123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576 |
- /* dlaln2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dlaln2_(logical *ltrans, integer *na, integer *nw,
- doublereal *smin, doublereal *ca, doublereal *a, integer *lda,
- doublereal *d1, doublereal *d2, doublereal *b, integer *ldb,
- doublereal *wr, doublereal *wi, doublereal *x, integer *ldx,
- doublereal *scale, doublereal *xnorm, integer *info)
- {
- /* Initialized data */
- static logical zswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
- static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
- static integer ipivot[16] /* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2,
- 4,3,2,1 };
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset;
- doublereal d__1, d__2, d__3, d__4, d__5, d__6;
- static doublereal equiv_0[4], equiv_1[4];
- /* Local variables */
- integer j;
- #define ci (equiv_0)
- #define cr (equiv_1)
- doublereal bi1, bi2, br1, br2, xi1, xi2, xr1, xr2, ci21, ci22, cr21, cr22,
- li21, csi, ui11, lr21, ui12, ui22;
- #define civ (equiv_0)
- doublereal csr, ur11, ur12, ur22;
- #define crv (equiv_1)
- doublereal bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s, u22abs;
- integer icmax;
- doublereal bnorm, cnorm, smini;
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_dladiv_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *);
- doublereal bignum, smlnum;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLALN2 solves a system of the form (ca A - w D ) X = s B */
- /* or (ca A' - w D) X = s B with possible scaling ("s") and */
- /* perturbation of A. (A' means A-transpose.) */
- /* A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA */
- /* real diagonal matrix, w is a real or complex value, and X and B are */
- /* NA x 1 matrices -- real if w is real, complex if w is complex. NA */
- /* may be 1 or 2. */
- /* If w is complex, X and B are represented as NA x 2 matrices, */
- /* the first column of each being the real part and the second */
- /* being the imaginary part. */
- /* "s" is a scaling factor (.LE. 1), computed by DLALN2, which is */
- /* so chosen that X can be computed without overflow. X is further */
- /* scaled if necessary to assure that norm(ca A - w D)*norm(X) is less */
- /* than overflow. */
- /* If both singular values of (ca A - w D) are less than SMIN, */
- /* SMIN*identity will be used instead of (ca A - w D). If only one */
- /* singular value is less than SMIN, one element of (ca A - w D) will be */
- /* perturbed enough to make the smallest singular value roughly SMIN. */
- /* If both singular values are at least SMIN, (ca A - w D) will not be */
- /* perturbed. In any case, the perturbation will be at most some small */
- /* multiple of max( SMIN, ulp*norm(ca A - w D) ). The singular values */
- /* are computed by infinity-norm approximations, and thus will only be */
- /* correct to a factor of 2 or so. */
- /* Note: all input quantities are assumed to be smaller than overflow */
- /* by a reasonable factor. (See BIGNUM.) */
- /* Arguments */
- /* ========== */
- /* LTRANS (input) LOGICAL */
- /* =.TRUE.: A-transpose will be used. */
- /* =.FALSE.: A will be used (not transposed.) */
- /* NA (input) INTEGER */
- /* The size of the matrix A. It may (only) be 1 or 2. */
- /* NW (input) INTEGER */
- /* 1 if "w" is real, 2 if "w" is complex. It may only be 1 */
- /* or 2. */
- /* SMIN (input) DOUBLE PRECISION */
- /* The desired lower bound on the singular values of A. This */
- /* should be a safe distance away from underflow or overflow, */
- /* say, between (underflow/machine precision) and (machine */
- /* precision * overflow ). (See BIGNUM and ULP.) */
- /* CA (input) DOUBLE PRECISION */
- /* The coefficient c, which A is multiplied by. */
- /* A (input) DOUBLE PRECISION array, dimension (LDA,NA) */
- /* The NA x NA matrix A. */
- /* LDA (input) INTEGER */
- /* The leading dimension of A. It must be at least NA. */
- /* D1 (input) DOUBLE PRECISION */
- /* The 1,1 element in the diagonal matrix D. */
- /* D2 (input) DOUBLE PRECISION */
- /* The 2,2 element in the diagonal matrix D. Not used if NW=1. */
- /* B (input) DOUBLE PRECISION array, dimension (LDB,NW) */
- /* The NA x NW matrix B (right-hand side). If NW=2 ("w" is */
- /* complex), column 1 contains the real part of B and column 2 */
- /* contains the imaginary part. */
- /* LDB (input) INTEGER */
- /* The leading dimension of B. It must be at least NA. */
- /* WR (input) DOUBLE PRECISION */
- /* The real part of the scalar "w". */
- /* WI (input) DOUBLE PRECISION */
- /* The imaginary part of the scalar "w". Not used if NW=1. */
- /* X (output) DOUBLE PRECISION array, dimension (LDX,NW) */
- /* The NA x NW matrix X (unknowns), as computed by DLALN2. */
- /* If NW=2 ("w" is complex), on exit, column 1 will contain */
- /* the real part of X and column 2 will contain the imaginary */
- /* part. */
- /* LDX (input) INTEGER */
- /* The leading dimension of X. It must be at least NA. */
- /* SCALE (output) DOUBLE PRECISION */
- /* The scale factor that B must be multiplied by to insure */
- /* that overflow does not occur when computing X. Thus, */
- /* (ca A - w D) X will be SCALE*B, not B (ignoring */
- /* perturbations of A.) It will be at most 1. */
- /* XNORM (output) DOUBLE PRECISION */
- /* The infinity-norm of X, when X is regarded as an NA x NW */
- /* real matrix. */
- /* INFO (output) INTEGER */
- /* An error flag. It will be set to zero if no error occurs, */
- /* a negative number if an argument is in error, or a positive */
- /* number if ca A - w D had to be perturbed. */
- /* The possible values are: */
- /* = 0: No error occurred, and (ca A - w D) did not have to be */
- /* perturbed. */
- /* = 1: (ca A - w D) had to be perturbed to make its smallest */
- /* (or only) singular value greater than SMIN. */
- /* NOTE: In the interests of speed, this routine does not */
- /* check the inputs for errors. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Equivalences .. */
- /* .. */
- /* .. Data statements .. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1;
- x -= x_offset;
- /* Function Body */
- /* .. */
- /* .. Executable Statements .. */
- /* Compute BIGNUM */
- smlnum = 2. * _starpu_dlamch_("Safe minimum");
- bignum = 1. / smlnum;
- smini = max(*smin,smlnum);
- /* Don't check for input errors */
- *info = 0;
- /* Standard Initializations */
- *scale = 1.;
- if (*na == 1) {
- /* 1 x 1 (i.e., scalar) system C X = B */
- if (*nw == 1) {
- /* Real 1x1 system. */
- /* C = ca A - w D */
- csr = *ca * a[a_dim1 + 1] - *wr * *d1;
- cnorm = abs(csr);
- /* If | C | < SMINI, use C = SMINI */
- if (cnorm < smini) {
- csr = smini;
- cnorm = smini;
- *info = 1;
- }
- /* Check scaling for X = B / C */
- bnorm = (d__1 = b[b_dim1 + 1], abs(d__1));
- if (cnorm < 1. && bnorm > 1.) {
- if (bnorm > bignum * cnorm) {
- *scale = 1. / bnorm;
- }
- }
- /* Compute X */
- x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr;
- *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
- } else {
- /* Complex 1x1 system (w is complex) */
- /* C = ca A - w D */
- csr = *ca * a[a_dim1 + 1] - *wr * *d1;
- csi = -(*wi) * *d1;
- cnorm = abs(csr) + abs(csi);
- /* If | C | < SMINI, use C = SMINI */
- if (cnorm < smini) {
- csr = smini;
- csi = 0.;
- cnorm = smini;
- *info = 1;
- }
- /* Check scaling for X = B / C */
- bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 <<
- 1) + 1], abs(d__2));
- if (cnorm < 1. && bnorm > 1.) {
- if (bnorm > bignum * cnorm) {
- *scale = 1. / bnorm;
- }
- }
- /* Compute X */
- d__1 = *scale * b[b_dim1 + 1];
- d__2 = *scale * b[(b_dim1 << 1) + 1];
- _starpu_dladiv_(&d__1, &d__2, &csr, &csi, &x[x_dim1 + 1], &x[(x_dim1 << 1)
- + 1]);
- *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 <<
- 1) + 1], abs(d__2));
- }
- } else {
- /* 2x2 System */
- /* Compute the real part of C = ca A - w D (or ca A' - w D ) */
- cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1;
- cr[3] = *ca * a[(a_dim1 << 1) + 2] - *wr * *d2;
- if (*ltrans) {
- cr[2] = *ca * a[a_dim1 + 2];
- cr[1] = *ca * a[(a_dim1 << 1) + 1];
- } else {
- cr[1] = *ca * a[a_dim1 + 2];
- cr[2] = *ca * a[(a_dim1 << 1) + 1];
- }
- if (*nw == 1) {
- /* Real 2x2 system (w is real) */
- /* Find the largest element in C */
- cmax = 0.;
- icmax = 0;
- for (j = 1; j <= 4; ++j) {
- if ((d__1 = crv[j - 1], abs(d__1)) > cmax) {
- cmax = (d__1 = crv[j - 1], abs(d__1));
- icmax = j;
- }
- /* L10: */
- }
- /* If norm(C) < SMINI, use SMINI*identity. */
- if (cmax < smini) {
- /* Computing MAX */
- d__3 = (d__1 = b[b_dim1 + 1], abs(d__1)), d__4 = (d__2 = b[
- b_dim1 + 2], abs(d__2));
- bnorm = max(d__3,d__4);
- if (smini < 1. && bnorm > 1.) {
- if (bnorm > bignum * smini) {
- *scale = 1. / bnorm;
- }
- }
- temp = *scale / smini;
- x[x_dim1 + 1] = temp * b[b_dim1 + 1];
- x[x_dim1 + 2] = temp * b[b_dim1 + 2];
- *xnorm = temp * bnorm;
- *info = 1;
- return 0;
- }
- /* Gaussian elimination with complete pivoting. */
- ur11 = crv[icmax - 1];
- cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
- ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
- cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
- ur11r = 1. / ur11;
- lr21 = ur11r * cr21;
- ur22 = cr22 - ur12 * lr21;
- /* If smaller pivot < SMINI, use SMINI */
- if (abs(ur22) < smini) {
- ur22 = smini;
- *info = 1;
- }
- if (rswap[icmax - 1]) {
- br1 = b[b_dim1 + 2];
- br2 = b[b_dim1 + 1];
- } else {
- br1 = b[b_dim1 + 1];
- br2 = b[b_dim1 + 2];
- }
- br2 -= lr21 * br1;
- /* Computing MAX */
- d__2 = (d__1 = br1 * (ur22 * ur11r), abs(d__1)), d__3 = abs(br2);
- bbnd = max(d__2,d__3);
- if (bbnd > 1. && abs(ur22) < 1.) {
- if (bbnd >= bignum * abs(ur22)) {
- *scale = 1. / bbnd;
- }
- }
- xr2 = br2 * *scale / ur22;
- xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12);
- if (zswap[icmax - 1]) {
- x[x_dim1 + 1] = xr2;
- x[x_dim1 + 2] = xr1;
- } else {
- x[x_dim1 + 1] = xr1;
- x[x_dim1 + 2] = xr2;
- }
- /* Computing MAX */
- d__1 = abs(xr1), d__2 = abs(xr2);
- *xnorm = max(d__1,d__2);
- /* Further scaling if norm(A) norm(X) > overflow */
- if (*xnorm > 1. && cmax > 1.) {
- if (*xnorm > bignum / cmax) {
- temp = cmax / bignum;
- x[x_dim1 + 1] = temp * x[x_dim1 + 1];
- x[x_dim1 + 2] = temp * x[x_dim1 + 2];
- *xnorm = temp * *xnorm;
- *scale = temp * *scale;
- }
- }
- } else {
- /* Complex 2x2 system (w is complex) */
- /* Find the largest element in C */
- ci[0] = -(*wi) * *d1;
- ci[1] = 0.;
- ci[2] = 0.;
- ci[3] = -(*wi) * *d2;
- cmax = 0.;
- icmax = 0;
- for (j = 1; j <= 4; ++j) {
- if ((d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1], abs(
- d__2)) > cmax) {
- cmax = (d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1]
- , abs(d__2));
- icmax = j;
- }
- /* L20: */
- }
- /* If norm(C) < SMINI, use SMINI*identity. */
- if (cmax < smini) {
- /* Computing MAX */
- d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1
- << 1) + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 + 2],
- abs(d__3)) + (d__4 = b[(b_dim1 << 1) + 2], abs(d__4));
- bnorm = max(d__5,d__6);
- if (smini < 1. && bnorm > 1.) {
- if (bnorm > bignum * smini) {
- *scale = 1. / bnorm;
- }
- }
- temp = *scale / smini;
- x[x_dim1 + 1] = temp * b[b_dim1 + 1];
- x[x_dim1 + 2] = temp * b[b_dim1 + 2];
- x[(x_dim1 << 1) + 1] = temp * b[(b_dim1 << 1) + 1];
- x[(x_dim1 << 1) + 2] = temp * b[(b_dim1 << 1) + 2];
- *xnorm = temp * bnorm;
- *info = 1;
- return 0;
- }
- /* Gaussian elimination with complete pivoting. */
- ur11 = crv[icmax - 1];
- ui11 = civ[icmax - 1];
- cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
- ci21 = civ[ipivot[(icmax << 2) - 3] - 1];
- ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
- ui12 = civ[ipivot[(icmax << 2) - 2] - 1];
- cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
- ci22 = civ[ipivot[(icmax << 2) - 1] - 1];
- if (icmax == 1 || icmax == 4) {
- /* Code when off-diagonals of pivoted C are real */
- if (abs(ur11) > abs(ui11)) {
- temp = ui11 / ur11;
- /* Computing 2nd power */
- d__1 = temp;
- ur11r = 1. / (ur11 * (d__1 * d__1 + 1.));
- ui11r = -temp * ur11r;
- } else {
- temp = ur11 / ui11;
- /* Computing 2nd power */
- d__1 = temp;
- ui11r = -1. / (ui11 * (d__1 * d__1 + 1.));
- ur11r = -temp * ui11r;
- }
- lr21 = cr21 * ur11r;
- li21 = cr21 * ui11r;
- ur12s = ur12 * ur11r;
- ui12s = ur12 * ui11r;
- ur22 = cr22 - ur12 * lr21;
- ui22 = ci22 - ur12 * li21;
- } else {
- /* Code when diagonals of pivoted C are real */
- ur11r = 1. / ur11;
- ui11r = 0.;
- lr21 = cr21 * ur11r;
- li21 = ci21 * ur11r;
- ur12s = ur12 * ur11r;
- ui12s = ui12 * ur11r;
- ur22 = cr22 - ur12 * lr21 + ui12 * li21;
- ui22 = -ur12 * li21 - ui12 * lr21;
- }
- u22abs = abs(ur22) + abs(ui22);
- /* If smaller pivot < SMINI, use SMINI */
- if (u22abs < smini) {
- ur22 = smini;
- ui22 = 0.;
- *info = 1;
- }
- if (rswap[icmax - 1]) {
- br2 = b[b_dim1 + 1];
- br1 = b[b_dim1 + 2];
- bi2 = b[(b_dim1 << 1) + 1];
- bi1 = b[(b_dim1 << 1) + 2];
- } else {
- br1 = b[b_dim1 + 1];
- br2 = b[b_dim1 + 2];
- bi1 = b[(b_dim1 << 1) + 1];
- bi2 = b[(b_dim1 << 1) + 2];
- }
- br2 = br2 - lr21 * br1 + li21 * bi1;
- bi2 = bi2 - li21 * br1 - lr21 * bi1;
- /* Computing MAX */
- d__1 = (abs(br1) + abs(bi1)) * (u22abs * (abs(ur11r) + abs(ui11r))
- ), d__2 = abs(br2) + abs(bi2);
- bbnd = max(d__1,d__2);
- if (bbnd > 1. && u22abs < 1.) {
- if (bbnd >= bignum * u22abs) {
- *scale = 1. / bbnd;
- br1 = *scale * br1;
- bi1 = *scale * bi1;
- br2 = *scale * br2;
- bi2 = *scale * bi2;
- }
- }
- _starpu_dladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2);
- xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2;
- xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2;
- if (zswap[icmax - 1]) {
- x[x_dim1 + 1] = xr2;
- x[x_dim1 + 2] = xr1;
- x[(x_dim1 << 1) + 1] = xi2;
- x[(x_dim1 << 1) + 2] = xi1;
- } else {
- x[x_dim1 + 1] = xr1;
- x[x_dim1 + 2] = xr2;
- x[(x_dim1 << 1) + 1] = xi1;
- x[(x_dim1 << 1) + 2] = xi2;
- }
- /* Computing MAX */
- d__1 = abs(xr1) + abs(xi1), d__2 = abs(xr2) + abs(xi2);
- *xnorm = max(d__1,d__2);
- /* Further scaling if norm(A) norm(X) > overflow */
- if (*xnorm > 1. && cmax > 1.) {
- if (*xnorm > bignum / cmax) {
- temp = cmax / bignum;
- x[x_dim1 + 1] = temp * x[x_dim1 + 1];
- x[x_dim1 + 2] = temp * x[x_dim1 + 2];
- x[(x_dim1 << 1) + 1] = temp * x[(x_dim1 << 1) + 1];
- x[(x_dim1 << 1) + 2] = temp * x[(x_dim1 << 1) + 2];
- *xnorm = temp * *xnorm;
- *scale = temp * *scale;
- }
- }
- }
- }
- return 0;
- /* End of DLALN2 */
- } /* _starpu_dlaln2_ */
- #undef crv
- #undef civ
- #undef cr
- #undef ci
|