123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 |
- /* dgtsv.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dgtsv_(integer *n, integer *nrhs, doublereal *dl,
- doublereal *d__, doublereal *du, doublereal *b, integer *ldb, integer
- *info)
- {
- /* System generated locals */
- integer b_dim1, b_offset, i__1, i__2;
- doublereal d__1, d__2;
- /* Local variables */
- integer i__, j;
- doublereal fact, temp;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGTSV solves the equation */
- /* A*X = B, */
- /* where A is an n by n tridiagonal matrix, by Gaussian elimination with */
- /* partial pivoting. */
- /* Note that the equation A'*X = B may be solved by interchanging the */
- /* order of the arguments DU and DL. */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of columns */
- /* of the matrix B. NRHS >= 0. */
- /* DL (input/output) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, DL must contain the (n-1) sub-diagonal elements of */
- /* A. */
- /* On exit, DL is overwritten by the (n-2) elements of the */
- /* second super-diagonal of the upper triangular matrix U from */
- /* the LU factorization of A, in DL(1), ..., DL(n-2). */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, D must contain the diagonal elements of A. */
- /* On exit, D is overwritten by the n diagonal elements of U. */
- /* DU (input/output) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, DU must contain the (n-1) super-diagonal elements */
- /* of A. */
- /* On exit, DU is overwritten by the (n-1) elements of the first */
- /* super-diagonal of U. */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* On entry, the N by NRHS matrix of right hand side matrix B. */
- /* On exit, if INFO = 0, the N by NRHS solution matrix X. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, U(i,i) is exactly zero, and the solution */
- /* has not been computed. The factorization has not been */
- /* completed unless i = N. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- --dl;
- --d__;
- --du;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -1;
- } else if (*nrhs < 0) {
- *info = -2;
- } else if (*ldb < max(1,*n)) {
- *info = -7;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGTSV ", &i__1);
- return 0;
- }
- if (*n == 0) {
- return 0;
- }
- if (*nrhs == 1) {
- i__1 = *n - 2;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {
- /* No row interchange required */
- if (d__[i__] != 0.) {
- fact = dl[i__] / d__[i__];
- d__[i__ + 1] -= fact * du[i__];
- b[i__ + 1 + b_dim1] -= fact * b[i__ + b_dim1];
- } else {
- *info = i__;
- return 0;
- }
- dl[i__] = 0.;
- } else {
- /* Interchange rows I and I+1 */
- fact = d__[i__] / dl[i__];
- d__[i__] = dl[i__];
- temp = d__[i__ + 1];
- d__[i__ + 1] = du[i__] - fact * temp;
- dl[i__] = du[i__ + 1];
- du[i__ + 1] = -fact * dl[i__];
- du[i__] = temp;
- temp = b[i__ + b_dim1];
- b[i__ + b_dim1] = b[i__ + 1 + b_dim1];
- b[i__ + 1 + b_dim1] = temp - fact * b[i__ + 1 + b_dim1];
- }
- /* L10: */
- }
- if (*n > 1) {
- i__ = *n - 1;
- if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {
- if (d__[i__] != 0.) {
- fact = dl[i__] / d__[i__];
- d__[i__ + 1] -= fact * du[i__];
- b[i__ + 1 + b_dim1] -= fact * b[i__ + b_dim1];
- } else {
- *info = i__;
- return 0;
- }
- } else {
- fact = d__[i__] / dl[i__];
- d__[i__] = dl[i__];
- temp = d__[i__ + 1];
- d__[i__ + 1] = du[i__] - fact * temp;
- du[i__] = temp;
- temp = b[i__ + b_dim1];
- b[i__ + b_dim1] = b[i__ + 1 + b_dim1];
- b[i__ + 1 + b_dim1] = temp - fact * b[i__ + 1 + b_dim1];
- }
- }
- if (d__[*n] == 0.) {
- *info = *n;
- return 0;
- }
- } else {
- i__1 = *n - 2;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {
- /* No row interchange required */
- if (d__[i__] != 0.) {
- fact = dl[i__] / d__[i__];
- d__[i__ + 1] -= fact * du[i__];
- i__2 = *nrhs;
- for (j = 1; j <= i__2; ++j) {
- b[i__ + 1 + j * b_dim1] -= fact * b[i__ + j * b_dim1];
- /* L20: */
- }
- } else {
- *info = i__;
- return 0;
- }
- dl[i__] = 0.;
- } else {
- /* Interchange rows I and I+1 */
- fact = d__[i__] / dl[i__];
- d__[i__] = dl[i__];
- temp = d__[i__ + 1];
- d__[i__ + 1] = du[i__] - fact * temp;
- dl[i__] = du[i__ + 1];
- du[i__ + 1] = -fact * dl[i__];
- du[i__] = temp;
- i__2 = *nrhs;
- for (j = 1; j <= i__2; ++j) {
- temp = b[i__ + j * b_dim1];
- b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1];
- b[i__ + 1 + j * b_dim1] = temp - fact * b[i__ + 1 + j *
- b_dim1];
- /* L30: */
- }
- }
- /* L40: */
- }
- if (*n > 1) {
- i__ = *n - 1;
- if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {
- if (d__[i__] != 0.) {
- fact = dl[i__] / d__[i__];
- d__[i__ + 1] -= fact * du[i__];
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- b[i__ + 1 + j * b_dim1] -= fact * b[i__ + j * b_dim1];
- /* L50: */
- }
- } else {
- *info = i__;
- return 0;
- }
- } else {
- fact = d__[i__] / dl[i__];
- d__[i__] = dl[i__];
- temp = d__[i__ + 1];
- d__[i__ + 1] = du[i__] - fact * temp;
- du[i__] = temp;
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- temp = b[i__ + j * b_dim1];
- b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1];
- b[i__ + 1 + j * b_dim1] = temp - fact * b[i__ + 1 + j *
- b_dim1];
- /* L60: */
- }
- }
- }
- if (d__[*n] == 0.) {
- *info = *n;
- return 0;
- }
- }
- /* Back solve with the matrix U from the factorization. */
- if (*nrhs <= 2) {
- j = 1;
- L70:
- b[*n + j * b_dim1] /= d__[*n];
- if (*n > 1) {
- b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1] * b[
- *n + j * b_dim1]) / d__[*n - 1];
- }
- for (i__ = *n - 2; i__ >= 1; --i__) {
- b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__ + 1
- + j * b_dim1] - dl[i__] * b[i__ + 2 + j * b_dim1]) / d__[
- i__];
- /* L80: */
- }
- if (j < *nrhs) {
- ++j;
- goto L70;
- }
- } else {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- b[*n + j * b_dim1] /= d__[*n];
- if (*n > 1) {
- b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1]
- * b[*n + j * b_dim1]) / d__[*n - 1];
- }
- for (i__ = *n - 2; i__ >= 1; --i__) {
- b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__
- + 1 + j * b_dim1] - dl[i__] * b[i__ + 2 + j * b_dim1])
- / d__[i__];
- /* L90: */
- }
- /* L100: */
- }
- }
- return 0;
- /* End of DGTSV */
- } /* _starpu_dgtsv_ */
|