| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394 | /* StarPU --- Runtime system for heterogeneous multicore architectures. * * Copyright (C) 2010-2011  Université de Bordeaux 1 * Copyright (C) 2010  Mehdi Juhoor <mjuhoor@gmail.com> * Copyright (C) 2010, 2011, 2012  Centre National de la Recherche Scientifique * * StarPU is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * StarPU is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. *//* * This example shows a simple implementation of a blocked matrix * multiplication. Note that this is NOT intended to be an efficient * implementation of sgemm! In this example, we show: *  - how to declare dense matrices (starpu_matrix_data_register) *  - how to manipulate matrices within codelets (eg. descr[0].blas.ld) *  - how to use filters to partition the matrices into blocks *    (starpu_data_partition and starpu_data_map_filters) *  - how to unpartition data (starpu_data_unpartition) and how to stop *    monitoring data (starpu_data_unregister) *  - how to manipulate subsets of data (starpu_data_get_sub_data) *  - how to construct an autocalibrated performance model (starpu_perfmodel) *  - how to submit asynchronous tasks */#include <string.h>#include <math.h>#include <sys/types.h>#include <sys/time.h>#include <pthread.h>#include <signal.h>#include <starpu.h>static float *A, *B, *C;static starpu_data_handle_t A_handle, B_handle, C_handle;static unsigned nslicesx = 4;static unsigned nslicesy = 4;static unsigned xdim = 1024;static unsigned ydim = 1024;static unsigned zdim = 512;/* * That program should compute C = A * B  *  *   A of size (z,y) *   B of size (x,z) *   C of size (x,y)              |---------------|            z |       B       |              |---------------|       z              x     |----|   |---------------|     |    |   |               |     |    |   |               |     | A  | y |       C       |     |    |   |               |     |    |   |               |     |----|   |---------------| *//* * The codelet is passed 3 matrices, the "descr" union-type field gives a * description of the layout of those 3 matrices in the local memory (ie. RAM * in the case of CPU, GPU frame buffer in the case of GPU etc.). Since we have * registered data with the "matrix" data interface, we use the matrix macros. */static void cpu_mult(void *descr[], __attribute__((unused))  void *arg){	float *subA, *subB, *subC;	uint32_t nxC, nyC, nyA;	uint32_t ldA, ldB, ldC;	/* .blas.ptr gives a pointer to the first element of the local copy */	subA = (float *)STARPU_MATRIX_GET_PTR(descr[0]);	subB = (float *)STARPU_MATRIX_GET_PTR(descr[1]);	subC = (float *)STARPU_MATRIX_GET_PTR(descr[2]);	/* .blas.nx is the number of rows (consecutive elements) and .blas.ny	 * is the number of lines that are separated by .blas.ld elements (ld	 * stands for leading dimension).	 * NB: in case some filters were used, the leading dimension is not	 * guaranteed to be the same in main memory (on the original matrix)	 * and on the accelerator! */	nxC = STARPU_MATRIX_GET_NX(descr[2]);	nyC = STARPU_MATRIX_GET_NY(descr[2]);	nyA = STARPU_MATRIX_GET_NY(descr[0]);	ldA = STARPU_MATRIX_GET_LD(descr[0]);	ldB = STARPU_MATRIX_GET_LD(descr[1]);	ldC = STARPU_MATRIX_GET_LD(descr[2]);	/* we assume a FORTRAN-ordering! */	unsigned i,j,k;	for (i = 0; i < nyC; i++)	{		for (j = 0; j < nxC; j++)		{			float sum = 0.0;			for (k = 0; k < nyA; k++)			{				sum += subA[j+k*ldA]*subB[k+i*ldB];			}			subC[j + i*ldC] = sum;		}	}}static void init_problem_data(void){	unsigned i,j;	/* we initialize matrices A, B and C in the usual way */	A = (float *) malloc(zdim*ydim*sizeof(float));	B = (float *) malloc(xdim*zdim*sizeof(float));	C = (float *) malloc(xdim*ydim*sizeof(float));	/* fill the A and B matrices */	srand(2009);	for (j=0; j < ydim; j++)	{		for (i=0; i < zdim; i++)		{			A[j+i*ydim] = (float)(starpu_drand48());		}	}	for (j=0; j < zdim; j++)	{		for (i=0; i < xdim; i++)		{			B[j+i*zdim] = (float)(starpu_drand48());		}	}	for (j=0; j < ydim; j++)	{		for (i=0; i < xdim; i++)		{			C[j+i*ydim] = (float)(0);		}	}}static void partition_mult_data(void){	/* note that we assume a FORTRAN ordering here! */	/* The BLAS data interface is described by 4 parameters: 	 *  - the location of the first element of the matrix to monitor (3rd	 *    argument)	 *  - the number of elements between columns, aka leading dimension	 *    (4th arg)	 *  - the number of (contiguous) elements per column, ie. contiguous	 *  elements (5th arg)	 *  - the number of columns (6th arg)	 * The first elements is a pointer to the data_handle that will be	 * associated to the matrix, and the second elements gives the memory	 * node in which resides the matrix: 0 means that the 3rd argument is	 * an adress in main memory.	 */	starpu_matrix_data_register(&A_handle, 0, (uintptr_t)A, 		ydim, ydim, zdim, sizeof(float));	starpu_matrix_data_register(&B_handle, 0, (uintptr_t)B, 		zdim, zdim, xdim, sizeof(float));	starpu_matrix_data_register(&C_handle, 0, (uintptr_t)C, 		ydim, ydim, xdim, sizeof(float));	/* A filter is a method to partition a data into disjoint chunks, it is	 * described by the means of the "struct starpu_data_filter" structure that	 * contains a function that is applied on a data handle to partition it	 * into smaller chunks, and an argument that is passed to the function	 * (eg. the number of blocks to create here).	 */	/* StarPU supplies some basic filters such as the partition of a matrix	 * into blocks, note that we are using a FORTRAN ordering so that the	 * name of the filters are a bit misleading */	struct starpu_data_filter vert =	{		.filter_func = starpu_vertical_block_filter_func,		.nchildren = nslicesx	};	struct starpu_data_filter horiz =	{		.filter_func = starpu_block_filter_func,		.nchildren = nslicesy	};/* *	Illustration with nslicex = 4 and nslicey = 2, it is possible to access *	sub-data by using the "starpu_data_get_sub_data" method, which takes a data handle, *	the number of filters to apply, and the indexes for each filters, for *	instance: * *		A' handle is starpu_data_get_sub_data(A_handle, 1, 1);  *		B' handle is starpu_data_get_sub_data(B_handle, 1, 2);  *		C' handle is starpu_data_get_sub_data(C_handle, 2, 2, 1);  * *	Note that here we applied 2 filters recursively onto C. * *	"starpu_data_get_sub_data(C_handle, 1, 3)" would return a handle to the 4th column *	of blocked matrix C for example. * *		              |---|---|---|---| *		              |   |   | B'|   | B *		              |---|---|---|---| *		                0   1   2   3 *		     |----|   |---|---|---|---| *		     |    |   |   |   |   |   | *		     |    | 0 |   |   |   |   | *		     |----|   |---|---|---|---| *		     | A' |   |   |   | C'|   | *		     |    |   |   |   |   |   | *		     |----|   |---|---|---|---| *		       A              C * *	IMPORTANT: applying filters is equivalent to partitionning a piece of *	data in a hierarchical manner, so that memory consistency is enforced *	for each of the elements independantly. The tasks should therefore NOT *	access inner nodes (eg. one column of C or the whole C) but only the *	leafs of the tree (ie. blocks here). Manipulating inner nodes is only *	possible by disapplying the filters (using starpu_data_unpartition), to *	enforce memory consistency. */	starpu_data_partition(B_handle, &vert);	starpu_data_partition(A_handle, &horiz);	/* starpu_data_map_filters is a variable-arity function, the first argument	 * is the handle of the data to partition, the second argument is the	 * number of filters to apply recursively. Filters are applied in the	 * same order as the arguments.	 * This would be equivalent to starpu_data_partition(C_handle, &vert) and	 * then applying horiz on each sub-data (ie. each column of C)	 */	starpu_data_map_filters(C_handle, 2, &vert, &horiz);}static struct starpu_perfmodel mult_perf_model ={	.type = STARPU_HISTORY_BASED,	.symbol = "mult_perf_model"};static struct starpu_codelet cl ={        /* we can only execute that kernel on a CPU yet */        .where = STARPU_CPU,        /* CPU implementation of the codelet */        .cpu_funcs = {cpu_mult, NULL},        /* the codelet manipulates 3 buffers that are managed by the         * DSM */        .nbuffers = 3,	.modes = {STARPU_R, STARPU_R, STARPU_W},        /* in case the scheduling policy may use performance models */        .model = &mult_perf_model};static int launch_tasks(void){	int ret;	/* partition the work into slices */	unsigned taskx, tasky;	for (taskx = 0; taskx < nslicesx; taskx++) 	{		for (tasky = 0; tasky < nslicesy; tasky++)		{			/* C[taskx, tasky] = A[tasky] B[taskx] */			/* by default, starpu_task_create() returns an 			 * asynchronous task (ie. task->synchronous = 0) */			struct starpu_task *task = starpu_task_create();			/* this task implements codelet "cl" */			task->cl = &cl;			/*			 *              |---|---|---|---|			 *              |   | * |   |   | B			 *              |---|---|---|---|			 *                    X 			 *     |----|   |---|---|---|---|			 *     |****| Y |   |***|   |   |			 *     |****|   |   |***|   |   |			 *     |----|   |---|---|---|---|			 *     |    |   |   |   |   |   |			 *     |    |   |   |   |   |   |			 *     |----|   |---|---|---|---|			 *       A              C			 */			/* there was a single filter applied to matrices A			 * (respectively B) so we grab the handle to the chunk			 * identified by "tasky" (respectively "taskx). The "1"			 * tells StarPU that there is a single argument to the			 * variable-arity function starpu_data_get_sub_data */			task->handles[0] = starpu_data_get_sub_data(A_handle, 1, tasky);			task->handles[1] = starpu_data_get_sub_data(B_handle, 1, taskx);			/* 2 filters were applied on matrix C, so we give			 * starpu_data_get_sub_data 2 arguments. The order of the arguments			 * must match the order in which the filters were			 * applied.			 * NB: starpu_data_get_sub_data(C_handle, 1, k) would have returned			 * a handle to the column number k of matrix C.			 * NB2: starpu_data_get_sub_data(C_handle, 2, taskx, tasky) is			 * equivalent to			 * starpu_data_get_sub_data(starpu_data_get_sub_data(C_handle, 1, taskx), 1, tasky)*/			task->handles[2] = starpu_data_get_sub_data(C_handle, 2, taskx, tasky);			/* this is not a blocking call since task->synchronous = 0 */			ret = starpu_task_submit(task);			if (ret == -ENODEV) return ret;			STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");		}	}	return 0;}int main(__attribute__ ((unused)) int argc, 	 __attribute__ ((unused)) char **argv){	int ret;	/* start the runtime */	ret = starpu_init(NULL);	if (ret == -ENODEV)		return 77;	STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");	/* initialize matrices A, B and C and register them to StarPU */	init_problem_data();	/* partition matrices into blocks that can be manipulated by the 	 * codelets */	partition_mult_data();	/* submit all tasks in an asynchronous fashion */	ret = launch_tasks();	if (ret == -ENODEV) goto enodev;	/* wait for termination */        starpu_task_wait_for_all();	/* remove the filters applied by the means of starpu_data_map_filters; now 	 * it's not possible to manipulate a subset of C using starpu_data_get_sub_data until	 * starpu_data_map_filters is called again on C_handle.	 * The second argument is the memory node where the different subsets	 * should be reassembled, 0 = main memory (RAM) */	starpu_data_unpartition(A_handle, 0);	starpu_data_unpartition(B_handle, 0);	starpu_data_unpartition(C_handle, 0);	/* stop monitoring matrix C : after this, it is not possible to pass C 	 * (or any subset of C) as a codelet input/output. This also implements	 * a barrier so that the piece of data is put back into main memory in	 * case it was only available on a GPU for instance. */	starpu_data_unregister(A_handle);	starpu_data_unregister(B_handle);	starpu_data_unregister(C_handle);	free(A);	free(B);	free(C);	starpu_shutdown();	return 0;enodev:	starpu_shutdown();	return 77;}
 |