123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919 |
- /* dbdsqr.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b15 = -.125;
- static integer c__1 = 1;
- static doublereal c_b49 = 1.;
- static doublereal c_b72 = -1.;
- /* Subroutine */ int _starpu_dbdsqr_(char *uplo, integer *n, integer *ncvt, integer *
- nru, integer *ncc, doublereal *d__, doublereal *e, doublereal *vt,
- integer *ldvt, doublereal *u, integer *ldu, doublereal *c__, integer *
- ldc, doublereal *work, integer *info)
- {
- /* System generated locals */
- integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
- i__2;
- doublereal d__1, d__2, d__3, d__4;
- /* Builtin functions */
- double pow_dd(doublereal *, doublereal *), sqrt(doublereal), d_sign(
- doublereal *, doublereal *);
- /* Local variables */
- doublereal f, g, h__;
- integer i__, j, m;
- doublereal r__, cs;
- integer ll;
- doublereal sn, mu;
- integer nm1, nm12, nm13, lll;
- doublereal eps, sll, tol, abse;
- integer idir;
- doublereal abss;
- integer oldm;
- doublereal cosl;
- integer isub, iter;
- doublereal unfl, sinl, cosr, smin, smax, sinr;
- extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *), _starpu_dlas2_(
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *), _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical _starpu_lsame_(char *, char *);
- doublereal oldcs;
- extern /* Subroutine */ int _starpu_dlasr_(char *, char *, char *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *);
- integer oldll;
- doublereal shift, sigmn, oldsn;
- extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer maxit;
- doublereal sminl, sigmx;
- logical lower;
- extern /* Subroutine */ int _starpu_dlasq1_(integer *, doublereal *, doublereal *,
- doublereal *, integer *), _starpu_dlasv2_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *);
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_dlartg_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *), _starpu_xerbla_(char *,
- integer *);
- doublereal sminoa, thresh;
- logical rotate;
- doublereal tolmul;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* January 2007 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DBDSQR computes the singular values and, optionally, the right and/or */
- /* left singular vectors from the singular value decomposition (SVD) of */
- /* a real N-by-N (upper or lower) bidiagonal matrix B using the implicit */
- /* zero-shift QR algorithm. The SVD of B has the form */
- /* B = Q * S * P**T */
- /* where S is the diagonal matrix of singular values, Q is an orthogonal */
- /* matrix of left singular vectors, and P is an orthogonal matrix of */
- /* right singular vectors. If left singular vectors are requested, this */
- /* subroutine actually returns U*Q instead of Q, and, if right singular */
- /* vectors are requested, this subroutine returns P**T*VT instead of */
- /* P**T, for given real input matrices U and VT. When U and VT are the */
- /* orthogonal matrices that reduce a general matrix A to bidiagonal */
- /* form: A = U*B*VT, as computed by DGEBRD, then */
- /* A = (U*Q) * S * (P**T*VT) */
- /* is the SVD of A. Optionally, the subroutine may also compute Q**T*C */
- /* for a given real input matrix C. */
- /* See "Computing Small Singular Values of Bidiagonal Matrices With */
- /* Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
- /* LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, */
- /* no. 5, pp. 873-912, Sept 1990) and */
- /* "Accurate singular values and differential qd algorithms," by */
- /* B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics */
- /* Department, University of California at Berkeley, July 1992 */
- /* for a detailed description of the algorithm. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': B is upper bidiagonal; */
- /* = 'L': B is lower bidiagonal. */
- /* N (input) INTEGER */
- /* The order of the matrix B. N >= 0. */
- /* NCVT (input) INTEGER */
- /* The number of columns of the matrix VT. NCVT >= 0. */
- /* NRU (input) INTEGER */
- /* The number of rows of the matrix U. NRU >= 0. */
- /* NCC (input) INTEGER */
- /* The number of columns of the matrix C. NCC >= 0. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the n diagonal elements of the bidiagonal matrix B. */
- /* On exit, if INFO=0, the singular values of B in decreasing */
- /* order. */
- /* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, the N-1 offdiagonal elements of the bidiagonal */
- /* matrix B. */
- /* On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E */
- /* will contain the diagonal and superdiagonal elements of a */
- /* bidiagonal matrix orthogonally equivalent to the one given */
- /* as input. */
- /* VT (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT) */
- /* On entry, an N-by-NCVT matrix VT. */
- /* On exit, VT is overwritten by P**T * VT. */
- /* Not referenced if NCVT = 0. */
- /* LDVT (input) INTEGER */
- /* The leading dimension of the array VT. */
- /* LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. */
- /* U (input/output) DOUBLE PRECISION array, dimension (LDU, N) */
- /* On entry, an NRU-by-N matrix U. */
- /* On exit, U is overwritten by U * Q. */
- /* Not referenced if NRU = 0. */
- /* LDU (input) INTEGER */
- /* The leading dimension of the array U. LDU >= max(1,NRU). */
- /* C (input/output) DOUBLE PRECISION array, dimension (LDC, NCC) */
- /* On entry, an N-by-NCC matrix C. */
- /* On exit, C is overwritten by Q**T * C. */
- /* Not referenced if NCC = 0. */
- /* LDC (input) INTEGER */
- /* The leading dimension of the array C. */
- /* LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: If INFO = -i, the i-th argument had an illegal value */
- /* > 0: */
- /* if NCVT = NRU = NCC = 0, */
- /* = 1, a split was marked by a positive value in E */
- /* = 2, current block of Z not diagonalized after 30*N */
- /* iterations (in inner while loop) */
- /* = 3, termination criterion of outer while loop not met */
- /* (program created more than N unreduced blocks) */
- /* else NCVT = NRU = NCC = 0, */
- /* the algorithm did not converge; D and E contain the */
- /* elements of a bidiagonal matrix which is orthogonally */
- /* similar to the input matrix B; if INFO = i, i */
- /* elements of E have not converged to zero. */
- /* Internal Parameters */
- /* =================== */
- /* TOLMUL DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8))) */
- /* TOLMUL controls the convergence criterion of the QR loop. */
- /* If it is positive, TOLMUL*EPS is the desired relative */
- /* precision in the computed singular values. */
- /* If it is negative, abs(TOLMUL*EPS*sigma_max) is the */
- /* desired absolute accuracy in the computed singular */
- /* values (corresponds to relative accuracy */
- /* abs(TOLMUL*EPS) in the largest singular value. */
- /* abs(TOLMUL) should be between 1 and 1/EPS, and preferably */
- /* between 10 (for fast convergence) and .1/EPS */
- /* (for there to be some accuracy in the results). */
- /* Default is to lose at either one eighth or 2 of the */
- /* available decimal digits in each computed singular value */
- /* (whichever is smaller). */
- /* MAXITR INTEGER, default = 6 */
- /* MAXITR controls the maximum number of passes of the */
- /* algorithm through its inner loop. The algorithms stops */
- /* (and so fails to converge) if the number of passes */
- /* through the inner loop exceeds MAXITR*N**2. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1;
- vt -= vt_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1;
- u -= u_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1;
- c__ -= c_offset;
- --work;
- /* Function Body */
- *info = 0;
- lower = _starpu_lsame_(uplo, "L");
- if (! _starpu_lsame_(uplo, "U") && ! lower) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*ncvt < 0) {
- *info = -3;
- } else if (*nru < 0) {
- *info = -4;
- } else if (*ncc < 0) {
- *info = -5;
- } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < max(1,*n)) {
- *info = -9;
- } else if (*ldu < max(1,*nru)) {
- *info = -11;
- } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < max(1,*n)) {
- *info = -13;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DBDSQR", &i__1);
- return 0;
- }
- if (*n == 0) {
- return 0;
- }
- if (*n == 1) {
- goto L160;
- }
- /* ROTATE is true if any singular vectors desired, false otherwise */
- rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
- /* If no singular vectors desired, use qd algorithm */
- if (! rotate) {
- _starpu_dlasq1_(n, &d__[1], &e[1], &work[1], info);
- return 0;
- }
- nm1 = *n - 1;
- nm12 = nm1 + nm1;
- nm13 = nm12 + nm1;
- idir = 0;
- /* Get machine constants */
- eps = _starpu_dlamch_("Epsilon");
- unfl = _starpu_dlamch_("Safe minimum");
- /* If matrix lower bidiagonal, rotate to be upper bidiagonal */
- /* by applying Givens rotations on the left */
- if (lower) {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- _starpu_dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
- d__[i__] = r__;
- e[i__] = sn * d__[i__ + 1];
- d__[i__ + 1] = cs * d__[i__ + 1];
- work[i__] = cs;
- work[nm1 + i__] = sn;
- /* L10: */
- }
- /* Update singular vectors if desired */
- if (*nru > 0) {
- _starpu_dlasr_("R", "V", "F", nru, n, &work[1], &work[*n], &u[u_offset],
- ldu);
- }
- if (*ncc > 0) {
- _starpu_dlasr_("L", "V", "F", n, ncc, &work[1], &work[*n], &c__[c_offset],
- ldc);
- }
- }
- /* Compute singular values to relative accuracy TOL */
- /* (By setting TOL to be negative, algorithm will compute */
- /* singular values to absolute accuracy ABS(TOL)*norm(input matrix)) */
- /* Computing MAX */
- /* Computing MIN */
- d__3 = 100., d__4 = pow_dd(&eps, &c_b15);
- d__1 = 10., d__2 = min(d__3,d__4);
- tolmul = max(d__1,d__2);
- tol = tolmul * eps;
- /* Compute approximate maximum, minimum singular values */
- smax = 0.;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__2 = smax, d__3 = (d__1 = d__[i__], abs(d__1));
- smax = max(d__2,d__3);
- /* L20: */
- }
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__2 = smax, d__3 = (d__1 = e[i__], abs(d__1));
- smax = max(d__2,d__3);
- /* L30: */
- }
- sminl = 0.;
- if (tol >= 0.) {
- /* Relative accuracy desired */
- sminoa = abs(d__[1]);
- if (sminoa == 0.) {
- goto L50;
- }
- mu = sminoa;
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- mu = (d__2 = d__[i__], abs(d__2)) * (mu / (mu + (d__1 = e[i__ - 1]
- , abs(d__1))));
- sminoa = min(sminoa,mu);
- if (sminoa == 0.) {
- goto L50;
- }
- /* L40: */
- }
- L50:
- sminoa /= sqrt((doublereal) (*n));
- /* Computing MAX */
- d__1 = tol * sminoa, d__2 = *n * 6 * *n * unfl;
- thresh = max(d__1,d__2);
- } else {
- /* Absolute accuracy desired */
- /* Computing MAX */
- d__1 = abs(tol) * smax, d__2 = *n * 6 * *n * unfl;
- thresh = max(d__1,d__2);
- }
- /* Prepare for main iteration loop for the singular values */
- /* (MAXIT is the maximum number of passes through the inner */
- /* loop permitted before nonconvergence signalled.) */
- maxit = *n * 6 * *n;
- iter = 0;
- oldll = -1;
- oldm = -1;
- /* M points to last element of unconverged part of matrix */
- m = *n;
- /* Begin main iteration loop */
- L60:
- /* Check for convergence or exceeding iteration count */
- if (m <= 1) {
- goto L160;
- }
- if (iter > maxit) {
- goto L200;
- }
- /* Find diagonal block of matrix to work on */
- if (tol < 0. && (d__1 = d__[m], abs(d__1)) <= thresh) {
- d__[m] = 0.;
- }
- smax = (d__1 = d__[m], abs(d__1));
- smin = smax;
- i__1 = m - 1;
- for (lll = 1; lll <= i__1; ++lll) {
- ll = m - lll;
- abss = (d__1 = d__[ll], abs(d__1));
- abse = (d__1 = e[ll], abs(d__1));
- if (tol < 0. && abss <= thresh) {
- d__[ll] = 0.;
- }
- if (abse <= thresh) {
- goto L80;
- }
- smin = min(smin,abss);
- /* Computing MAX */
- d__1 = max(smax,abss);
- smax = max(d__1,abse);
- /* L70: */
- }
- ll = 0;
- goto L90;
- L80:
- e[ll] = 0.;
- /* Matrix splits since E(LL) = 0 */
- if (ll == m - 1) {
- /* Convergence of bottom singular value, return to top of loop */
- --m;
- goto L60;
- }
- L90:
- ++ll;
- /* E(LL) through E(M-1) are nonzero, E(LL-1) is zero */
- if (ll == m - 1) {
- /* 2 by 2 block, handle separately */
- _starpu_dlasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr,
- &sinl, &cosl);
- d__[m - 1] = sigmx;
- e[m - 1] = 0.;
- d__[m] = sigmn;
- /* Compute singular vectors, if desired */
- if (*ncvt > 0) {
- _starpu_drot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, &
- cosr, &sinr);
- }
- if (*nru > 0) {
- _starpu_drot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], &
- c__1, &cosl, &sinl);
- }
- if (*ncc > 0) {
- _starpu_drot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, &
- cosl, &sinl);
- }
- m += -2;
- goto L60;
- }
- /* If working on new submatrix, choose shift direction */
- /* (from larger end diagonal element towards smaller) */
- if (ll > oldm || m < oldll) {
- if ((d__1 = d__[ll], abs(d__1)) >= (d__2 = d__[m], abs(d__2))) {
- /* Chase bulge from top (big end) to bottom (small end) */
- idir = 1;
- } else {
- /* Chase bulge from bottom (big end) to top (small end) */
- idir = 2;
- }
- }
- /* Apply convergence tests */
- if (idir == 1) {
- /* Run convergence test in forward direction */
- /* First apply standard test to bottom of matrix */
- if ((d__2 = e[m - 1], abs(d__2)) <= abs(tol) * (d__1 = d__[m], abs(
- d__1)) || tol < 0. && (d__3 = e[m - 1], abs(d__3)) <= thresh)
- {
- e[m - 1] = 0.;
- goto L60;
- }
- if (tol >= 0.) {
- /* If relative accuracy desired, */
- /* apply convergence criterion forward */
- mu = (d__1 = d__[ll], abs(d__1));
- sminl = mu;
- i__1 = m - 1;
- for (lll = ll; lll <= i__1; ++lll) {
- if ((d__1 = e[lll], abs(d__1)) <= tol * mu) {
- e[lll] = 0.;
- goto L60;
- }
- mu = (d__2 = d__[lll + 1], abs(d__2)) * (mu / (mu + (d__1 = e[
- lll], abs(d__1))));
- sminl = min(sminl,mu);
- /* L100: */
- }
- }
- } else {
- /* Run convergence test in backward direction */
- /* First apply standard test to top of matrix */
- if ((d__2 = e[ll], abs(d__2)) <= abs(tol) * (d__1 = d__[ll], abs(d__1)
- ) || tol < 0. && (d__3 = e[ll], abs(d__3)) <= thresh) {
- e[ll] = 0.;
- goto L60;
- }
- if (tol >= 0.) {
- /* If relative accuracy desired, */
- /* apply convergence criterion backward */
- mu = (d__1 = d__[m], abs(d__1));
- sminl = mu;
- i__1 = ll;
- for (lll = m - 1; lll >= i__1; --lll) {
- if ((d__1 = e[lll], abs(d__1)) <= tol * mu) {
- e[lll] = 0.;
- goto L60;
- }
- mu = (d__2 = d__[lll], abs(d__2)) * (mu / (mu + (d__1 = e[lll]
- , abs(d__1))));
- sminl = min(sminl,mu);
- /* L110: */
- }
- }
- }
- oldll = ll;
- oldm = m;
- /* Compute shift. First, test if shifting would ruin relative */
- /* accuracy, and if so set the shift to zero. */
- /* Computing MAX */
- d__1 = eps, d__2 = tol * .01;
- if (tol >= 0. && *n * tol * (sminl / smax) <= max(d__1,d__2)) {
- /* Use a zero shift to avoid loss of relative accuracy */
- shift = 0.;
- } else {
- /* Compute the shift from 2-by-2 block at end of matrix */
- if (idir == 1) {
- sll = (d__1 = d__[ll], abs(d__1));
- _starpu_dlas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__);
- } else {
- sll = (d__1 = d__[m], abs(d__1));
- _starpu_dlas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__);
- }
- /* Test if shift negligible, and if so set to zero */
- if (sll > 0.) {
- /* Computing 2nd power */
- d__1 = shift / sll;
- if (d__1 * d__1 < eps) {
- shift = 0.;
- }
- }
- }
- /* Increment iteration count */
- iter = iter + m - ll;
- /* If SHIFT = 0, do simplified QR iteration */
- if (shift == 0.) {
- if (idir == 1) {
- /* Chase bulge from top to bottom */
- /* Save cosines and sines for later singular vector updates */
- cs = 1.;
- oldcs = 1.;
- i__1 = m - 1;
- for (i__ = ll; i__ <= i__1; ++i__) {
- d__1 = d__[i__] * cs;
- _starpu_dlartg_(&d__1, &e[i__], &cs, &sn, &r__);
- if (i__ > ll) {
- e[i__ - 1] = oldsn * r__;
- }
- d__1 = oldcs * r__;
- d__2 = d__[i__ + 1] * sn;
- _starpu_dlartg_(&d__1, &d__2, &oldcs, &oldsn, &d__[i__]);
- work[i__ - ll + 1] = cs;
- work[i__ - ll + 1 + nm1] = sn;
- work[i__ - ll + 1 + nm12] = oldcs;
- work[i__ - ll + 1 + nm13] = oldsn;
- /* L120: */
- }
- h__ = d__[m] * cs;
- d__[m] = h__ * oldcs;
- e[m - 1] = h__ * oldsn;
- /* Update singular vectors */
- if (*ncvt > 0) {
- i__1 = m - ll + 1;
- _starpu_dlasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
- ll + vt_dim1], ldvt);
- }
- if (*nru > 0) {
- i__1 = m - ll + 1;
- _starpu_dlasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13
- + 1], &u[ll * u_dim1 + 1], ldu);
- }
- if (*ncc > 0) {
- i__1 = m - ll + 1;
- _starpu_dlasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13
- + 1], &c__[ll + c_dim1], ldc);
- }
- /* Test convergence */
- if ((d__1 = e[m - 1], abs(d__1)) <= thresh) {
- e[m - 1] = 0.;
- }
- } else {
- /* Chase bulge from bottom to top */
- /* Save cosines and sines for later singular vector updates */
- cs = 1.;
- oldcs = 1.;
- i__1 = ll + 1;
- for (i__ = m; i__ >= i__1; --i__) {
- d__1 = d__[i__] * cs;
- _starpu_dlartg_(&d__1, &e[i__ - 1], &cs, &sn, &r__);
- if (i__ < m) {
- e[i__] = oldsn * r__;
- }
- d__1 = oldcs * r__;
- d__2 = d__[i__ - 1] * sn;
- _starpu_dlartg_(&d__1, &d__2, &oldcs, &oldsn, &d__[i__]);
- work[i__ - ll] = cs;
- work[i__ - ll + nm1] = -sn;
- work[i__ - ll + nm12] = oldcs;
- work[i__ - ll + nm13] = -oldsn;
- /* L130: */
- }
- h__ = d__[ll] * cs;
- d__[ll] = h__ * oldcs;
- e[ll] = h__ * oldsn;
- /* Update singular vectors */
- if (*ncvt > 0) {
- i__1 = m - ll + 1;
- _starpu_dlasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
- nm13 + 1], &vt[ll + vt_dim1], ldvt);
- }
- if (*nru > 0) {
- i__1 = m - ll + 1;
- _starpu_dlasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
- u_dim1 + 1], ldu);
- }
- if (*ncc > 0) {
- i__1 = m - ll + 1;
- _starpu_dlasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
- ll + c_dim1], ldc);
- }
- /* Test convergence */
- if ((d__1 = e[ll], abs(d__1)) <= thresh) {
- e[ll] = 0.;
- }
- }
- } else {
- /* Use nonzero shift */
- if (idir == 1) {
- /* Chase bulge from top to bottom */
- /* Save cosines and sines for later singular vector updates */
- f = ((d__1 = d__[ll], abs(d__1)) - shift) * (d_sign(&c_b49, &d__[
- ll]) + shift / d__[ll]);
- g = e[ll];
- i__1 = m - 1;
- for (i__ = ll; i__ <= i__1; ++i__) {
- _starpu_dlartg_(&f, &g, &cosr, &sinr, &r__);
- if (i__ > ll) {
- e[i__ - 1] = r__;
- }
- f = cosr * d__[i__] + sinr * e[i__];
- e[i__] = cosr * e[i__] - sinr * d__[i__];
- g = sinr * d__[i__ + 1];
- d__[i__ + 1] = cosr * d__[i__ + 1];
- _starpu_dlartg_(&f, &g, &cosl, &sinl, &r__);
- d__[i__] = r__;
- f = cosl * e[i__] + sinl * d__[i__ + 1];
- d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__];
- if (i__ < m - 1) {
- g = sinl * e[i__ + 1];
- e[i__ + 1] = cosl * e[i__ + 1];
- }
- work[i__ - ll + 1] = cosr;
- work[i__ - ll + 1 + nm1] = sinr;
- work[i__ - ll + 1 + nm12] = cosl;
- work[i__ - ll + 1 + nm13] = sinl;
- /* L140: */
- }
- e[m - 1] = f;
- /* Update singular vectors */
- if (*ncvt > 0) {
- i__1 = m - ll + 1;
- _starpu_dlasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
- ll + vt_dim1], ldvt);
- }
- if (*nru > 0) {
- i__1 = m - ll + 1;
- _starpu_dlasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13
- + 1], &u[ll * u_dim1 + 1], ldu);
- }
- if (*ncc > 0) {
- i__1 = m - ll + 1;
- _starpu_dlasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13
- + 1], &c__[ll + c_dim1], ldc);
- }
- /* Test convergence */
- if ((d__1 = e[m - 1], abs(d__1)) <= thresh) {
- e[m - 1] = 0.;
- }
- } else {
- /* Chase bulge from bottom to top */
- /* Save cosines and sines for later singular vector updates */
- f = ((d__1 = d__[m], abs(d__1)) - shift) * (d_sign(&c_b49, &d__[m]
- ) + shift / d__[m]);
- g = e[m - 1];
- i__1 = ll + 1;
- for (i__ = m; i__ >= i__1; --i__) {
- _starpu_dlartg_(&f, &g, &cosr, &sinr, &r__);
- if (i__ < m) {
- e[i__] = r__;
- }
- f = cosr * d__[i__] + sinr * e[i__ - 1];
- e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__];
- g = sinr * d__[i__ - 1];
- d__[i__ - 1] = cosr * d__[i__ - 1];
- _starpu_dlartg_(&f, &g, &cosl, &sinl, &r__);
- d__[i__] = r__;
- f = cosl * e[i__ - 1] + sinl * d__[i__ - 1];
- d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1];
- if (i__ > ll + 1) {
- g = sinl * e[i__ - 2];
- e[i__ - 2] = cosl * e[i__ - 2];
- }
- work[i__ - ll] = cosr;
- work[i__ - ll + nm1] = -sinr;
- work[i__ - ll + nm12] = cosl;
- work[i__ - ll + nm13] = -sinl;
- /* L150: */
- }
- e[ll] = f;
- /* Test convergence */
- if ((d__1 = e[ll], abs(d__1)) <= thresh) {
- e[ll] = 0.;
- }
- /* Update singular vectors if desired */
- if (*ncvt > 0) {
- i__1 = m - ll + 1;
- _starpu_dlasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
- nm13 + 1], &vt[ll + vt_dim1], ldvt);
- }
- if (*nru > 0) {
- i__1 = m - ll + 1;
- _starpu_dlasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
- u_dim1 + 1], ldu);
- }
- if (*ncc > 0) {
- i__1 = m - ll + 1;
- _starpu_dlasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
- ll + c_dim1], ldc);
- }
- }
- }
- /* QR iteration finished, go back and check convergence */
- goto L60;
- /* All singular values converged, so make them positive */
- L160:
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (d__[i__] < 0.) {
- d__[i__] = -d__[i__];
- /* Change sign of singular vectors, if desired */
- if (*ncvt > 0) {
- _starpu_dscal_(ncvt, &c_b72, &vt[i__ + vt_dim1], ldvt);
- }
- }
- /* L170: */
- }
- /* Sort the singular values into decreasing order (insertion sort on */
- /* singular values, but only one transposition per singular vector) */
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Scan for smallest D(I) */
- isub = 1;
- smin = d__[1];
- i__2 = *n + 1 - i__;
- for (j = 2; j <= i__2; ++j) {
- if (d__[j] <= smin) {
- isub = j;
- smin = d__[j];
- }
- /* L180: */
- }
- if (isub != *n + 1 - i__) {
- /* Swap singular values and vectors */
- d__[isub] = d__[*n + 1 - i__];
- d__[*n + 1 - i__] = smin;
- if (*ncvt > 0) {
- _starpu_dswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ +
- vt_dim1], ldvt);
- }
- if (*nru > 0) {
- _starpu_dswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) *
- u_dim1 + 1], &c__1);
- }
- if (*ncc > 0) {
- _starpu_dswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ +
- c_dim1], ldc);
- }
- }
- /* L190: */
- }
- goto L220;
- /* Maximum number of iterations exceeded, failure to converge */
- L200:
- *info = 0;
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (e[i__] != 0.) {
- ++(*info);
- }
- /* L210: */
- }
- L220:
- return 0;
- /* End of DBDSQR */
- } /* _starpu_dbdsqr_ */
|