dummy_sched_with_ctx.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2017 Université de Bordeaux
  4. * Copyright (C) 2010-2013, 2016 CNRS
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. /*
  18. * This is an example of an application-defined scheduler run inside a
  19. * scheduling context.
  20. * This is a mere eager scheduler with a centralized list of tasks to schedule:
  21. * when a task becomes ready (push) it is put on the list. When a device
  22. * becomes ready (pop), a task is taken from the list.
  23. */
  24. #include <starpu.h>
  25. #include <starpu_scheduler.h>
  26. #include <config.h>
  27. #ifdef STARPU_QUICK_CHECK
  28. #define NTASKS 320
  29. #elif !defined(STARPU_LONG_CHECK)
  30. #define NTASKS 3200
  31. #else
  32. #define NTASKS 32000
  33. #endif
  34. #define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__); }} while(0)
  35. struct dummy_sched_data
  36. {
  37. struct starpu_task_list sched_list;
  38. starpu_pthread_mutex_t policy_mutex;
  39. };
  40. static void init_dummy_sched(unsigned sched_ctx_id)
  41. {
  42. struct dummy_sched_data *data = (struct dummy_sched_data*)malloc(sizeof(struct dummy_sched_data));
  43. /* Create a linked-list of tasks and a condition variable to protect it */
  44. starpu_task_list_init(&data->sched_list);
  45. starpu_sched_ctx_set_policy_data(sched_ctx_id, (void*)data);
  46. STARPU_PTHREAD_MUTEX_INIT(&data->policy_mutex, NULL);
  47. FPRINTF(stderr, "Initialising Dummy scheduler\n");
  48. }
  49. static void deinit_dummy_sched(unsigned sched_ctx_id)
  50. {
  51. struct dummy_sched_data *data = (struct dummy_sched_data*)starpu_sched_ctx_get_policy_data(sched_ctx_id);
  52. STARPU_ASSERT(starpu_task_list_empty(&data->sched_list));
  53. STARPU_PTHREAD_MUTEX_DESTROY(&data->policy_mutex);
  54. free(data);
  55. FPRINTF(stderr, "Destroying Dummy scheduler\n");
  56. }
  57. static int push_task_dummy(struct starpu_task *task)
  58. {
  59. unsigned sched_ctx_id = task->sched_ctx;
  60. struct dummy_sched_data *data = (struct dummy_sched_data*)starpu_sched_ctx_get_policy_data(sched_ctx_id);
  61. /* NB: In this simplistic strategy, we assume that the context in which
  62. we push task has at least one worker*/
  63. /* lock all workers when pushing tasks on a list where all
  64. of them would pop for tasks */
  65. STARPU_PTHREAD_MUTEX_LOCK(&data->policy_mutex);
  66. starpu_task_list_push_front(&data->sched_list, task);
  67. starpu_push_task_end(task);
  68. STARPU_PTHREAD_MUTEX_UNLOCK(&data->policy_mutex);
  69. /*if there are no tasks block */
  70. /* wake people waiting for a task */
  71. struct starpu_worker_collection *workers = starpu_sched_ctx_get_worker_collection(sched_ctx_id);
  72. struct starpu_sched_ctx_iterator it;
  73. workers->init_iterator(workers, &it);
  74. while(workers->has_next(workers, &it))
  75. {
  76. unsigned worker;
  77. worker = workers->get_next(workers, &it);
  78. starpu_pthread_mutex_t *sched_mutex;
  79. starpu_pthread_cond_t *sched_cond;
  80. starpu_worker_get_sched_condition(worker, &sched_mutex, &sched_cond);
  81. STARPU_PTHREAD_MUTEX_LOCK(sched_mutex);
  82. STARPU_PTHREAD_COND_SIGNAL(sched_cond);
  83. STARPU_PTHREAD_MUTEX_UNLOCK(sched_mutex);
  84. }
  85. return 0;
  86. }
  87. /* The mutex associated to the calling worker is already taken by StarPU */
  88. static struct starpu_task *pop_task_dummy(unsigned sched_ctx_id)
  89. {
  90. /* NB: In this simplistic strategy, we assume that all workers are able
  91. * to execute all tasks, otherwise, it would have been necessary to go
  92. * through the entire list until we find a task that is executable from
  93. * the calling worker. So we just take the head of the list and give it
  94. * to the worker. */
  95. struct dummy_sched_data *data = (struct dummy_sched_data*)starpu_sched_ctx_get_policy_data(sched_ctx_id);
  96. #ifdef STARPU_NON_BLOCKING_DRIVERS
  97. if (starpu_task_list_empty(&data->sched_list))
  98. return NULL;
  99. #endif
  100. STARPU_PTHREAD_MUTEX_LOCK(&data->policy_mutex);
  101. struct starpu_task *task = NULL;
  102. if (!starpu_task_list_empty(&data->sched_list))
  103. task = starpu_task_list_pop_back(&data->sched_list);
  104. STARPU_PTHREAD_MUTEX_UNLOCK(&data->policy_mutex);
  105. return task;
  106. }
  107. static struct starpu_sched_policy dummy_sched_policy =
  108. {
  109. .init_sched = init_dummy_sched,
  110. .add_workers = NULL,
  111. .remove_workers = NULL,
  112. .deinit_sched = deinit_dummy_sched,
  113. .push_task = push_task_dummy,
  114. .pop_task = pop_task_dummy,
  115. .post_exec_hook = NULL,
  116. .pop_every_task = NULL,
  117. .policy_name = "dummy",
  118. .policy_description = "dummy scheduling strategy",
  119. .worker_type = STARPU_WORKER_LIST,
  120. };
  121. void dummy_func(void *descr[] STARPU_ATTRIBUTE_UNUSED, void *arg STARPU_ATTRIBUTE_UNUSED)
  122. {
  123. }
  124. static struct starpu_codelet dummy_codelet =
  125. {
  126. .cpu_funcs = {dummy_func},
  127. .cpu_funcs_name = {"dummy_func"},
  128. .cuda_funcs = {dummy_func},
  129. .opencl_funcs = {dummy_func},
  130. .model = NULL,
  131. .nbuffers = 0,
  132. .name = "dummy",
  133. };
  134. int main(int argc, char **argv)
  135. {
  136. int ntasks = NTASKS;
  137. int ret;
  138. /* struct starpu_conf conf; */
  139. /* starpu_conf_init(&conf); */
  140. /* conf.sched_policy = &dummy_sched_policy, */
  141. ret = starpu_init(NULL);
  142. if (ret == -ENODEV)
  143. return 77;
  144. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  145. unsigned sched_ctx = starpu_sched_ctx_create(NULL, -1, "dummy", STARPU_SCHED_CTX_POLICY_STRUCT, &dummy_sched_policy, 0);
  146. #ifdef STARPU_QUICK_CHECK
  147. ntasks /= 100;
  148. #endif
  149. starpu_sched_ctx_set_context(&sched_ctx);
  150. int i;
  151. for (i = 0; i < ntasks; i++)
  152. {
  153. struct starpu_task *task = starpu_task_create();
  154. task->cl = &dummy_codelet;
  155. task->cl_arg = NULL;
  156. ret = starpu_task_submit(task);
  157. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  158. }
  159. starpu_task_wait_for_all();
  160. starpu_shutdown();
  161. return 0;
  162. }