| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 | /* StarPU --- Runtime system for heterogeneous multicore architectures. * * Copyright (C) 2010-2012  INRIA * * StarPU is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * StarPU is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. */#include <stdio.h>#include <stdint.h>#include <starpu.h>#include <sc_hypervisor.h>#define NTASKS 1000#define NINCR 10#define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__); }} while(0)struct params{	unsigned sched_ctx;	int task_tag;};unsigned val[2];pthread_mutex_t mut[2];/* Every implementation of a codelet must have this prototype, the first                                                                                                                                             * argument (buffers) describes the buffers/streams that are managed by the * DSM; the second arguments references read-only data that is passed as an * argument of the codelet (task->cl_arg). Here, "buffers" is unused as there * are no data input/output managed by the DSM (cl.nbuffers = 0) */void cpu_func(__attribute__((unused))void *buffers[], void *cl_arg){	struct params *params = (struct params *) cl_arg;	int i;	for(i = 0; i < NINCR; i++)	{		pthread_mutex_lock(&mut[params->sched_ctx - 1]);		val[params->sched_ctx - 1]++;		pthread_mutex_unlock(&mut[params->sched_ctx - 1]);	}	if(params->task_tag != 0)		FPRINTF(stdout, "Task with tag %d executed in ctx = %u %u counter_tests\n", params->task_tag, params->sched_ctx, val[params->sched_ctx - 1]);}struct starpu_codelet cl = {0};/* the management of the tags is done by the user *//* who will take care that the tags will be unique */int tag = 1;void* submit_tasks_thread(void *arg){	unsigned sched_ctx = *((unsigned*)arg);	starpu_sched_ctx_set_context(&sched_ctx);	struct starpu_task *task[NTASKS];	struct params params[NTASKS];	int i;	for(i = 0; i < NTASKS; i++)	{		task[i] = starpu_task_create();//		usleep(5000);		cl.cpu_funcs[0] = cpu_func;		cl.nbuffers = 0;		task[i]->cl = &cl;		if(sched_ctx == 1 && i == 5)		{			/* tag the tasks whose execution will start the resizing process */			task[i]->hypervisor_tag = tag;			/* indicate particular settings the context should have when the 			   resizing will be done */			sc_hypervisor_ctl(sched_ctx,						   SC_HYPERVISOR_TIME_TO_APPLY, tag,						   SC_HYPERVISOR_MIN_WORKERS, 2,						   SC_HYPERVISOR_MAX_WORKERS, 12,						   SC_HYPERVISOR_NULL);			printf("require resize for sched_ctx %u at tag %d\n", sched_ctx, tag);			/* specify that the contexts should be resized when the task having this			   particular tag will finish executing */			sc_hypervisor_post_resize_request(sched_ctx, tag);		}		params[i].sched_ctx = sched_ctx;		params[i].task_tag = task[i]->hypervisor_tag;		task[i]->cl_arg = ¶ms[i];		task[i]->cl_arg_size = sizeof(params);		int ret = starpu_task_submit(task[i]);		STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");	}	starpu_task_wait_for_all();	return NULL;}int main(){	int ret = starpu_init(NULL);	if (ret == -ENODEV)        return 77;	int num_workers = starpu_worker_get_count();	int nres1 = num_workers;	int nres2 = num_workers;	int ressources1[nres1];	int ressources2[nres2];	int i;	for(i = 0; i < nres1; i++)		ressources1[i] = i;	for(i = 0; i < nres2; i++)		ressources2[i] = i;	/* create contexts */	unsigned sched_ctx1 = starpu_sched_ctx_create(ressources1, nres1, "sched_ctx1", STARPU_SCHED_CTX_POLICY_NAME, "dmda", 0);	unsigned sched_ctx2 = starpu_sched_ctx_create(ressources2, nres2, "sched_ctx2", STARPU_SCHED_CTX_POLICY_NAME, "dmda", 0);	/* initialize the hypervisor */	struct sc_hypervisor_policy policy = {};	policy.custom = 0;	/* indicate which strategy to use	   in this particular case we use app_driven which allows the user to resize 	   the ctxs dynamically at particular moments of the execution of the application */	policy.name = "app_driven";	void *perf_counters = sc_hypervisor_init(&policy);	/* let starpu know which performance counters should use 	   to inform the hypervisor how the application and the resources are executing */	starpu_sched_ctx_set_perf_counters(sched_ctx1, perf_counters);	starpu_sched_ctx_set_perf_counters(sched_ctx2, perf_counters);	/* register the contexts that should be managed by the hypervisor	   and indicate an approximate amount of workload if known;	   in this case we don't know it and we put 0 */	sc_hypervisor_register_ctx(sched_ctx1, 0.0);	sc_hypervisor_register_ctx(sched_ctx2, 0.0);	starpu_pthread_t tid[2];	val[0] = 0;	val[1] = 0;	pthread_mutex_init(&mut[0], NULL);	pthread_mutex_init(&mut[1], NULL);	/* we create two threads to simulate simultaneous submission of tasks */	starpu_pthread_create(&tid[0], NULL, submit_tasks_thread, (void*)&sched_ctx1);	starpu_pthread_create(&tid[1], NULL, submit_tasks_thread, (void*)&sched_ctx2);	starpu_pthread_join(tid[0], NULL);	starpu_pthread_join(tid[1], NULL);	/* free starpu and hypervisor data */	starpu_shutdown();	sc_hypervisor_shutdown();	FPRINTF(stdout, "ctx = %u executed %u counter_tests out of %d \n", sched_ctx1, val[0], NTASKS*NINCR);	FPRINTF(stdout, "ctx = %u executed %u counter_tests out of %d \n", sched_ctx2, val[1], NTASKS*NINCR);	return 0;}
 |