines the number of implementations that can be defined for a single kind of
  2312. device. It is then available as the @code{STARPU_MAXIMPLEMENTATIONS} macro.
  2313. @end table
  2314. @node Advanced configuration
  2315. @subsection Advanced configuration
  2316. @menu
  2317. * --enable-perf-debug::
  2318. * --enable-model-debug::
  2319. * --enable-stats::
  2320. * --enable-maxbuffers::
  2321. * --enable-allocation-cache::
  2322. * --enable-opengl-render::
  2323. * --enable-blas-lib::
  2324. * --with-magma::
  2325. * --with-fxt::
  2326. * --with-perf-model-dir::
  2327. * --with-mpicc::
  2328. * --with-goto-dir::
  2329. * --with-atlas-dir::
  2330. * --with-mkl-cflags::
  2331. * --with-mkl-ldflags::
  2332. @end menu
  2333. @node --enable-perf-debug
  2334. @subsubsection @code{--enable-perf-debug}
  2335. @table @asis
  2336. @item @emph{Description}:
  2337. Enable performance debugging through gprof.
  2338. @end table
  2339. @node --enable-model-debug
  2340. @subsubsection @code{--enable-model-debug}
  2341. @table @asis
  2342. @item @emph{Description}:
  2343. Enable performance model debugging.
  2344. @end table
  2345. @node --enable-stats
  2346. @subsubsection @code{--enable-stats}
  2347. @table @asis
  2348. @item @emph{Description}:
  2349. Enable statistics.
  2350. @end table
  2351. @node --enable-maxbuffers
  2352. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  2353. @table @asis
  2354. @item @emph{Description}:
  2355. Define the maximum number of buffers that tasks will be able to take
  2356. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  2357. @end table
  2358. @node --enable-allocation-cache
  2359. @subsubsection @code{--enable-allocation-cache}
  2360. @table @asis
  2361. @item @emph{Description}:
  2362. Enable the use of a data allocation cache to avoid the cost of it with
  2363. CUDA. Still experimental.
  2364. @end table
  2365. @node --enable-opengl-render
  2366. @subsubsection @code{--enable-opengl-render}
  2367. @table @asis
  2368. @item @emph{Description}:
  2369. Enable the use of OpenGL for the rendering of some examples.
  2370. @c TODO: rather default to enabled when detected
  2371. @end table
  2372. @node --enable-blas-lib
  2373. @subsubsection @code{--enable-blas-lib=<name>}
  2374. @table @asis
  2375. @item @emph{Description}:
  2376. Specify the blas library to be used by some of the examples. The
  2377. library has to be 'atlas' or 'goto'.
  2378. @end table
  2379. @node --with-magma
  2380. @subsubsection @code{--with-magma=<path>}
  2381. @table @asis
  2382. @item @emph{Description}:
  2383. Specify where magma is installed. This directory should notably contain
  2384. @code{include/magmablas.h}.
  2385. @end table
  2386. @node --with-fxt
  2387. @subsubsection @code{--with-fxt=<path>}
  2388. @table @asis
  2389. @item @emph{Description}:
  2390. Specify the location of FxT (for generating traces and rendering them
  2391. using ViTE). This directory should notably contain
  2392. @code{include/fxt/fxt.h}.
  2393. @c TODO add ref to other section
  2394. @end table
  2395. @node --with-perf-model-dir
  2396. @subsubsection @code{--with-perf-model-dir=<dir>}
  2397. @table @asis
  2398. @item @emph{Description}:
  2399. Specify where performance models should be stored (instead of defaulting to the
  2400. current user's home).
  2401. @end table
  2402. @node --with-mpicc
  2403. @subsubsection @code{--with-mpicc=<path to mpicc>}
  2404. @table @asis
  2405. @item @emph{Description}:
  2406. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  2407. @end table
  2408. @node --with-goto-dir
  2409. @subsubsection @code{--with-goto-dir=<dir>}
  2410. @table @asis
  2411. @item @emph{Description}:
  2412. Specify the location of GotoBLAS.
  2413. @end table
  2414. @node --with-atlas-dir
  2415. @subsubsection @code{--with-atlas-dir=<dir>}
  2416. @table @asis
  2417. @item @emph{Description}:
  2418. Specify the location of ATLAS. This directory should notably contain
  2419. @code{include/cblas.h}.
  2420. @end table
  2421. @node --with-mkl-cflags
  2422. @subsubsection @code{--with-mkl-cflags=<cflags>}
  2423. @table @asis
  2424. @item @emph{Description}:
  2425. Specify the compilation flags for the MKL Library.
  2426. @end table
  2427. @node --with-mkl-ldflags
  2428. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  2429. @table @asis
  2430. @item @emph{Description}:
  2431. Specify the linking flags for the MKL Library. Note that the
  2432. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  2433. website provides a script to determine the linking flags.
  2434. @end table
  2435. @c ---------------------------------------------------------------------
  2436. @c Environment variables
  2437. @c ---------------------------------------------------------------------
  2438. @node Execution configuration through environment variables
  2439. @section Execution configuration through environment variables
  2440. @menu
  2441. * Workers:: Configuring workers
  2442. * Scheduling:: Configuring the Scheduling engine
  2443. * Misc:: Miscellaneous and debug
  2444. @end menu
  2445. Note: the values given in @code{starpu_conf} structure passed when
  2446. calling @code{starpu_init} will override the values of the environment
  2447. variables.
  2448. @node Workers
  2449. @subsection Configuring workers
  2450. @menu
  2451. * STARPU_NCPUS:: Number of CPU workers
  2452. * STARPU_NCUDA:: Number of CUDA workers
  2453. * STARPU_NOPENCL:: Number of OpenCL workers
  2454. * STARPU_NGORDON:: Number of SPU workers (Cell)
  2455. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  2456. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  2457. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  2458. @end menu
  2459. @node STARPU_NCPUS
  2460. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  2461. @table @asis
  2462. @item @emph{Description}:
  2463. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  2464. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  2465. the accelerators.
  2466. @end table
  2467. @node STARPU_NCUDA
  2468. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  2469. @table @asis
  2470. @item @emph{Description}:
  2471. Specify the number of CUDA devices that StarPU can use. If
  2472. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  2473. possible to select which CUDA devices should be used by the means of the
  2474. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  2475. create as many CUDA workers as there are CUDA devices.
  2476. @end table
  2477. @node STARPU_NOPENCL
  2478. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  2479. @table @asis
  2480. @item @emph{Description}:
  2481. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  2482. @end table
  2483. @node STARPU_NGORDON
  2484. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  2485. @table @asis
  2486. @item @emph{Description}:
  2487. Specify the number of SPUs that StarPU can use.
  2488. @end table
  2489. @node STARPU_WORKERS_CPUID
  2490. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  2491. @table @asis
  2492. @item @emph{Description}:
  2493. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  2494. specifies on which logical CPU the different workers should be
  2495. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  2496. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  2497. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  2498. determined by the OS, or provided by the @code{hwloc} library in case it is
  2499. available.
  2500. Note that the first workers correspond to the CUDA workers, then come the
  2501. OpenCL and the SPU, and finally the CPU workers. For example if
  2502. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  2503. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  2504. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  2505. the logical CPUs #1 and #3 will be used by the CPU workers.
  2506. If the number of workers is larger than the array given in
  2507. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  2508. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  2509. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  2510. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  2511. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2512. @end table
  2513. @node STARPU_WORKERS_CUDAID
  2514. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  2515. @table @asis
  2516. @item @emph{Description}:
  2517. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  2518. possible to select which CUDA devices should be used by StarPU. On a machine
  2519. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  2520. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  2521. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  2522. the one reported by CUDA).
  2523. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  2524. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2525. @end table
  2526. @node STARPU_WORKERS_OPENCLID
  2527. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  2528. @table @asis
  2529. @item @emph{Description}:
  2530. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  2531. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  2532. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2533. @end table
  2534. @node Scheduling
  2535. @subsection Configuring the Scheduling engine
  2536. @menu
  2537. * STARPU_SCHED:: Scheduling policy
  2538. * STARPU_CALIBRATE:: Calibrate performance models
  2539. * STARPU_PREFETCH:: Use data prefetch
  2540. * STARPU_SCHED_ALPHA:: Computation factor
  2541. * STARPU_SCHED_BETA:: Communication factor
  2542. @end menu
  2543. @node STARPU_SCHED
  2544. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  2545. @table @asis
  2546. @item @emph{Description}:
  2547. This chooses between the different scheduling policies proposed by StarPU: work
  2548. random, stealing, greedy, with performance models, etc.
  2549. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  2550. @end table
  2551. @node STARPU_CALIBRATE
  2552. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  2553. @table @asis
  2554. @item @emph{Description}:
  2555. If this variable is set to 1, the performance models are calibrated during
  2556. the execution. If it is set to 2, the previous values are dropped to restart
  2557. calibration from scratch. Setting this variable to 0 disable calibration, this
  2558. is the default behaviour.
  2559. Note: this currently only applies to @code{dm}, @code{dmda} and @code{heft} scheduling policies.
  2560. @end table
  2561. @node STARPU_PREFETCH
  2562. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  2563. @table @asis
  2564. @item @emph{Description}:
  2565. This variable indicates whether data prefetching should be enabled (0 means
  2566. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  2567. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  2568. advance, so that data is already present on the GPU when the task starts. As a
  2569. result, computation and data transfers are overlapped.
  2570. Note that prefetching is enabled by default in StarPU.
  2571. @end table
  2572. @node STARPU_SCHED_ALPHA
  2573. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  2574. @table @asis
  2575. @item @emph{Description}:
  2576. To estimate the cost of a task StarPU takes into account the estimated
  2577. computation time (obtained thanks to performance models). The alpha factor is
  2578. the coefficient to be applied to it before adding it to the communication part.
  2579. @end table
  2580. @node STARPU_SCHED_BETA
  2581. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  2582. @table @asis
  2583. @item @emph{Description}:
  2584. To estimate the cost of a task StarPU takes into account the estimated
  2585. data transfer time (obtained thanks to performance models). The beta factor is
  2586. the coefficient to be applied to it before adding it to the computation part.
  2587. @end table
  2588. @node Misc
  2589. @subsection Miscellaneous and debug
  2590. @menu
  2591. * STARPU_SILENT:: Disable verbose mode
  2592. * STARPU_LOGFILENAME:: Select debug file name
  2593. * STARPU_FXT_PREFIX:: FxT trace location
  2594. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  2595. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  2596. @end menu
  2597. @node STARPU_SILENT
  2598. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  2599. @table @asis
  2600. @item @emph{Description}:
  2601. This variable allows to disable verbose mode at runtime when StarPU
  2602. has been configured with the option @code{--enable-verbose}.
  2603. @end table
  2604. @node STARPU_LOGFILENAME
  2605. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  2606. @table @asis
  2607. @item @emph{Description}:
  2608. This variable specifies in which file the debugging output should be saved to.
  2609. @end table
  2610. @node STARPU_FXT_PREFIX
  2611. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  2612. @table @asis
  2613. @item @emph{Description}
  2614. This variable specifies in which directory to save the trace generated if FxT is enabled. It needs to have a trailing '/' character.
  2615. @end table
  2616. @node STARPU_LIMIT_GPU_MEM
  2617. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  2618. @table @asis
  2619. @item @emph{Description}
  2620. This variable specifies the maximum number of megabytes that should be
  2621. available to the application on each GPUs. In case this value is smaller than
  2622. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  2623. on the device. This variable is intended to be used for experimental purposes
  2624. as it emulates devices that have a limited amount of memory.
  2625. @end table
  2626. @node STARPU_GENERATE_TRACE
  2627. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  2628. @table @asis
  2629. @item @emph{Description}
  2630. When set to 1, this variable indicates that StarPU should automatically
  2631. generate a Paje trace when starpu_shutdown is called.
  2632. @end table
  2633. @c ---------------------------------------------------------------------
  2634. @c StarPU API
  2635. @c ---------------------------------------------------------------------
  2636. @node StarPU API
  2637. @chapter StarPU API
  2638. @menu
  2639. * Initialization and Termination:: Initialization and Termination methods
  2640. * Workers' Properties:: Methods to enumerate workers' properties
  2641. * Data Library:: Methods to manipulate data
  2642. * Data Interfaces::
  2643. * Data Partition::
  2644. * Codelets and Tasks:: Methods to construct tasks
  2645. * Explicit Dependencies:: Explicit Dependencies
  2646. * Implicit Data Dependencies:: Implicit Data Dependencies
  2647. * Performance Model API::
  2648. * Profiling API:: Profiling API
  2649. * CUDA extensions:: CUDA extensions
  2650. * OpenCL extensions:: OpenCL extensions
  2651. * Cell extensions:: Cell extensions
  2652. * Miscellaneous helpers::
  2653. @end menu
  2654. @node Initialization and Termination
  2655. @section Initialization and Termination
  2656. @menu
  2657. * starpu_init:: Initialize StarPU
  2658. * struct starpu_conf:: StarPU runtime configuration
  2659. * starpu_conf_init:: Initialize starpu_conf structure
  2660. * starpu_shutdown:: Terminate StarPU
  2661. @end menu
  2662. @node starpu_init
  2663. @subsection @code{starpu_init} -- Initialize StarPU
  2664. @table @asis
  2665. @item @emph{Description}:
  2666. This is StarPU initialization method, which must be called prior to any other
  2667. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  2668. policy, number of cores, ...) by passing a non-null argument. Default
  2669. configuration is used if the passed argument is @code{NULL}.
  2670. @item @emph{Return value}:
  2671. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  2672. indicates that no worker was available (so that StarPU was not initialized).
  2673. @item @emph{Prototype}:
  2674. @code{int starpu_init(struct starpu_conf *conf);}
  2675. @end table
  2676. @node struct starpu_conf
  2677. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  2678. @table @asis
  2679. @item @emph{Description}:
  2680. This structure is passed to the @code{starpu_init} function in order
  2681. to configure StarPU.
  2682. When the default value is used, StarPU automatically selects the number
  2683. of processing units and takes the default scheduling policy. This parameter
  2684. overwrites the equivalent environment variables.
  2685. @item @emph{Fields}:
  2686. @table @asis
  2687. @item @code{sched_policy_name} (default = NULL):
  2688. This is the name of the scheduling policy. This can also be specified with the
  2689. @code{STARPU_SCHED} environment variable.
  2690. @item @code{sched_policy} (default = NULL):
  2691. This is the definition of the scheduling policy. This field is ignored
  2692. if @code{sched_policy_name} is set.
  2693. @item @code{ncpus} (default = -1):
  2694. This is the number of CPU cores that StarPU can use. This can also be
  2695. specified with the @code{STARPU_NCPUS} environment variable.
  2696. @item @code{ncuda} (default = -1):
  2697. This is the number of CUDA devices that StarPU can use. This can also be
  2698. specified with the @code{STARPU_NCUDA} environment variable.
  2699. @item @code{nopencl} (default = -1):
  2700. This is the number of OpenCL devices that StarPU can use. This can also be
  2701. specified with the @code{STARPU_NOPENCL} environment variable.
  2702. @item @code{nspus} (default = -1):
  2703. This is the number of Cell SPUs that StarPU can use. This can also be
  2704. specified with the @code{STARPU_NGORDON} environment variable.
  2705. @item @code{use_explicit_workers_bindid} (default = 0)
  2706. If this flag is set, the @code{workers_bindid} array indicates where the
  2707. different workers are bound, otherwise StarPU automatically selects where to
  2708. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2709. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2710. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2711. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2712. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2713. where to bind the different workers. The i-th entry of the
  2714. @code{workers_bindid} indicates the logical identifier of the processor which
  2715. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2716. either determined by the OS, or provided by the @code{hwloc} library in case it
  2717. is available.
  2718. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2719. ignored.
  2720. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2721. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2722. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2723. CUDA devices in a round-robin fashion.
  2724. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2725. ignored.
  2726. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2727. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2728. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2729. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2730. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2731. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2732. OpenCL devices in a round-robin fashion.
  2733. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2734. @item @code{calibrate} (default = 0):
  2735. If this flag is set, StarPU will calibrate the performance models when
  2736. executing tasks. If this value is equal to -1, the default value is used. The
  2737. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2738. variable when it is set.
  2739. @end table
  2740. @item @code{single_combined_worker} (default = 0):
  2741. By default, StarPU creates various combined workers according to the machine
  2742. structure. Some parallel libraries (e.g. most OpenMP implementations) however do
  2743. not support concurrent calls to parallel code. In such case, setting this flag
  2744. makes StarPU only create one combined worker, containing all
  2745. the CPU workers. The default value is overwritten by the
  2746. @code{STARPU_SINGLE_COMBINED_WORKER} environment variable when it is set.
  2747. @end table
  2748. @node starpu_conf_init
  2749. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2750. @table @asis
  2751. This function initializes the @code{starpu_conf} structure passed as argument
  2752. with the default values. In case some configuration parameters are already
  2753. specified through environment variables, @code{starpu_conf_init} initializes
  2754. the fields of the structure according to the environment variables. For
  2755. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2756. @code{.ncuda} field of the structure passed as argument.
  2757. @item @emph{Return value}:
  2758. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2759. indicates that the argument was NULL.
  2760. @item @emph{Prototype}:
  2761. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2762. @end table
  2763. @node starpu_shutdown
  2764. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2765. @deftypefun void starpu_shutdown (void)
  2766. This is StarPU termination method. It must be called at the end of the
  2767. application: statistics and other post-mortem debugging information are not
  2768. guaranteed to be available until this method has been called.
  2769. @end deftypefun
  2770. @node Workers' Properties
  2771. @section Workers' Properties
  2772. @menu
  2773. * starpu_worker_get_count:: Get the number of processing units
  2774. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2775. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2776. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2777. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2778. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2779. * starpu_worker_get_id:: Get the identifier of the current worker
  2780. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2781. * starpu_worker_get_devid:: Get the device identifier of a worker
  2782. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2783. * starpu_worker_get_name:: Get the name of a worker
  2784. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2785. @end menu
  2786. @node starpu_worker_get_count
  2787. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2788. @deftypefun unsigned starpu_worker_get_count (void)
  2789. This function returns the number of workers (i.e. processing units executing
  2790. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2791. @end deftypefun
  2792. @node starpu_worker_get_count_by_type
  2793. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2794. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  2795. Returns the number of workers of the type indicated by the argument. A positive
  2796. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2797. the type is not valid otherwise.
  2798. @end deftypefun
  2799. @node starpu_cpu_worker_get_count
  2800. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2801. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  2802. This function returns the number of CPUs controlled by StarPU. The returned
  2803. value should be at most @code{STARPU_MAXCPUS}.
  2804. @end deftypefun
  2805. @node starpu_cuda_worker_get_count
  2806. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2807. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  2808. This function returns the number of CUDA devices controlled by StarPU. The returned
  2809. value should be at most @code{STARPU_MAXCUDADEVS}.
  2810. @end deftypefun
  2811. @node starpu_opencl_worker_get_count
  2812. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2813. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2814. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2815. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2816. @end deftypefun
  2817. @node starpu_spu_worker_get_count
  2818. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2819. @deftypefun unsigned starpu_spu_worker_get_count (void)
  2820. This function returns the number of Cell SPUs controlled by StarPU.
  2821. @end deftypefun
  2822. @node starpu_worker_get_id
  2823. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2824. @deftypefun int starpu_worker_get_id (void)
  2825. This function returns the identifier of the worker associated to the calling
  2826. thread. The returned value is either -1 if the current context is not a StarPU
  2827. worker (i.e. when called from the application outside a task or a callback), or
  2828. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2829. @end deftypefun
  2830. @node starpu_worker_get_ids_by_type
  2831. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2832. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  2833. Fill the workerids array with the identifiers of the workers that have the type
  2834. indicated in the first argument. The maxsize argument indicates the size of the
  2835. workids array. The returned value gives the number of identifiers that were put
  2836. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2837. workers with the appropriate type: in that case, the array is filled with the
  2838. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2839. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2840. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2841. @end deftypefun
  2842. @node starpu_worker_get_devid
  2843. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2844. @deftypefun int starpu_worker_get_devid (int @var{id})
  2845. This functions returns the device id of the worker associated to an identifier
  2846. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2847. CUDA worker, this device identifier is the logical device identifier exposed by
  2848. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2849. identifier of a CPU worker is the logical identifier of the core on which the
  2850. worker was bound; this identifier is either provided by the OS or by the
  2851. @code{hwloc} library in case it is available.
  2852. @end deftypefun
  2853. @node starpu_worker_get_type
  2854. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2855. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  2856. This function returns the type of worker associated to an identifier (as
  2857. returned by the @code{starpu_worker_get_id} function). The returned value
  2858. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2859. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2860. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2861. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2862. identifier is unspecified.
  2863. @end deftypefun
  2864. @node starpu_worker_get_name
  2865. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2866. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  2867. StarPU associates a unique human readable string to each processing unit. This
  2868. function copies at most the @var{maxlen} first bytes of the unique string
  2869. associated to a worker identified by its identifier @var{id} into the
  2870. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  2871. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  2872. function on an invalid identifier results in an unspecified behaviour.
  2873. @end deftypefun
  2874. @node starpu_worker_get_memory_node
  2875. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2876. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  2877. This function returns the identifier of the memory node associated to the
  2878. worker identified by @var{workerid}.
  2879. @end deftypefun
  2880. @node Data Library
  2881. @section Data Library
  2882. This section describes the data management facilities provided by StarPU.
  2883. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2884. design their own data interfaces if required.
  2885. @menu
  2886. * starpu_malloc:: Allocate data and pin it
  2887. * starpu_access_mode:: Data access mode
  2888. * unsigned memory_node:: Memory node
  2889. * starpu_data_handle:: StarPU opaque data handle
  2890. * void *interface:: StarPU data interface
  2891. * starpu_data_register:: Register a piece of data to StarPU
  2892. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2893. * starpu_data_unregister_no_coherency:: Unregister a piece of data from StarPU without coherency
  2894. * starpu_data_invalidate:: Invalidate all data replicates
  2895. * starpu_data_acquire:: Access registered data from the application
  2896. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2897. * STARPU_DATA_ACQUIRE_CB:: Access registered data from the application asynchronously, macro
  2898. * starpu_data_release:: Release registered data from the application
  2899. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2900. * starpu_data_prefetch_on_node:: Prefetch data to a given node
  2901. @end menu
  2902. @node starpu_malloc
  2903. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2904. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  2905. This function allocates data of the given size in main memory. It will also try to pin it in
  2906. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  2907. thus permit data transfer and computation overlapping. The allocated buffer must
  2908. be freed thanks to the @code{starpu_free} function.
  2909. @end deftypefun
  2910. @node starpu_access_mode
  2911. @subsection @code{starpu_access_mode} -- Data access mode
  2912. This datatype describes a data access mode. The different available modes are:
  2913. @table @asis
  2914. @table @asis
  2915. @item @code{STARPU_R} read-only mode.
  2916. @item @code{STARPU_W} write-only mode.
  2917. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2918. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2919. @item @code{STARPU_REDUX} reduction mode. TODO: document, as well as @code{starpu_data_set_reduction_methods}
  2920. @end table
  2921. @end table
  2922. @node unsigned memory_node
  2923. @subsection @code{unsigned memory_node} -- Memory node
  2924. @table @asis
  2925. @item @emph{Description}:
  2926. Every worker is associated to a memory node which is a logical abstraction of
  2927. the address space from which the processing unit gets its data. For instance,
  2928. the memory node associated to the different CPU workers represents main memory
  2929. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2930. Every memory node is identified by a logical index which is accessible from the
  2931. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2932. to StarPU, the specified memory node indicates where the piece of data
  2933. initially resides (we also call this memory node the home node of a piece of
  2934. data).
  2935. @end table
  2936. @node starpu_data_handle
  2937. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2938. @table @asis
  2939. @item @emph{Description}:
  2940. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2941. data. Once a piece of data has been registered to StarPU, it is associated to a
  2942. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2943. over the entire machine, so that we can maintain data consistency and locate
  2944. data replicates for instance.
  2945. @end table
  2946. @node void *interface
  2947. @subsection @code{void *interface} -- StarPU data interface
  2948. @table @asis
  2949. @item @emph{Description}:
  2950. Data management is done at a high-level in StarPU: rather than accessing a mere
  2951. list of contiguous buffers, the tasks may manipulate data that are described by
  2952. a high-level construct which we call data interface.
  2953. An example of data interface is the "vector" interface which describes a
  2954. contiguous data array on a spefic memory node. This interface is a simple
  2955. structure containing the number of elements in the array, the size of the
  2956. elements, and the address of the array in the appropriate address space (this
  2957. address may be invalid if there is no valid copy of the array in the memory
  2958. node). More informations on the data interfaces provided by StarPU are
  2959. given in @ref{Data Interfaces}.
  2960. When a piece of data managed by StarPU is used by a task, the task
  2961. implementation is given a pointer to an interface describing a valid copy of
  2962. the data that is accessible from the current processing unit.
  2963. @end table
  2964. @node starpu_data_register
  2965. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2966. @deftypefun void starpu_data_register (starpu_data_handle *@var{handleptr}, uint32_t @var{home_node}, void *@var{interface}, {struct starpu_data_interface_ops_t} *@var{ops})
  2967. Register a piece of data into the handle located at the @var{handleptr}
  2968. address. The @var{interface} buffer contains the initial description of the
  2969. data in the home node. The @var{ops} argument is a pointer to a structure
  2970. describing the different methods used to manipulate this type of interface. See
  2971. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2972. If @code{home_node} is -1, StarPU will automatically
  2973. allocate the memory when it is used for the
  2974. first time in write-only mode. Once such data handle has been automatically
  2975. allocated, it is possible to access it using any access mode.
  2976. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2977. matrix) which can be registered by the means of helper functions (e.g.
  2978. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2979. @end deftypefun
  2980. @node starpu_data_unregister
  2981. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2982. @deftypefun void starpu_data_unregister (starpu_data_handle @var{handle})
  2983. This function unregisters a data handle from StarPU. If the data was
  2984. automatically allocated by StarPU because the home node was -1, all
  2985. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2986. is put back into the home node in the buffer that was initially registered.
  2987. Using a data handle that has been unregistered from StarPU results in an
  2988. undefined behaviour.
  2989. @end deftypefun
  2990. @node starpu_data_unregister_no_coherency
  2991. @subsection @code{starpu_data_unregister_no_coherency} -- Unregister a piece of data from StarPU
  2992. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle @var{handle})
  2993. This is the same as starpu_data_unregister, except that StarPU does not put back
  2994. a valid copy into the home node, in the buffer that was initially registered.
  2995. @end deftypefun
  2996. @node starpu_data_invalidate
  2997. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2998. @deftypefun void starpu_data_invalidate (starpu_data_handle @var{handle})
  2999. Destroy all replicates of the data handle. After data invalidation, the first
  3000. access to the handle must be performed in write-only mode. Accessing an
  3001. invalidated data in read-mode results in undefined behaviour.
  3002. @end deftypefun
  3003. @c TODO create a specific sections about user interaction with the DSM ?
  3004. @node starpu_data_acquire
  3005. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  3006. @deftypefun int starpu_data_acquire (starpu_data_handle @var{handle}, starpu_access_mode @var{mode})
  3007. The application must call this function prior to accessing registered data from
  3008. main memory outside tasks. StarPU ensures that the application will get an
  3009. up-to-date copy of the data in main memory located where the data was
  3010. originally registered, and that all concurrent accesses (e.g. from tasks) will
  3011. be consistent with the access mode specified in the @var{mode} argument.
  3012. @code{starpu_data_release} must be called once the application does not need to
  3013. access the piece of data anymore. Note that implicit data
  3014. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  3015. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  3016. the data, unless that they have not been disabled explictly by calling
  3017. @code{starpu_data_set_default_sequential_consistency_flag} or
  3018. @code{starpu_data_set_sequential_consistency_flag}.
  3019. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  3020. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  3021. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  3022. @end deftypefun
  3023. @node starpu_data_acquire_cb
  3024. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  3025. @deftypefun int starpu_data_acquire_cb (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  3026. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  3027. @code{starpu_data_release}. When the data specified in the first argument is
  3028. available in the appropriate access mode, the callback function is executed.
  3029. The application may access the requested data during the execution of this
  3030. callback. The callback function must call @code{starpu_data_release} once the
  3031. application does not need to access the piece of data anymore.
  3032. Note that implicit data dependencies are also enforced by
  3033. @code{starpu_data_acquire_cb} in case they are enabled.
  3034. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  3035. be called from task callbacks. Upon successful completion, this function
  3036. returns 0.
  3037. @end deftypefun
  3038. @node STARPU_DATA_ACQUIRE_CB
  3039. @subsection @code{STARPU_DATA_ACQUIRE_CB} -- Access registered data from the application asynchronously, macro
  3040. @deftypefun STARPU_DATA_ACQUIRE_CB (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, code)
  3041. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  3042. except that the code to be executed in a callback is directly provided as a
  3043. macro parameter, and the data handle is automatically released after it. This
  3044. permit to easily execute code which depends on the value of some registered
  3045. data. This is non-blocking too and may be called from task callbacks.
  3046. @end deftypefun
  3047. @node starpu_data_release
  3048. @subsection @code{starpu_data_release} -- Release registered data from the application
  3049. @deftypefun void starpu_data_release (starpu_data_handle @var{handle})
  3050. This function releases the piece of data acquired by the application either by
  3051. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  3052. @end deftypefun
  3053. @node starpu_data_set_wt_mask
  3054. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  3055. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle @var{handle}, uint32_t @var{wt_mask})
  3056. This function sets the write-through mask of a given data, i.e. a bitmask of
  3057. nodes where the data should be always replicated after modification.
  3058. @end deftypefun
  3059. @node starpu_data_prefetch_on_node
  3060. @subsection @code{starpu_data_prefetch_on_node} -- Prefetch data to a given node
  3061. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle @var{handle}, unsigned @var{node}, unsigned @var{async})
  3062. Issue a prefetch request for a given data to a given node, i.e.
  3063. requests that the data be replicated to the given node, so that it is available
  3064. there for tasks. If the @var{async} parameter is 0, the call will block until
  3065. the transfer is achieved, else the call will return as soon as the request is
  3066. scheduled (which may however have to wait for a task completion).
  3067. @end deftypefun
  3068. @node Data Interfaces
  3069. @section Data Interfaces
  3070. There are several ways to register a memory region so that it can be
  3071. managed by StarPU. The functions below allow the registration of
  3072. vectors, 2D matrices, and 3D matrices, as well as BCSR and CSR sparse
  3073. matrices.
  3074. @deftypefun void starpu_variable_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  3075. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  3076. typically a scalar, and initialize @var{handle} to represent this data
  3077. item.
  3078. @smallexample
  3079. float var;
  3080. starpu_data_handle var_handle;
  3081. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  3082. @end smallexample
  3083. @end deftypefun
  3084. @deftypefun void starpu_vector_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{count}, size_t @var{size})
  3085. Register the @var{count} @var{size}-byte elements pointed to by
  3086. @var{ptr} and initialize @var{handle} to represent it.
  3087. @example
  3088. float vector[NX];
  3089. starpu_data_handle vector_handle;
  3090. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  3091. sizeof(vector[0]));
  3092. @end example
  3093. @end deftypefun
  3094. @deftypefun void starpu_matrix_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{size})
  3095. Register the @var{nx}x@var{ny} 2D matrix of @var{size}-byte elements
  3096. pointed by @var{ptr} and initialize @var{handle} to represent it.
  3097. @var{ld} specifies the number of extra elements present at the end of
  3098. each row; a non-zero @var{ld} adds padding, which can be useful for
  3099. alignment purposes.
  3100. @example
  3101. float *matrix;
  3102. starpu_data_handle matrix_handle;
  3103. matrix = (float*)malloc(width * height * sizeof(float));
  3104. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  3105. width, width, height, sizeof(float));
  3106. @end example
  3107. @end deftypefun
  3108. @deftypefun void starpu_block_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{size})
  3109. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{size}-byte
  3110. elements pointed by @var{ptr} and initialize @var{handle} to represent
  3111. it. Again, @var{ldy} and @var{ldz} specify the number of extra elements
  3112. present at the end of each row or column.
  3113. @example
  3114. float *block;
  3115. starpu_data_handle block_handle;
  3116. block = (float*)malloc(nx*ny*nz*sizeof(float));
  3117. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  3118. nx, nx*ny, nx, ny, nz, sizeof(float));
  3119. @end example
  3120. @end deftypefun
  3121. @deftypefun void starpu_bcsr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  3122. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  3123. Compressed Sparse Row Representation) sparse matrix interface.
  3124. TODO
  3125. @end deftypefun
  3126. @deftypefun void starpu_csr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  3127. This variant of @code{starpu_data_register} uses the CSR (Compressed
  3128. Sparse Row Representation) sparse matrix interface.
  3129. TODO
  3130. @end deftypefun
  3131. @node Data Partition
  3132. @section Data Partition
  3133. @menu
  3134. * struct starpu_data_filter:: StarPU filter structure
  3135. * starpu_data_partition:: Partition Data
  3136. * starpu_data_unpartition:: Unpartition Data
  3137. * starpu_data_get_nb_children::
  3138. * starpu_data_get_sub_data::
  3139. * Predefined filter functions::
  3140. @end menu
  3141. @node struct starpu_data_filter
  3142. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  3143. @table @asis
  3144. @item @emph{Description}:
  3145. The filter structure describes a data partitioning operation, to be given to the
  3146. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  3147. @item @emph{Fields}:
  3148. @table @asis
  3149. @item @code{filter_func}:
  3150. This function fills the @code{child_interface} structure with interface
  3151. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  3152. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  3153. @item @code{nchildren}:
  3154. This is the number of parts to partition the data into.
  3155. @item @code{get_nchildren}:
  3156. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  3157. children depends on the actual data (e.g. the number of blocks in a sparse
  3158. matrix).
  3159. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  3160. @item @code{get_child_ops}:
  3161. In case the resulting children use a different data interface, this function
  3162. returns which interface is used by child number @code{id}.
  3163. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  3164. @item @code{filter_arg}:
  3165. Some filters take an addition parameter, but this is usually unused.
  3166. @item @code{filter_arg_ptr}:
  3167. Some filters take an additional array parameter like the sizes of the parts, but
  3168. this is usually unused.
  3169. @end table
  3170. @end table
  3171. @node starpu_data_partition
  3172. @subsection starpu_data_partition -- Partition Data
  3173. @table @asis
  3174. @item @emph{Description}:
  3175. This requests partitioning one StarPU data @code{initial_handle} into several
  3176. subdata according to the filter @code{f}
  3177. @item @emph{Prototype}:
  3178. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  3179. @item @emph{Example}:
  3180. @cartouche
  3181. @smallexample
  3182. struct starpu_data_filter f = @{
  3183. .filter_func = starpu_vertical_block_filter_func,
  3184. .nchildren = nslicesx,
  3185. .get_nchildren = NULL,
  3186. .get_child_ops = NULL
  3187. @};
  3188. starpu_data_partition(A_handle, &f);
  3189. @end smallexample
  3190. @end cartouche
  3191. @end table
  3192. @node starpu_data_unpartition
  3193. @subsection starpu_data_unpartition -- Unpartition data
  3194. @table @asis
  3195. @item @emph{Description}:
  3196. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  3197. collected back into one big piece in the @code{gathering_node} (usually 0).
  3198. @item @emph{Prototype}:
  3199. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  3200. @item @emph{Example}:
  3201. @cartouche
  3202. @smallexample
  3203. starpu_data_unpartition(A_handle, 0);
  3204. @end smallexample
  3205. @end cartouche
  3206. @end table
  3207. @node starpu_data_get_nb_children
  3208. @subsection starpu_data_get_nb_children
  3209. @table @asis
  3210. @item @emph{Description}:
  3211. This function returns the number of children.
  3212. @item @emph{Return value}:
  3213. The number of children.
  3214. @item @emph{Prototype}:
  3215. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  3216. @end table
  3217. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  3218. @node starpu_data_get_sub_data
  3219. @subsection starpu_data_get_sub_data
  3220. @table @asis
  3221. @item @emph{Description}:
  3222. After partitioning a StarPU data by applying a filter,
  3223. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  3224. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  3225. is the number of filters to traverse (in case several filters have been applied,
  3226. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  3227. parameters are the indexes.
  3228. @item @emph{Return value}:
  3229. A handle to the subdata.
  3230. @item @emph{Prototype}:
  3231. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  3232. @item @emph{Example}:
  3233. @cartouche
  3234. @smallexample
  3235. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  3236. @end smallexample
  3237. @end cartouche
  3238. @end table
  3239. @node Predefined filter functions
  3240. @subsection Predefined filter functions
  3241. @menu
  3242. * Partitioning BCSR Data::
  3243. * Partitioning BLAS interface::
  3244. * Partitioning Vector Data::
  3245. * Partitioning Block Data::
  3246. @end menu
  3247. This section gives a partial list of the predefined partitioning functions.
  3248. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  3249. list can be found in @code{starpu_data_filters.h} .
  3250. @node Partitioning BCSR Data
  3251. @subsubsection Partitioning BCSR Data
  3252. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3253. TODO
  3254. @end deftypefun
  3255. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3256. TODO
  3257. @end deftypefun
  3258. @node Partitioning BLAS interface
  3259. @subsubsection Partitioning BLAS interface
  3260. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3261. This partitions a dense Matrix into horizontal blocks.
  3262. @end deftypefun
  3263. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3264. This partitions a dense Matrix into vertical blocks.
  3265. @end deftypefun
  3266. @node Partitioning Vector Data
  3267. @subsubsection Partitioning Vector Data
  3268. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3269. This partitions a vector into blocks of the same size.
  3270. @end deftypefun
  3271. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3272. This partitions a vector into blocks of sizes given in the @var{filter_arg_ptr}
  3273. field of @var{f}, supposed to point on a @code{uint32_t*} array.
  3274. @end deftypefun
  3275. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3276. This partitions a vector into two blocks, the first block size being given in
  3277. the @var{filter_arg} field of @var{f}.
  3278. @end deftypefun
  3279. @node Partitioning Block Data
  3280. @subsubsection Partitioning Block Data
  3281. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3282. This partitions a 3D matrix along the X axis.
  3283. @end deftypefun
  3284. @node Codelets and Tasks
  3285. @section Codelets and Tasks
  3286. This section describes the interface to manipulate codelets and tasks.
  3287. @deftp {Data Type} {struct starpu_codelet}
  3288. The codelet structure describes a kernel that is possibly implemented on various
  3289. targets. For compatibility, make sure to initialize the whole structure to zero.
  3290. @table @asis
  3291. @item @code{where}
  3292. Indicates which types of processing units are able to execute the codelet.
  3293. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  3294. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  3295. indicates that it is only available on Cell SPUs.
  3296. @item @code{cpu_func} (optional)
  3297. Is a function pointer to the CPU implementation of the codelet. Its prototype
  3298. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  3299. argument being the array of data managed by the data management library, and
  3300. the second argument is a pointer to the argument passed from the @code{cl_arg}
  3301. field of the @code{starpu_task} structure.
  3302. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  3303. the @code{where} field, it must be non-null otherwise.
  3304. @item @code{cuda_func} (optional)
  3305. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  3306. must be a host-function written in the CUDA runtime API}. Its prototype must
  3307. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  3308. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  3309. field, it must be non-null otherwise.
  3310. @item @code{opencl_func} (optional)
  3311. Is a function pointer to the OpenCL implementation of the codelet. Its
  3312. prototype must be:
  3313. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  3314. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  3315. @code{where} field, it must be non-null otherwise.
  3316. @item @code{gordon_func} (optional)
  3317. This is the index of the Cell SPU implementation within the Gordon library.
  3318. See Gordon documentation for more details on how to register a kernel and
  3319. retrieve its index.
  3320. @item @code{nbuffers}
  3321. Specifies the number of arguments taken by the codelet. These arguments are
  3322. managed by the DSM and are accessed from the @code{void *buffers[]}
  3323. array. The constant argument passed with the @code{cl_arg} field of the
  3324. @code{starpu_task} structure is not counted in this number. This value should
  3325. not be above @code{STARPU_NMAXBUFS}.
  3326. @item @code{model} (optional)
  3327. This is a pointer to the task duration performance model associated to this
  3328. codelet. This optional field is ignored when set to @code{NULL}.
  3329. TODO
  3330. @item @code{power_model} (optional)
  3331. This is a pointer to the task power consumption performance model associated
  3332. to this codelet. This optional field is ignored when set to @code{NULL}.
  3333. In the case of parallel codelets, this has to account for all processing units
  3334. involved in the parallel execution.
  3335. TODO
  3336. @end table
  3337. @end deftp
  3338. @deftp {Data Type} {struct starpu_task}
  3339. The @code{starpu_task} structure describes a task that can be offloaded on the various
  3340. processing units managed by StarPU. It instantiates a codelet. It can either be
  3341. allocated dynamically with the @code{starpu_task_create} method, or declared
  3342. statically. In the latter case, the programmer has to zero the
  3343. @code{starpu_task} structure and to fill the different fields properly. The
  3344. indicated default values correspond to the configuration of a task allocated
  3345. with @code{starpu_task_create}.
  3346. @table @asis
  3347. @item @code{cl}
  3348. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  3349. describes where the kernel should be executed, and supplies the appropriate
  3350. implementations. When set to @code{NULL}, no code is executed during the tasks,
  3351. such empty tasks can be useful for synchronization purposes.
  3352. @item @code{buffers}
  3353. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  3354. different pieces of data accessed by the task, and how they should be accessed.
  3355. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  3356. @code{handle} field specifies the handle of the piece of data, and the
  3357. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  3358. of entries in this array must be specified in the @code{nbuffers} field of the
  3359. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  3360. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  3361. option when configuring StarPU.
  3362. @item @code{cl_arg} (optional; default: @code{NULL})
  3363. This pointer is passed to the codelet through the second argument
  3364. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  3365. In the specific case of the Cell processor, see the @code{cl_arg_size}
  3366. argument.
  3367. @item @code{cl_arg_size} (optional, Cell-specific)
  3368. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  3369. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  3370. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  3371. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  3372. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  3373. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  3374. codelets, where the @code{cl_arg} pointer is given as such.
  3375. @item @code{callback_func} (optional) (default: @code{NULL})
  3376. This is a function pointer of prototype @code{void (*f)(void *)} which
  3377. specifies a possible callback. If this pointer is non-null, the callback
  3378. function is executed @emph{on the host} after the execution of the task. The
  3379. callback is passed the value contained in the @code{callback_arg} field. No
  3380. callback is executed if the field is set to @code{NULL}.
  3381. @item @code{callback_arg} (optional) (default: @code{NULL})
  3382. This is the pointer passed to the callback function. This field is ignored if
  3383. the @code{callback_func} is set to @code{NULL}.
  3384. @item @code{use_tag} (optional) (default: @code{0})
  3385. If set, this flag indicates that the task should be associated with the tag
  3386. contained in the @code{tag_id} field. Tag allow the application to synchronize
  3387. with the task and to express task dependencies easily.
  3388. @item @code{tag_id}
  3389. This fields contains the tag associated to the task if the @code{use_tag} field
  3390. was set, it is ignored otherwise.
  3391. @item @code{synchronous}
  3392. If this flag is set, the @code{starpu_task_submit} function is blocking and
  3393. returns only when the task has been executed (or if no worker is able to
  3394. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  3395. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  3396. This field indicates a level of priority for the task. This is an integer value
  3397. that must be set between the return values of the
  3398. @code{starpu_sched_get_min_priority} function for the least important tasks,
  3399. and that of the @code{starpu_sched_get_max_priority} for the most important
  3400. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  3401. are provided for convenience and respectively returns value of
  3402. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  3403. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  3404. order to allow static task initialization. Scheduling strategies that take
  3405. priorities into account can use this parameter to take better scheduling
  3406. decisions, but the scheduling policy may also ignore it.
  3407. @item @code{execute_on_a_specific_worker} (default: @code{0})
  3408. If this flag is set, StarPU will bypass the scheduler and directly affect this
  3409. task to the worker specified by the @code{workerid} field.
  3410. @item @code{workerid} (optional)
  3411. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  3412. which is the identifier of the worker that should process this task (as
  3413. returned by @code{starpu_worker_get_id}). This field is ignored if
  3414. @code{execute_on_a_specific_worker} field is set to 0.
  3415. @item @code{detach} (optional) (default: @code{1})
  3416. If this flag is set, it is not possible to synchronize with the task
  3417. by the means of @code{starpu_task_wait} later on. Internal data structures
  3418. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  3419. flag is not set.
  3420. @item @code{destroy} (optional) (default: @code{1})
  3421. If this flag is set, the task structure will automatically be freed, either
  3422. after the execution of the callback if the task is detached, or during
  3423. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  3424. allocated data structures will not be freed until @code{starpu_task_destroy} is
  3425. called explicitly. Setting this flag for a statically allocated task structure
  3426. will result in undefined behaviour.
  3427. @item @code{predicted} (output field)
  3428. Predicted duration of the task. This field is only set if the scheduling
  3429. strategy used performance models.
  3430. @end table
  3431. @end deftp
  3432. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  3433. Initialize @var{task} with default values. This function is implicitly
  3434. called by @code{starpu_task_create}. By default, tasks initialized with
  3435. @code{starpu_task_init} must be deinitialized explicitly with
  3436. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  3437. constant @code{STARPU_TASK_INITIALIZER}.
  3438. @end deftypefun
  3439. @deftypefun {struct starpu_task *} starpu_task_create (void)
  3440. Allocate a task structure and initialize it with default values. Tasks
  3441. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  3442. task is terminated. If the destroy flag is explicitly unset, the resources used
  3443. by the task are freed by calling
  3444. @code{starpu_task_destroy}.
  3445. @end deftypefun
  3446. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  3447. Release all the structures automatically allocated to execute @var{task}. This is
  3448. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  3449. freed. This should be used for statically allocated tasks for instance.
  3450. @end deftypefun
  3451. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  3452. Free the resource allocated during @code{starpu_task_create} and
  3453. associated with @var{task}. This function can be called automatically
  3454. after the execution of a task by setting the @code{destroy} flag of the
  3455. @code{starpu_task} structure (default behaviour). Calling this function
  3456. on a statically allocated task results in an undefined behaviour.
  3457. @end deftypefun
  3458. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  3459. This function blocks until @var{task} has been executed. It is not possible to
  3460. synchronize with a task more than once. It is not possible to wait for
  3461. synchronous or detached tasks.
  3462. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  3463. indicates that the specified task was either synchronous or detached.
  3464. @end deftypefun
  3465. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  3466. This function submits @var{task} to StarPU. Calling this function does
  3467. not mean that the task will be executed immediately as there can be data or task
  3468. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  3469. scheduling this task with respect to such dependencies.
  3470. This function returns immediately if the @code{synchronous} field of the
  3471. @code{starpu_task} structure was set to 0, and block until the termination of
  3472. the task otherwise. It is also possible to synchronize the application with
  3473. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  3474. function for instance.
  3475. In case of success, this function returns 0, a return value of @code{-ENODEV}
  3476. means that there is no worker able to process this task (e.g. there is no GPU
  3477. available and this task is only implemented for CUDA devices).
  3478. @end deftypefun
  3479. @deftypefun int starpu_task_wait_for_all (void)
  3480. This function blocks until all the tasks that were submitted are terminated.
  3481. @end deftypefun
  3482. @deftypefun {struct starpu_task *} starpu_get_current_task (void)
  3483. This function returns the task currently executed by the worker, or
  3484. NULL if it is called either from a thread that is not a task or simply
  3485. because there is no task being executed at the moment.
  3486. @end deftypefun
  3487. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet_t} *@var{cl})
  3488. Output on @code{stderr} some statistics on the codelet @var{cl}.
  3489. @end deftypefun
  3490. @c Callbacks : what can we put in callbacks ?
  3491. @node Explicit Dependencies
  3492. @section Explicit Dependencies
  3493. @menu
  3494. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  3495. * starpu_tag_t:: Task logical identifier
  3496. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  3497. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  3498. * starpu_tag_wait:: Block until a Tag is terminated
  3499. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  3500. * starpu_tag_remove:: Destroy a Tag
  3501. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  3502. @end menu
  3503. @node starpu_task_declare_deps_array
  3504. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  3505. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  3506. Declare task dependencies between a @var{task} and an array of tasks of length
  3507. @var{ndeps}. This function must be called prior to the submission of the task,
  3508. but it may called after the submission or the execution of the tasks in the
  3509. array provided the tasks are still valid (ie. they were not automatically
  3510. destroyed). Calling this function on a task that was already submitted or with
  3511. an entry of @var{task_array} that is not a valid task anymore results in an
  3512. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  3513. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3514. same task, in this case, the dependencies are added. It is possible to have
  3515. redundancy in the task dependencies.
  3516. @end deftypefun
  3517. @node starpu_tag_t
  3518. @subsection @code{starpu_tag_t} -- Task logical identifier
  3519. @table @asis
  3520. @item @emph{Description}:
  3521. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3522. dependencies between tasks by the means of those tags. To do so, fill the
  3523. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3524. be arbitrary) and set the @code{use_tag} field to 1.
  3525. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3526. not be started until the tasks which holds the declared dependency tags are
  3527. completed.
  3528. @end table
  3529. @node starpu_tag_declare_deps
  3530. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3531. @table @asis
  3532. @item @emph{Description}:
  3533. Specify the dependencies of the task identified by tag @code{id}. The first
  3534. argument specifies the tag which is configured, the second argument gives the
  3535. number of tag(s) on which @code{id} depends. The following arguments are the
  3536. tags which have to be terminated to unlock the task.
  3537. This function must be called before the associated task is submitted to StarPU
  3538. with @code{starpu_task_submit}.
  3539. @item @emph{Remark}
  3540. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3541. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3542. typically need to be explicitly casted. Using the
  3543. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3544. @item @emph{Prototype}:
  3545. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3546. @item @emph{Example}:
  3547. @cartouche
  3548. @example
  3549. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3550. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3551. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3552. @end example
  3553. @end cartouche
  3554. @end table
  3555. @node starpu_tag_declare_deps_array
  3556. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3557. @table @asis
  3558. @item @emph{Description}:
  3559. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3560. does not take a variable number of arguments but an array of tags of size
  3561. @code{ndeps}.
  3562. @item @emph{Prototype}:
  3563. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3564. @item @emph{Example}:
  3565. @cartouche
  3566. @example
  3567. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3568. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3569. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3570. @end example
  3571. @end cartouche
  3572. @end table
  3573. @node starpu_tag_wait
  3574. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3575. @deftypefun void starpu_tag_wait (starpu_tag_t @var{id})
  3576. This function blocks until the task associated to tag @var{id} has been
  3577. executed. This is a blocking call which must therefore not be called within
  3578. tasks or callbacks, but only from the application directly. It is possible to
  3579. synchronize with the same tag multiple times, as long as the
  3580. @code{starpu_tag_remove} function is not called. Note that it is still
  3581. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3582. data structure was freed (e.g. if the @code{destroy} flag of the
  3583. @code{starpu_task} was enabled).
  3584. @end deftypefun
  3585. @node starpu_tag_wait_array
  3586. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3587. @deftypefun void starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  3588. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3589. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  3590. terminated.
  3591. @end deftypefun
  3592. @node starpu_tag_remove
  3593. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3594. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  3595. This function releases the resources associated to tag @var{id}. It can be
  3596. called once the corresponding task has been executed and when there is
  3597. no other tag that depend on this tag anymore.
  3598. @end deftypefun
  3599. @node starpu_tag_notify_from_apps
  3600. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3601. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  3602. This function explicitly unlocks tag @var{id}. It may be useful in the
  3603. case of applications which execute part of their computation outside StarPU
  3604. tasks (e.g. third-party libraries). It is also provided as a
  3605. convenient tool for the programmer, for instance to entirely construct the task
  3606. DAG before actually giving StarPU the opportunity to execute the tasks.
  3607. @end deftypefun
  3608. @node Implicit Data Dependencies
  3609. @section Implicit Data Dependencies
  3610. @menu
  3611. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3612. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3613. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3614. @end menu
  3615. In this section, we describe how StarPU makes it possible to insert implicit
  3616. task dependencies in order to enforce sequential data consistency. When this
  3617. data consistency is enabled on a specific data handle, any data access will
  3618. appear as sequentially consistent from the application. For instance, if the
  3619. application submits two tasks that access the same piece of data in read-only
  3620. mode, and then a third task that access it in write mode, dependencies will be
  3621. added between the two first tasks and the third one. Implicit data dependencies
  3622. are also inserted in the case of data accesses from the application.
  3623. @node starpu_data_set_default_sequential_consistency_flag
  3624. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3625. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  3626. Set the default sequential consistency flag. If a non-zero value is passed, a
  3627. sequential data consistency will be enforced for all handles registered after
  3628. this function call, otherwise it is disabled. By default, StarPU enables
  3629. sequential data consistency. It is also possible to select the data consistency
  3630. mode of a specific data handle with the
  3631. @code{starpu_data_set_sequential_consistency_flag} function.
  3632. @end deftypefun
  3633. @node starpu_data_get_default_sequential_consistency_flag
  3634. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3635. @deftypefun unsigned starpu_data_set_default_sequential_consistency_flag (void)
  3636. This function returns the current default sequential consistency flag.
  3637. @end deftypefun
  3638. @node starpu_data_set_sequential_consistency_flag
  3639. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3640. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle @var{handle}, unsigned @var{flag})
  3641. Select the data consistency mode associated to a data handle. The consistency
  3642. mode set using this function has the priority over the default mode which can
  3643. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3644. @end deftypefun
  3645. @node Performance Model API
  3646. @section Performance Model API
  3647. @menu
  3648. * starpu_load_history_debug::
  3649. * starpu_perfmodel_debugfilepath::
  3650. * starpu_perfmodel_get_arch_name::
  3651. * starpu_force_bus_sampling::
  3652. @end menu
  3653. @node starpu_load_history_debug
  3654. @subsection @code{starpu_load_history_debug}
  3655. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel_t} *@var{model})
  3656. TODO
  3657. @end deftypefun
  3658. @node starpu_perfmodel_debugfilepath
  3659. @subsection @code{starpu_perfmodel_debugfilepath}
  3660. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel_t} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen})
  3661. TODO
  3662. @end deftypefun
  3663. @node starpu_perfmodel_get_arch_name
  3664. @subsection @code{starpu_perfmodel_get_arch_name}
  3665. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen})
  3666. TODO
  3667. @end deftypefun
  3668. @node starpu_force_bus_sampling
  3669. @subsection @code{starpu_force_bus_sampling}
  3670. @deftypefun void starpu_force_bus_sampling (void)
  3671. This forces sampling the bus performance model again.
  3672. @end deftypefun
  3673. @node Profiling API
  3674. @section Profiling API
  3675. @menu
  3676. * starpu_profiling_status_set:: starpu_profiling_status_set
  3677. * starpu_profiling_status_get:: starpu_profiling_status_get
  3678. * struct starpu_task_profiling_info:: task profiling information
  3679. * struct starpu_worker_profiling_info:: worker profiling information
  3680. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3681. * struct starpu_bus_profiling_info:: bus profiling information
  3682. * starpu_bus_get_count::
  3683. * starpu_bus_get_id::
  3684. * starpu_bus_get_src::
  3685. * starpu_bus_get_dst::
  3686. * starpu_timing_timespec_delay_us::
  3687. * starpu_timing_timespec_to_us::
  3688. * starpu_bus_profiling_helper_display_summary::
  3689. * starpu_worker_profiling_helper_display_summary::
  3690. @end menu
  3691. @node starpu_profiling_status_set
  3692. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3693. @table @asis
  3694. @item @emph{Description}:
  3695. Thie function sets the profiling status. Profiling is activated by passing
  3696. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3697. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3698. resets all profiling measurements. When profiling is enabled, the
  3699. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3700. to a valid @code{struct starpu_task_profiling_info} structure containing
  3701. information about the execution of the task.
  3702. @item @emph{Return value}:
  3703. Negative return values indicate an error, otherwise the previous status is
  3704. returned.
  3705. @item @emph{Prototype}:
  3706. @code{int starpu_profiling_status_set(int status);}
  3707. @end table
  3708. @node starpu_profiling_status_get
  3709. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3710. @deftypefun int starpu_profiling_status_get (void)
  3711. Return the current profiling status or a negative value in case there was an error.
  3712. @end deftypefun
  3713. @node struct starpu_task_profiling_info
  3714. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3715. @table @asis
  3716. @item @emph{Description}:
  3717. This structure contains information about the execution of a task. It is
  3718. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3719. structure if profiling was enabled.
  3720. @item @emph{Fields}:
  3721. @table @asis
  3722. @item @code{submit_time}:
  3723. Date of task submission (relative to the initialization of StarPU).
  3724. @item @code{start_time}:
  3725. Date of task execution beginning (relative to the initialization of StarPU).
  3726. @item @code{end_time}:
  3727. Date of task execution termination (relative to the initialization of StarPU).
  3728. @item @code{workerid}:
  3729. Identifier of the worker which has executed the task.
  3730. @end table
  3731. @end table
  3732. @node struct starpu_worker_profiling_info
  3733. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3734. @table @asis
  3735. @item @emph{Description}:
  3736. This structure contains the profiling information associated to a worker.
  3737. @item @emph{Fields}:
  3738. @table @asis
  3739. @item @code{start_time}:
  3740. Starting date for the reported profiling measurements.
  3741. @item @code{total_time}:
  3742. Duration of the profiling measurement interval.
  3743. @item @code{executing_time}:
  3744. Time spent by the worker to execute tasks during the profiling measurement interval.
  3745. @item @code{sleeping_time}:
  3746. Time spent idling by the worker during the profiling measurement interval.
  3747. @item @code{executed_tasks}:
  3748. Number of tasks executed by the worker during the profiling measurement interval.
  3749. @end table
  3750. @end table
  3751. @node starpu_worker_get_profiling_info
  3752. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3753. @table @asis
  3754. @item @emph{Description}:
  3755. Get the profiling info associated to the worker identified by @code{workerid},
  3756. and reset the profiling measurements. If the @code{worker_info} argument is
  3757. NULL, only reset the counters associated to worker @code{workerid}.
  3758. @item @emph{Return value}:
  3759. Upon successful completion, this function returns 0. Otherwise, a negative
  3760. value is returned.
  3761. @item @emph{Prototype}:
  3762. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3763. @end table
  3764. @node struct starpu_bus_profiling_info
  3765. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3766. @table @asis
  3767. @item @emph{Description}:
  3768. TODO
  3769. @item @emph{Fields}:
  3770. @table @asis
  3771. @item @code{start_time}:
  3772. TODO
  3773. @item @code{total_time}:
  3774. TODO
  3775. @item @code{transferred_bytes}:
  3776. TODO
  3777. @item @code{transfer_count}:
  3778. TODO
  3779. @end table
  3780. @end table
  3781. @node starpu_bus_get_count
  3782. @subsection @code{starpu_bus_get_count}
  3783. @deftypefun int starpu_bus_get_count (void)
  3784. TODO
  3785. @end deftypefun
  3786. @node starpu_bus_get_id
  3787. @subsection @code{starpu_bus_get_id}
  3788. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  3789. TODO
  3790. @end deftypefun
  3791. @node starpu_bus_get_src
  3792. @subsection @code{starpu_bus_get_src}
  3793. @deftypefun int starpu_bus_get_src (int @var{busid})
  3794. TODO
  3795. @end deftypefun
  3796. @node starpu_bus_get_dst
  3797. @subsection @code{starpu_bus_get_dst}
  3798. @deftypefun int starpu_bus_get_dst (int @var{busid})
  3799. TODO
  3800. @end deftypefun
  3801. @node starpu_timing_timespec_delay_us
  3802. @subsection @code{starpu_timing_timespec_delay_us}
  3803. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  3804. TODO
  3805. @end deftypefun
  3806. @node starpu_timing_timespec_to_us
  3807. @subsection @code{starpu_timing_timespec_to_us}
  3808. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  3809. TODO
  3810. @end deftypefun
  3811. @node starpu_bus_profiling_helper_display_summary
  3812. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3813. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  3814. TODO
  3815. @end deftypefun
  3816. @node starpu_worker_profiling_helper_display_summary
  3817. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3818. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  3819. TODO
  3820. @end deftypefun
  3821. @node CUDA extensions
  3822. @section CUDA extensions
  3823. @c void starpu_malloc(float **A, size_t dim);
  3824. @menu
  3825. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3826. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3827. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3828. @end menu
  3829. @node starpu_cuda_get_local_stream
  3830. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3831. @deftypefun {cudaStream_t *} starpu_cuda_get_local_stream (void)
  3832. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3833. function is only provided for convenience so that programmers can easily use
  3834. asynchronous operations within codelets without having to create a stream by
  3835. hand. Note that the application is not forced to use the stream provided by
  3836. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3837. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3838. the likelihood of having all transfers overlapped.
  3839. @end deftypefun
  3840. @node starpu_helper_cublas_init
  3841. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3842. @deftypefun void starpu_helper_cublas_init (void)
  3843. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3844. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3845. controlled by StarPU. This call blocks until CUBLAS has been properly
  3846. initialized on every device.
  3847. @end deftypefun
  3848. @node starpu_helper_cublas_shutdown
  3849. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3850. @deftypefun void starpu_helper_cublas_shutdown (void)
  3851. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3852. @end deftypefun
  3853. @node OpenCL extensions
  3854. @section OpenCL extensions
  3855. @menu
  3856. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3857. * Loading OpenCL kernels:: Loading OpenCL kernels
  3858. * OpenCL statistics:: Collecting statistics from OpenCL
  3859. @end menu
  3860. @node Compiling OpenCL kernels
  3861. @subsection Compiling OpenCL kernels
  3862. Source codes for OpenCL kernels can be stored in a file or in a
  3863. string. StarPU provides functions to build the program executable for
  3864. each available OpenCL device as a @code{cl_program} object. This
  3865. program executable can then be loaded within a specific queue as
  3866. explained in the next section. These are only helpers, Applications
  3867. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3868. use (e.g. different programs on the different OpenCL devices, for
  3869. relocation purpose for instance).
  3870. @menu
  3871. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3872. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3873. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3874. @end menu
  3875. @node starpu_opencl_load_opencl_from_file
  3876. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3877. @deftypefun int starpu_opencl_load_opencl_from_file (char *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3878. TODO
  3879. @end deftypefun
  3880. @node starpu_opencl_load_opencl_from_string
  3881. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3882. @deftypefun int starpu_opencl_load_opencl_from_string (char *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3883. TODO
  3884. @end deftypefun
  3885. @node starpu_opencl_unload_opencl
  3886. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3887. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  3888. TODO
  3889. @end deftypefun
  3890. @node Loading OpenCL kernels
  3891. @subsection Loading OpenCL kernels
  3892. @menu
  3893. * starpu_opencl_load_kernel:: Loading a kernel
  3894. * starpu_opencl_relase_kernel:: Releasing a kernel
  3895. @end menu
  3896. @node starpu_opencl_load_kernel
  3897. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3898. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, char *@var{kernel_name}, int @var{devid})
  3899. TODO
  3900. @end deftypefun
  3901. @node starpu_opencl_relase_kernel
  3902. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3903. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  3904. TODO
  3905. @end deftypefun
  3906. @node OpenCL statistics
  3907. @subsection OpenCL statistics
  3908. @menu
  3909. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3910. @end menu
  3911. @node starpu_opencl_collect_stats
  3912. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3913. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  3914. After termination of the kernels, the OpenCL codelet should call this function
  3915. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3916. collect statistics about the kernel execution (used cycles, consumed power).
  3917. @end deftypefun
  3918. @node Cell extensions
  3919. @section Cell extensions
  3920. nothing yet.
  3921. @node Miscellaneous helpers
  3922. @section Miscellaneous helpers
  3923. @menu
  3924. * starpu_data_cpy:: Copy a data handle into another data handle
  3925. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3926. @end menu
  3927. @node starpu_data_cpy
  3928. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3929. @deftypefun int starpu_data_cpy (starpu_data_handle @var{dst_handle}, starpu_data_handle @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  3930. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  3931. The @var{asynchronous} parameter indicates whether the function should
  3932. block or not. In the case of an asynchronous call, it is possible to
  3933. synchronize with the termination of this operation either by the means of
  3934. implicit dependencies (if enabled) or by calling
  3935. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  3936. this callback function is executed after the handle has been copied, and it is
  3937. given the @var{callback_arg} pointer as argument.
  3938. @end deftypefun
  3939. @node starpu_execute_on_each_worker
  3940. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3941. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  3942. When calling this method, the offloaded function specified by the first argument is
  3943. executed by every StarPU worker that may execute the function.
  3944. The second argument is passed to the offloaded function.
  3945. The last argument specifies on which types of processing units the function
  3946. should be executed. Similarly to the @var{where} field of the
  3947. @code{starpu_codelet} structure, it is possible to specify that the function
  3948. should be executed on every CUDA device and every CPU by passing
  3949. @code{STARPU_CPU|STARPU_CUDA}.
  3950. This function blocks until the function has been executed on every appropriate
  3951. processing units, so that it may not be called from a callback function for
  3952. instance.
  3953. @end deftypefun
  3954. @c ---------------------------------------------------------------------
  3955. @c Advanced Topics
  3956. @c ---------------------------------------------------------------------
  3957. @node Advanced Topics
  3958. @chapter Advanced Topics
  3959. @menu
  3960. * Defining a new data interface::
  3961. * Defining a new scheduling policy::
  3962. @end menu
  3963. @node Defining a new data interface
  3964. @section Defining a new data interface
  3965. @menu
  3966. * struct starpu_data_interface_ops_t:: Per-interface methods
  3967. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3968. * An example of data interface:: An example of data interface
  3969. @end menu
  3970. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3971. @node struct starpu_data_interface_ops_t
  3972. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3973. @table @asis
  3974. @item @emph{Description}:
  3975. TODO describe all the different fields
  3976. @end table
  3977. @node struct starpu_data_copy_methods
  3978. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3979. @table @asis
  3980. @item @emph{Description}:
  3981. TODO describe all the different fields
  3982. @end table
  3983. @node An example of data interface
  3984. @subsection An example of data interface
  3985. @table @asis
  3986. TODO
  3987. See @code{src/datawizard/interfaces/vector_interface.c} for now.
  3988. @end table
  3989. @node Defining a new scheduling policy
  3990. @section Defining a new scheduling policy
  3991. TODO
  3992. A full example showing how to define a new scheduling policy is available in
  3993. the StarPU sources in the directory @code{examples/scheduler/}.
  3994. @menu
  3995. * struct starpu_sched_policy_s::
  3996. * starpu_worker_set_sched_condition::
  3997. * starpu_sched_set_min_priority:: Set the minimum priority level
  3998. * starpu_sched_set_max_priority:: Set the maximum priority level
  3999. * starpu_push_local_task:: Assign a task to a worker
  4000. * Source code::
  4001. @end menu
  4002. @node struct starpu_sched_policy_s
  4003. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  4004. @table @asis
  4005. @item @emph{Description}:
  4006. This structure contains all the methods that implement a scheduling policy. An
  4007. application may specify which scheduling strategy in the @code{sched_policy}
  4008. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  4009. function.
  4010. @item @emph{Fields}:
  4011. @table @asis
  4012. @item @code{init_sched}:
  4013. Initialize the scheduling policy.
  4014. @item @code{deinit_sched}:
  4015. Cleanup the scheduling policy.
  4016. @item @code{push_task}:
  4017. Insert a task into the scheduler.
  4018. @item @code{push_prio_task}:
  4019. Insert a priority task into the scheduler.
  4020. @item @code{push_prio_notify}:
  4021. Notify the scheduler that a task was pushed on the worker. This method is
  4022. called when a task that was explicitely assigned to a worker is scheduled. This
  4023. method therefore permits to keep the state of of the scheduler coherent even
  4024. when StarPU bypasses the scheduling strategy.
  4025. @item @code{pop_task}:
  4026. Get a task from the scheduler. The mutex associated to the worker is already
  4027. taken when this method is called. If this method is defined as @code{NULL}, the
  4028. worker will only execute tasks from its local queue. In this case, the
  4029. @code{push_task} method should use the @code{starpu_push_local_task} method to
  4030. assign tasks to the different workers.
  4031. @item @code{pop_every_task}:
  4032. Remove all available tasks from the scheduler (tasks are chained by the means
  4033. of the prev and next fields of the starpu_task structure). The mutex associated
  4034. to the worker is already taken when this method is called.
  4035. @item @code{post_exec_hook} (optionnal):
  4036. This method is called every time a task has been executed.
  4037. @item @code{policy_name}:
  4038. Name of the policy (optionnal).
  4039. @item @code{policy_description}:
  4040. Description of the policy (optionnal).
  4041. @end table
  4042. @end table
  4043. @node starpu_worker_set_sched_condition
  4044. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  4045. @deftypefun void starpu_worker_set_sched_condition (int @var{workerid}, pthread_cond_t *@var{sched_cond}, pthread_mutex_t *@var{sched_mutex})
  4046. When there is no available task for a worker, StarPU blocks this worker on a
  4047. condition variable. This function specifies which condition variable (and the
  4048. associated mutex) should be used to block (and to wake up) a worker. Note that
  4049. multiple workers may use the same condition variable. For instance, in the case
  4050. of a scheduling strategy with a single task queue, the same condition variable
  4051. would be used to block and wake up all workers.
  4052. The initialization method of a scheduling strategy (@code{init_sched}) must
  4053. call this function once per worker.
  4054. @end deftypefun
  4055. @node starpu_sched_set_min_priority
  4056. @subsection @code{starpu_sched_set_min_priority}
  4057. @deftypefun void starpu_sched_set_min_priority (int @var{min_prio})
  4058. Defines the minimum priority level supported by the scheduling policy. The
  4059. default minimum priority level is the same as the default priority level which
  4060. is 0 by convention. The application may access that value by calling the
  4061. @code{starpu_sched_get_min_priority} function. This function should only be
  4062. called from the initialization method of the scheduling policy, and should not
  4063. be used directly from the application.
  4064. @end deftypefun
  4065. @node starpu_sched_set_max_priority
  4066. @subsection @code{starpu_sched_set_max_priority}
  4067. @deftypefun void starpu_sched_set_min_priority (int @var{max_prio})
  4068. Defines the maximum priority level supported by the scheduling policy. The
  4069. default maximum priority level is 1. The application may access that value by
  4070. calling the @code{starpu_sched_get_max_priority} function. This function should
  4071. only be called from the initialization method of the scheduling policy, and
  4072. should not be used directly from the application.
  4073. @end deftypefun
  4074. @node starpu_push_local_task
  4075. @subsection @code{starpu_push_local_task}
  4076. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  4077. The scheduling policy may put tasks directly into a worker's local queue so
  4078. that it is not always necessary to create its own queue when the local queue
  4079. is sufficient. If "back" not null, the task is put at the back of the queue
  4080. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  4081. a FIFO ordering.
  4082. @end deftypefun
  4083. @node Source code
  4084. @subsection Source code
  4085. @cartouche
  4086. @smallexample
  4087. static struct starpu_sched_policy_s dummy_sched_policy = @{
  4088. .init_sched = init_dummy_sched,
  4089. .deinit_sched = deinit_dummy_sched,
  4090. .push_task = push_task_dummy,
  4091. .push_prio_task = NULL,
  4092. .pop_task = pop_task_dummy,
  4093. .post_exec_hook = NULL,
  4094. .pop_every_task = NULL,
  4095. .policy_name = "dummy",
  4096. .policy_description = "dummy scheduling strategy"
  4097. @};
  4098. @end smallexample
  4099. @end cartouche
  4100. @c ---------------------------------------------------------------------
  4101. @c C Extensions
  4102. @c ---------------------------------------------------------------------
  4103. @include c-extensions.texi
  4104. @c ---------------------------------------------------------------------
  4105. @c Appendices
  4106. @c ---------------------------------------------------------------------
  4107. @c ---------------------------------------------------------------------
  4108. @c Full source code for the 'Scaling a Vector' example
  4109. @c ---------------------------------------------------------------------
  4110. @node Full source code for the 'Scaling a Vector' example
  4111. @appendix Full source code for the 'Scaling a Vector' example
  4112. @menu
  4113. * Main application::
  4114. * CPU Kernel::
  4115. * CUDA Kernel::
  4116. * OpenCL Kernel::
  4117. @end menu
  4118. @node Main application
  4119. @section Main application
  4120. @include vector_scal_c.texi
  4121. @node CPU Kernel
  4122. @section CPU Kernel
  4123. @include vector_scal_cpu.texi
  4124. @node CUDA Kernel
  4125. @section CUDA Kernel
  4126. @include vector_scal_cuda.texi
  4127. @node OpenCL Kernel
  4128. @section OpenCL Kernel
  4129. @menu
  4130. * Invoking the kernel::
  4131. * Source of the kernel::
  4132. @end menu
  4133. @node Invoking the kernel
  4134. @subsection Invoking the kernel
  4135. @include vector_scal_opencl.texi
  4136. @node Source of the kernel
  4137. @subsection Source of the kernel
  4138. @include vector_scal_opencl_codelet.texi
  4139. @node GNU Free Documentation License
  4140. @appendix GNU Free Documentation License
  4141. @include fdl-1.3.texi
  4142. @c
  4143. @c Indices.
  4144. @c
  4145. @node Function Index
  4146. @unnumbered Function Index
  4147. @printindex fn
  4148. @bye