123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- /* dppequ.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dppequ_(char *uplo, integer *n, doublereal *ap,
- doublereal *s, doublereal *scond, doublereal *amax, integer *info)
- {
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, jj;
- doublereal smin;
- extern logical _starpu_lsame_(char *, char *);
- logical upper;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DPPEQU computes row and column scalings intended to equilibrate a */
- /* symmetric positive definite matrix A in packed storage and reduce */
- /* its condition number (with respect to the two-norm). S contains the */
- /* scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix */
- /* B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal. */
- /* This choice of S puts the condition number of B within a factor N of */
- /* the smallest possible condition number over all possible diagonal */
- /* scalings. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangle of A is stored; */
- /* = 'L': Lower triangle of A is stored. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
- /* The upper or lower triangle of the symmetric matrix A, packed */
- /* columnwise in a linear array. The j-th column of A is stored */
- /* in the array AP as follows: */
- /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
- /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
- /* S (output) DOUBLE PRECISION array, dimension (N) */
- /* If INFO = 0, S contains the scale factors for A. */
- /* SCOND (output) DOUBLE PRECISION */
- /* If INFO = 0, S contains the ratio of the smallest S(i) to */
- /* the largest S(i). If SCOND >= 0.1 and AMAX is neither too */
- /* large nor too small, it is not worth scaling by S. */
- /* AMAX (output) DOUBLE PRECISION */
- /* Absolute value of largest matrix element. If AMAX is very */
- /* close to overflow or very close to underflow, the matrix */
- /* should be scaled. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, the i-th diagonal element is nonpositive. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --s;
- --ap;
- /* Function Body */
- *info = 0;
- upper = _starpu_lsame_(uplo, "U");
- if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DPPEQU", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- *scond = 1.;
- *amax = 0.;
- return 0;
- }
- /* Initialize SMIN and AMAX. */
- s[1] = ap[1];
- smin = s[1];
- *amax = s[1];
- if (upper) {
- /* UPLO = 'U': Upper triangle of A is stored. */
- /* Find the minimum and maximum diagonal elements. */
- jj = 1;
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- jj += i__;
- s[i__] = ap[jj];
- /* Computing MIN */
- d__1 = smin, d__2 = s[i__];
- smin = min(d__1,d__2);
- /* Computing MAX */
- d__1 = *amax, d__2 = s[i__];
- *amax = max(d__1,d__2);
- /* L10: */
- }
- } else {
- /* UPLO = 'L': Lower triangle of A is stored. */
- /* Find the minimum and maximum diagonal elements. */
- jj = 1;
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- jj = jj + *n - i__ + 2;
- s[i__] = ap[jj];
- /* Computing MIN */
- d__1 = smin, d__2 = s[i__];
- smin = min(d__1,d__2);
- /* Computing MAX */
- d__1 = *amax, d__2 = s[i__];
- *amax = max(d__1,d__2);
- /* L20: */
- }
- }
- if (smin <= 0.) {
- /* Find the first non-positive diagonal element and return. */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (s[i__] <= 0.) {
- *info = i__;
- return 0;
- }
- /* L30: */
- }
- } else {
- /* Set the scale factors to the reciprocals */
- /* of the diagonal elements. */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- s[i__] = 1. / sqrt(s[i__]);
- /* L40: */
- }
- /* Compute SCOND = min(S(I)) / max(S(I)) */
- *scond = sqrt(smin) / sqrt(*amax);
- }
- return 0;
- /* End of DPPEQU */
- } /* _starpu_dppequ_ */
|