parallel_tasks_reuse_handle.c 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2015, 2017 INRIA
  4. * Copyright (C) 2015, 2016 CNRS
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. #include <starpu.h>
  18. #include <omp.h>
  19. #include <pthread.h>
  20. #ifdef STARPU_QUICK_CHECK
  21. #define NTASKS 64
  22. #define SIZE 40
  23. #define LOOPS 4
  24. #else
  25. #define NTASKS 100
  26. #define SIZE 400
  27. #define LOOPS 10
  28. #endif
  29. #define N_NESTED_CTXS 2
  30. struct context
  31. {
  32. int ncpus;
  33. int *cpus;
  34. unsigned id;
  35. };
  36. /* Helper for the task that will initiate everything */
  37. void parallel_task_prologue_init_once_and_for_all(void * sched_ctx_)
  38. {
  39. fprintf(stderr, "%p: %s -->\n", (void*)pthread_self(), __func__);
  40. int sched_ctx = *(int *)sched_ctx_;
  41. int *cpuids = NULL;
  42. int ncpuids = 0;
  43. starpu_sched_ctx_get_available_cpuids(sched_ctx, &cpuids, &ncpuids);
  44. #pragma omp parallel num_threads(ncpuids)
  45. {
  46. starpu_sched_ctx_bind_current_thread_to_cpuid(cpuids[omp_get_thread_num()]);
  47. }
  48. omp_set_num_threads(ncpuids);
  49. free(cpuids);
  50. fprintf(stderr, "%p: %s <--\n", (void*)pthread_self(), __func__);
  51. return;
  52. }
  53. void noop(void * buffers[], void * cl_arg)
  54. {
  55. }
  56. static struct starpu_codelet init_parallel_worker_cl=
  57. {
  58. .cpu_funcs = {noop},
  59. .nbuffers = 0,
  60. .name = "init_parallel_worker"
  61. };
  62. /* function called to initialize the parallel "workers" */
  63. void parallel_task_init_one_context(unsigned * context_id)
  64. {
  65. struct starpu_task * t;
  66. int ret;
  67. t = starpu_task_build(&init_parallel_worker_cl,
  68. STARPU_SCHED_CTX, *context_id,
  69. 0);
  70. t->destroy = 1;
  71. t->prologue_callback_pop_func=parallel_task_prologue_init_once_and_for_all;
  72. if (t->prologue_callback_pop_arg_free)
  73. free(t->prologue_callback_pop_arg);
  74. t->prologue_callback_pop_arg=context_id;
  75. t->prologue_callback_pop_arg_free=0;
  76. ret = starpu_task_submit(t);
  77. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  78. }
  79. struct context main_context;
  80. struct context *contexts;
  81. void parallel_task_init()
  82. {
  83. /* Context creation */
  84. main_context.ncpus = starpu_cpu_worker_get_count();
  85. main_context.cpus = (int *) malloc(main_context.ncpus*sizeof(int));
  86. fprintf(stderr, "ncpus : %d \n",main_context.ncpus);
  87. starpu_worker_get_ids_by_type(STARPU_CPU_WORKER, main_context.cpus, main_context.ncpus);
  88. main_context.id = starpu_sched_ctx_create(main_context.cpus,
  89. main_context.ncpus,"main_ctx",
  90. STARPU_SCHED_CTX_POLICY_NAME,"prio",
  91. 0);
  92. /* Initialize nested contexts */
  93. contexts = malloc(sizeof(struct context)*N_NESTED_CTXS);
  94. int cpus_per_context = main_context.ncpus/N_NESTED_CTXS;
  95. int i;
  96. for(i = 0; i < N_NESTED_CTXS; i++)
  97. {
  98. contexts[i].ncpus = cpus_per_context;
  99. if (i == N_NESTED_CTXS-1)
  100. contexts[i].ncpus += main_context.ncpus%N_NESTED_CTXS;
  101. contexts[i].cpus = main_context.cpus+i*cpus_per_context;
  102. }
  103. for(i = 0; i < N_NESTED_CTXS; i++)
  104. contexts[i].id = starpu_sched_ctx_create(contexts[i].cpus,
  105. contexts[i].ncpus,"nested_ctx",
  106. STARPU_SCHED_CTX_NESTED,main_context.id,
  107. 0);
  108. for (i = 0; i < N_NESTED_CTXS; i++)
  109. {
  110. parallel_task_init_one_context(&contexts[i].id);
  111. }
  112. starpu_task_wait_for_all();
  113. starpu_sched_ctx_set_context(&main_context.id);
  114. }
  115. void parallel_task_deinit()
  116. {
  117. int i;
  118. for (i=0; i<N_NESTED_CTXS;i++)
  119. starpu_sched_ctx_delete(contexts[i].id);
  120. free(contexts);
  121. free(main_context.cpus);
  122. }
  123. /* Codelet SUM */
  124. static void sum_cpu(void * descr[], void *cl_arg)
  125. {
  126. double *v_dst = (double *) STARPU_VECTOR_GET_PTR(descr[0]);
  127. double *v_src0 = (double *) STARPU_VECTOR_GET_PTR(descr[1]);
  128. double *v_src1 = (double *) STARPU_VECTOR_GET_PTR(descr[2]);
  129. int size = STARPU_VECTOR_GET_NX(descr[0]);
  130. int i, k;
  131. for (k=0;k<LOOPS;k++)
  132. {
  133. #pragma omp parallel for
  134. for (i=0; i<size; i++)
  135. {
  136. v_dst[i]+=v_src0[i]+v_src1[i];
  137. }
  138. }
  139. }
  140. static struct starpu_codelet sum_cl =
  141. {
  142. .cpu_funcs = {sum_cpu, NULL},
  143. .nbuffers = 3,
  144. .modes={STARPU_RW,STARPU_R, STARPU_R}
  145. };
  146. int main(int argc, char **argv)
  147. {
  148. int ntasks = NTASKS;
  149. int ret, j, k;
  150. unsigned ncpus = 0;
  151. ret = starpu_init(NULL);
  152. if (ret == -ENODEV)
  153. return 77;
  154. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  155. if (starpu_cpu_worker_get_count() < N_NESTED_CTXS)
  156. {
  157. starpu_shutdown();
  158. return 77;
  159. }
  160. parallel_task_init();
  161. /* Data preparation */
  162. double array1[SIZE];
  163. double array2[SIZE];
  164. memset(array1, 0, sizeof(double));
  165. int i;
  166. for (i=0;i<SIZE;i++)
  167. {
  168. array2[i]=i*2;
  169. }
  170. starpu_data_handle_t handle1;
  171. starpu_data_handle_t handle2;
  172. starpu_vector_data_register(&handle1, 0, (uintptr_t)array1, SIZE, sizeof(double));
  173. starpu_vector_data_register(&handle2, 0, (uintptr_t)array2, SIZE, sizeof(double));
  174. for (i = 0; i < ntasks; i++)
  175. {
  176. struct starpu_task * t;
  177. t=starpu_task_build(&sum_cl,
  178. STARPU_RW,handle1,
  179. STARPU_R,handle2,
  180. STARPU_R,handle1,
  181. STARPU_SCHED_CTX, main_context.id,
  182. 0);
  183. t->destroy = 1;
  184. t->possibly_parallel = 1;
  185. ret=starpu_task_submit(t);
  186. if (ret == -ENODEV)
  187. goto out;
  188. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  189. }
  190. out:
  191. /* wait for all tasks at the end*/
  192. starpu_task_wait_for_all();
  193. starpu_data_unregister(handle1);
  194. starpu_data_unregister(handle2);
  195. parallel_task_deinit();
  196. starpu_shutdown();
  197. return 0;
  198. }